Сопло ракетного двигателя

Изобретение относится к ракетной технике и может быть использовано при создании сопел ракетных двигателей, в частности при разработке конструкции сопел жидкостных ракетных двигателей, имеющих радиационно охлаждаемый сопловой насадок. Сопло ракетного двигателя имеет контур в форме аксиально сдвоенного колокола с изломом контурной линии между двумя колокольными формами. Излом контура сопла ракетного двигателя выполнен в виде дуги окружности, начало и конец которой определяется точками ее касания контуров первой и второй колокольных форм. Контур второй колокольной формы спрофилирован по кривой второго порядка с углом наклона к оси симметрии ракетного сопла в точке конца излома контура ракетного сопла, большим, чем увеличенный на 8° угол наклона контура первой колокольной формы к оси симметрии ракетного сопла в точке начала излома контура. Изобретение позволяет снизить температуру стенки концевой части сопла ракетного двигателя при минимальном снижении эффективного удельного импульса тяги. 1 ил.

 

Изобретение относится к ракетной технике и может быть использовано при создании сопел ракетных двигателей, в частности при разработке конструкции сопел жидкостных ракетных двигателей (ЖРД), имеющих радиационно охлаждаемый сопловой насадок (НРО).

НРО ракетного двигателя охлаждается только излучением тепла его поверхностью, поэтому температура НРО достигает существенно высоких значений, зависящих от свойств продуктов сгорания и степени черноты его поверхностей, соответственно, материал НРО должен выдерживать эти температуры. Если максимальная температура НРО позволяет, то НРО обычно изготавливается из жаростойких металлов или металлических сплавов, а если она превышает их допустимую температуру, то НРО может быть изготовлен из более температуростойкого углерод-углеродного или углерод-керамического композиционного материала (УУКМ или УККМ). Однако НРО из УУКМ или УККМ существенно дороже металлического НРО и имеет ограничения на применение. Наиболее простым и недорогостоящим путем обеспечения регулирования температуры стенок сопла ракетного двигателя является выбор определенной формы сопла с изломом контура.

Известен патент RU 2156875 (опубл. 27.09.2000 г.) «Ракетное сопло с регулируемой температурой», в котором предлагается профилировать расширяющуюся часть сопла ракетного двигателя в виде т.н. «двойного колокола» с изломом контура сопла в точке между двумя колокольными формами, таким, что угол наклона контура скачкообразно увеличивается в точке излома на 2-7° для понижения конвективных тепловых потоков от продуктов сгорания в стенку сопла, расположенную ниже по потоку от точки излома контура, соответственно, для уменьшения температуры этой стенки.

В этом патенте указано, что эта точка излома расположена между поперечным сечением сопла с отношением площади этого сечения к площади минимального сечения сопла, равным 10, и поперечным сечением сопла с величиной этого отношения, составляющей 0,85 от величины этого отношения в выходном сечении сопла. Кроме того, в этом патенте отмечено, что в точке излома контура пристеночный слой завесного охлаждения стенки сопла будет резко ускоряться, что стабилизирует этот слой и поддерживает его эффективность. Однако предложенное в этом патенте техническое решение задачи понижения температуры стенки сопла имеет следующие недостатки:

- излом контура выполнен в виде угловой точки, что при работе двигателя приведет к отрыву в этом месте пограничного слоя и пристеночного слоя завесного охлаждения стенки, следовательно, к образованию в этом месте отрывной зоны и скачка сжатия, что ведет, соответственно, к повышению конвективных тепловых потоков от продуктов сгорания к стенке сопла;

- в современных ракетных двигателях увеличение угла наклона стенки в точке излома контура на предлагаемые в этом патенте 2÷7° явно недостаточно для необходимого понижения максимальной температуры НРО и обычно составляет 8÷20°;

- для понижения конвективных тепловых потоков от продуктов сгорания к стенке сопла и температуры стенки сопла ниже по потоку от точки излома только излома контура недостаточно, так как при неверном профилировании этой части сопла возможно торможение потока продуктов сгорания на этом участке сопла и, соответственно, повышение этих тепловых потоков и температуры стенки вместо их понижения;

- в патенте не указано влияние местоположения и величины излома контура на величину удельного импульса тяги камеры двигателя, а также влияние на эту величину контура сопла ниже по потоку от точки излома, координат контура и угла наклона контура к оси симметрии сопла в выходном сечении сопла.

Технической задачей настоящего изобретения является устранение указанных недостатков, а именно понижение температуры стенки концевой части сопла ракетного двигателя до заданного уровня путем профилирования сопла с изломом контура с минимальным снижением при этом эффективного (т.е. с учетом влияния контура на массу сопла) удельного импульса тяги камеры по сравнению с камерой, имеющей сопло без излома контура.

Для достижения технического результата контур сопла ракетного двигателя выполняется в форме аксиально сдвоенного колокола с изломом контурной линии между двумя колокольными формами так, что этот излом контура сопла ракетного двигателя выполнен в виде дуги окружности, начало и конец которой определяется точками ее касания контуров первой и второй колокольных форм. Контур второй колокольной формы спрофилирован по кривой второго порядка с углом наклона θ1 к оси симметрии ракетного сопла в точке конца излома контура ракетного сопла, а θ10+8°, где θ0 - угол наклона контура первой колокольной формы к оси симметрии ракетного сопла в точке начала излома контура.

Одним из важных отличительных признаков предлагаемого изобретения является выполнение излома контура сопла ракетного двигателя в виде дуги окружности радиуса R, начало и конец которой определяется точками ее касания контуров первой и второй колокольных форм (точки В и С на Фигуре). Это позволяет предотвратить в этом месте отрыв пограничного слоя и пристеночного слоя завесного охлаждения стенки, следовательно, предотвратить образование в этом месте отрывной зоны и скачка сжатия, которые привели бы к повышению конвективных тепловых потоков от продуктов сгорания к стенке сопла, соответственно не позволили бы решить поставленную задачу.

Контур первой колокольной формы может быть спрофилирован методом характеристик с равномерной или вариационной выходной характеристикой с координатами xB, yB в точке его касания с дугой окружности излома, при этом угол его наклона к оси симметрии сопла в этой точке θ0 не оптимизируется, т.к. определяется этими оптимизируемыми координатами. Начальный участок этого контура может быть задан дугой окружности, или весь этот контур может быть задан по «промежуточной» линии тока (см. Пирумов У.Г., Росляков Г.С. Течения газа в соплах. М., Изд. МГУ, 1978). Этот контур может быть также спрофилирован методом прямой оптимизации (т.е. оптимизации параметров, определяющих контур, например, методом покоординатного спуска, см. ниже) в выбранном семействе аналитически задаваемых контуров с оптимизацией не только координат точки его касания с дугой окружности излома, но и угла θ0. Оптимизация координат xB, yB точки В касания этого контура с дугой окружности излома и, соответственно, угла θ0 осуществляется, как описано ниже, в совокупности с оптимизацией радиуса дуги излома R и параметров θ1, θ2, xD, yD контура второй колокольной формы с целью решения технической задачи настоящего изобретения, т.е. понижения температуры стенки концевой части сопла ракетного двигателя до заданного уровня путем профилирования сопла с изломом контура с минимальным снижением при этом эффективного удельного импульса тяги камеры двигателя по сравнению с камерой, имеющей сопло без излома контура.

Контур второй колокольной формы целесообразно профилировать методом прямой оптимизации (т.е. оптимизации параметров, определяющих контур, например, методом покоординатного спуска, см. ниже) в аналитически задаваемом семействе кривых, например двухпараметрическом (при заданных точках начала и конца контура) семействе кривых второго порядка с начальным (θ1) и конечным (θ2) углами наклона к оси симметрии сопла и координатами xD, yD точки D выходного сечения сопла (см. Фигуру), так, чтобы решить техническую задачу настоящего изобретения, а именно:

- получить разницу углов θ10 на дуге излома, достаточную для понижения температуры стенки сопла на участке этого контура до заданной величины;

- обеспечить непрерывное ускорение потока продуктов сгорания вдоль стенки сопла на участке этого контура;

- с учетом контура первой колокольной формы обеспечить минимальное снижение эффективного удельного импульса тяги камеры ракетного двигателя по сравнению с камерой, имеющей сопло без излома контура.

Угол наклона контура сопла в точке касания дуги излома контура второй колокольной формы θ10+8°, где θ0 - угол наклона контура первой колокольной формы к оси симметрии ракетного сопла в точке касания дуги излома, обеспечивает необходимое понижение температуры стенки, расположенной ниже по потоку от излома контура части сопла ракетного двигателя до заданного уровня, а угол θ2≥arctg((yD-yB)/(xD-xB))+θ01 обеспечивает непрерывное ускорение потока продуктов сгорания вдоль стенки НРО вплоть до выходного сечения сопла (точки D) и минимальное снижение эффективного удельного импульса тяги камеры ракетного двигателя по сравнению с камерой, имеющей сопло без излома контура.

Предлагаемое изобретение поясняется представленным рисунком на Фигуре, где показаны параметры семейства контуров сопла ракетного двигателя с изломом контура. Участок АВ - контур первой колокольной формы с координатами, точки В касания контура с дугой излома и углом наклона контура к оси симметрии сопла θ0 в этой точке; участок ВС - дуга окружности радиуса R, образующая излом контура; участок CD - контур второй колокольной формы с углом наклона к оси симметрии сопла θ1 в точке С касания контура с дугой излома, координатами, концевой точки D этого контура (выходное сечение сопла) и углом наклона к оси симметрии сопла θ2 в этой точке.

При этом оптимизацию контуров колокольных форм, т.е. их параметров xB, yB, θ1, θ2, xD, yD, и радиуса дуги окружности излома контура R осуществляют совместно, любым подходящим для этого методом оптимизации, например методом покоординатного спуска (см., например, Химмельблау Д. Прикладное нелинейное программирование. М., «Мир», 1975), с использованием в качестве целевой функции этой оптимизации эффективного (т.е. с учетом влияния контура на массу сопла) удельного импульса тяги камеры, который при этом максимизируется при условии, что максимальная температура НРО не превышает допустимую для материала НРО температуру и поток газообразного рабочего тела ракетного двигателя (обычно продукты сгорания топлива) непрерывно ускоряется вдоль стенки сопла.

Предложенное устройство сопла ракетного двигателя работает следующим образом. При работе ракетного двигателя поток продуктов сгорания топлива сначала обтекает участок сопла АВ (Фигура), заданный первой колокольной формой, затем с существенно увеличившимся ускорением обтекает дугу окружности ВС излома контура, а затем без какого-либо торможения, с продолжающей увеличиваться скоростью обтекает участок сопла CD, заданный второй колокольной формой. Вследствие более высокой скорости обтекания стенки сопла на участке BD снижается конвективный тепловой поток в стенку сопла от продуктов сгорания, соответственно снижается температура стенки сопла на этом участке по сравнению с температурой стенки сопла на этих же геометрических степенях расширения сопла этого же двигателя, но без излома контура. Поскольку параметры контуров первой и второй колокольных форм оптимизируются, то эффективный (с учетом изменения массы сопла) удельный импульс тяги камеры двигателя с соплом с изломом контура минимально понижается по сравнению с эффективным удельным импульсом тяги камеры этого же двигателя с соплом без излома контура.

Так, в расчетах, выполненных для камеры кислородно-керосинового ЖРД с диаметром минимального сечения сопла 62 мм и давлением в камере сгорания 8,0 МПа, получено, что у этой камеры НРО оптимального сопла без излома контура имеет максимальную температуру 1560 К, а профилирование этого сопла с изломом контура, выполненным по предлагаемому изобретению, позволяет понизить максимальную температуру НРО до 1350 К, при этом эффективный (с учетом изменения массы сопла) пустотный удельный импульс тяги камеры с соплом с изломом всего на 0,56 с меньше, чем у камеры с соплом без излома контура.

Сопло ракетного двигателя, контур которого выполнен в форме аксиально сдвоенного колокола с изломом контурной линии между двумя колокольными формами, отличающееся тем, что излом контура сопла ракетного двигателя выполнен в виде дуги окружности, начало и конец которой определяется точками ее касания контуров первой и второй колокольных форм, причем контур второй колокольной формы спрофилирован по кривой второго порядка с углом наклона θ1 к оси симметрии ракетного сопла в точке конца излома контура ракетного сопла, а θ10+8°, где θ0 - угол наклона контура первой колокольной формы к оси симметрии ракетного сопла в точке начала излома контура.



 

Похожие патенты:

Изобретение относится к области ракетостроения, а именно к способам повышения тяги ракетного двигателя, и может быть использовано для увеличения тяги ракетных и авиационных двигателей.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб и складной насадок, образованный лепестками, кинематически связанными с раструбом механизмом раздвижки, обеспечивающим перевод лепестков из сложенного положения в рабочее.

Изобретение относится к ракетной технике и предназначено для использования в ракетных двигателях твердого топлива реактивных снарядов систем залпового огня. Сопло ракетного двигателя содержит корпус, дозвуковую и сверхзвуковую части сопла, а также герметизирующее-пусковое устройство с форсажной трубкой и опорой.

Изобретение относится к области ракетной твердотопливной техники и может быть использовано в конструкциях поворотных сопл из композиционных материалов. Корпус раструба поворотного сопла из композиционных материалов содержит оболочку в виде усеченного конуса с двумя присоединительными фланцами у большого и малого оснований, а также силовой шпангоут с закладными деталями для взаимодействия с механизмами поворота сопла.

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя (ЖРД) с турбонасосной системой подачи топлива, выполненного по схеме без дожигания с радиационно-охлаждаемым насадком сопла камеры.

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении.

Изобретение относится к средствам создания тяги и может быть использовано в реактивных двигателях (РД). Двигательное устройство содержит корпус, конусообразную камеру сгорания, выхлопную трубу, два пружинных клапана между выхлопной трубой и камерой сгорания, блок управления с гидравлическими выходами.

Изобретение относится к области ракетной техники. В сверхзвуковой части осесимметричного сопла ракетного двигателя установлена вставка, которая имеет длину, выходной диаметр и степень расширения, меньшие, чем соответствующие геометрические параметры стенки сверхзвуковой части сопла.

Изобретение относится к ракетной технике. Ракетный двигатель с раздвижным диффузором содержит сопло истечения газов, исходящих из камеры сгорания, причем сопло имеет продольную ось (ZZ') и содержит первую часть, определяющую критическое сечение сопла и первую неподвижную секцию (12) диффузора, по меньшей мере одну вторую выдвижную секцию (16) диффузора, сечение которой больше сечения первой неподвижной секции (12) диффузора, и механизм (18) выдвижения второй выдвижной секции (16) диффузора, расположенный снаружи от первой и второй секций (12, 16) диффузора.

Изобретение относится к области ракетных двигателей твердого топлива со стабилизацией тяги в условиях различных начальных температур окружающей среды и разброса параметров топлива.

Изобретение относится к боеприпасам, а именно к конструкции ракетных частей реактивных снарядов. Ракетная часть реактивного снаряда содержит корпус, дно и хвостовой блок. На внутренней поверхности выходного конуса хвостового блока размещено устройство закрутки, выполненное в виде лопаток переменного сечения. Лопатки расположены с интервалом 0,65-0,75 диаметра критического сечения сопла, а высота лопаток составляет 0,08-0,1 калибра ракетной части. Лопатки переменного сечения выполнены из материала, обеспечивающего их выгорание к концу активного участка. Изобретение позволяет снизить величину технического рассеивания. 4 з.п. ф-лы, 1 ил.

Техническое решение относится к ракетным двигательным установкам, для работы которых используется горючее и окислитель, и может быть использовано при создании сопл жидкостных ракетных двигателей (ЖРД). Сопло камеры жидкостного реактивного двигателя содержит наружную и внутреннюю оболочки, образующие тракт охлаждения, сообщенный через подколлекторное кольцо с коллектором подвода охладителя, размещенным на наружной оболочке, коллектор включает два диаметрально расположенных патрубка и, как минимум, одну поперечную перегородку, установленную на равном угловом удалении от осей патрубков. Эта перегородка перекрывает в % 80-90 площади поперечного сечения коллектора с образованием зазора между перегородкой и подколлекторным кольцом. Кроме того, сопло камеры жидкостного реактивного двигателя снабжено коллектором отвода охладителя с тремя равнорасположенными по окружности патрубками отвода охладителя. Изобретение обеспечивает повышение надежности работы сопла за счет равномерности распределения расхода охладителя по каналам тракта охлаждения, а также и уменьшение габаритов и веса коллекторов подвода и отвода охладителя. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике, а именно к способу изготовления внутренней оболочки сопла камеры сгорания жидкостного ракетного двигателя (ЖРД). Способ включает ротационное выдавливание оболочки за несколько переходов. Верхнюю часть со стороны малого диаметра оболочки изготавливают из материала, предназначенного для сваривания с соседним блоком сопла. До ротационного выдавливания оболочки в плоской заготовке вырезают отверстие по диаметру соединения двух материалов. Затем в отверстие вставляют плоскую заготовку из другого материала такой же толщины, что и основная заготовка. Осуществляют сварку кольцевым швом двух материалов. Проводят зачистку сварного шва и контроль его качества, а затем выполняют ротационное выдавливание сварной заготовки и получают биметаллическую внутреннюю оболочку со стороны малого диаметра с переходной зоной от одного материала к другому. Изобретение обеспечивает изготовление биметаллической внутренней оболочки с минимальной деформацией и без подварок, исключение дефектов сварки в переходной зоне от одного материала к другому за счет упрочнения сварного шва при раскатке, повышение качества и надежности оболочки сопла камеры сгорания ЖРД. 1 ил.

При сборке сопла ракетного двигателя с эластичным опорным шарниром сопло устанавливают вертикально стыковочным фланцем на базовую поверхность стыковочного фланца жесткого основания и сжимают эластичный опорный шарнир с заданным усилием. Затем фиксируют подвижную часть сопла относительно неподвижной части стопорными устройствами. Фиксацию подвижной части сопла относительно неподвижной части производят с дискретным увеличением усилия фиксации до заданных значений. Во время каждого увеличения усилия фиксации в двух взаимно перпендикулярных осевых плоскостях, одна из которых проходит через стопорное устройство, контролируют отклонение от перпендикулярности оси подвижной части сопла относительно базовой поверхности стыковочного фланца жесткого основания. При необходимости изменением усилия фиксации стопорных устройств производят корректировку перпендикулярности до нормированного значения. Изобретение позволяет исключить деформацию сопла с эластичным опорным шарниром при сборке, а также снизить ее трудоемкость. 2 ил.

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Двигатель содержит систему агрегатов формирования и подачи рабочего тела в сопло, при этом сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости. Выходная часть сопла имеет конический раструб, переходящий в полый цилиндр. Изобретение обеспечивает упрощение конструкции, снижение массы двигателя. 1 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке заглушек сопел малогабаритных ракетных двигателей, где необходимо реализовать высокий уровень давления срабатывания заглушки. Заглушка сопла ракетного двигателя выполнена в виде охватывающего выходную часть сопла полого цилиндра с глухим дном, закрепленного на наружной поверхности сопла срезаемыми штифтами. На внутренней стенке полого цилиндра выполнена кольцевая проточка, а на его торцовой поверхности выполнены радиальные прорези, обеспечивающие возможность захода предварительно установленных на сопле срезаемых штифтов в кольцевую проточку. Полый цилиндр фиксируется на сопле в смещенном относительно прорезей положении срезаемых штифтов при помощи установленных в осевой плоскости упорных и стопорных винтов. На внутренней поверхности полого цилиндра со стороны глухого дна размещено кольцевое уплотнение. Изобретение позволяет обеспечить высокое расчетное давление срабатывания. 2 ил.

Изобретение относится к области машиностроения и может быть использовано при изготовлении заглушек для сопел ракетных двигателей на твердом топливе. При изготовлении сферической заглушки выкраивают круговые заготовки из пропитанной связующим стеклоткани, выкладывают из заготовок многослойный пакет на соответствующую конфигурации заглушки матрицу пресс-формы и осуществляют горячее прессование. При выкраивании заготовок отмечают на них положение направления основы стеклоткани, проходящего через центр заготовки, а при выкладке заготовок совмещают направление основы стеклоткани первой заготовки с заданным на матрице направлением выкладки первого слоя многослойного пакета. Направление основы стеклоткани второй заготовки располагают перпендикулярно к направлению основы стеклоткани первой выложенной заготовки, а направления основы стеклоткани третьей и четвертой заготовок располагают зеркально симметрично между направлениями основы стеклоткани первой и второй заготовок. Затем выкладывают остальные заготовки, совмещая при этом направление основы стеклоткани пятой, девятой и так далее заготовок с направлением основы стеклоткани первой заготовки. Изобретение позволяет повысить качество изготовления из стеклоткани сферической заглушки, за счет исключения коробления ее поверхности. 2 ил.

Развертываемое сопло для ракетного двигателя содержит неподвижную расширяющуюся секцию и подвижную расширяющуюся секцию, которая коаксиальна неподвижной расширяющейся секции и выполнена с возможностью перемещения вдоль неподвижной расширяющейся секции из втянутого положения в развернутое положение. Сопло также содержит поперечный элемент жесткости, предварительно напряженный натяжением и проходящий поперечно подвижной расширяющейся секции, вблизи нижнего по потоку конца этой секции, между по меньшей мере двумя точками на периферии внутренней стенки этой подвижной расширяющейся секции. Другое изобретение группы относится к ракетному двигателю, содержащему указанное выше развертываемое сопло. Группа изобретений позволяет снизить собственные колебания подвижной расширяющейся секции сопла. 2 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к ракетной технике, а более конкретно к устройству жидкостного ракетного двигателя с выдвижным соплом. В жидкостном ракетном двигателе исполнительный механизм выполнен в виде двух соосных, с неподвижным соплом и между собой одной неподвижной и другой, выполненной с возможностью вращения относительно неподвижной, обечаек, с расположенными между обечайками подшипниками и узлом ограничения взаимного осевого перемещения вдоль продольной оси сопла, а на второй обечайке, связанной кинематически с приводом вращательного перемещения через кинематический узел, и на наружной части смонтированной с возможностью перемещения части сопла равномерно по окружности расположены цапфы с установленными на их концах сферическими подшипниками, соединенными шатунами. Изобретение обеспечивает снижение динамических нагрузок на сопло при выдвижении на конечном участке, а также уменьшение радиальных габаритов и массы. 5 ил.

Изобретение относится к ракетной технике. Раструб сопла ракетного двигателя с тепловой изоляцией выполнен из композиционного материала, который представляет собой армированную углеродными волокнами керамическую матрицу. Тепловая изоляция выполнена в виде кожуха из пакета пластин углеродного войлока, зашитого в армирующую оболочку из стеклоткани и прошитого армирующими нитями. Кожух закреплен на внешней поверхности сопла. Изобретение позволяет обеспечить защиту агрегатного отсека двигателя и приборов, расположенных вблизи сопла от перегрева при минимальном увеличении веса и изменении конструкции раструба. 3 з.п. ф-лы, 2 ил.
Наверх