Электронные устройства


 

H01L51/56 - Приборы на твердом теле, предназначенные для выпрямления, усиления, генерирования или переключения или конденсаторы или резисторы по меньшей мере с одним потенциальным барьером или поверхностным барьером; с использованием органических материалов в качестве активной части или с использованием комбинации органических материалов с другими материалами в качестве активной части; способы или устройства специально предназначенные для производства или обработки таких приборов или их частей (способы или устройства для обработки неорганических полупроводниковых тел, включающей в себя образование или обработку органических слоев на них H01L 21/00,H01L 21/312,H01L 21/47)

Владельцы патента RU 2552402:

ПЛАСТИК ЛОДЖИК ЛИМИТЕД (GB)

Изобретение относится к электронным устройствам, содержащим один или более органических слоев. Способ формирования электронного устройства включает формирование на несущей подложке множества электронно-функциональных элементов, образованных стопкой слоев, содержащей нижний проводящий слой, причем способ включает этап формирования между несущей подложкой и нижним проводящим слоем непроводящего слоя, который обеспечивает увеличение сцепления нижнего проводящего слоя с несущей подложкой, где непроводящий слой содержит нитридный слой, содержащий на поверхности раздела с нижним проводящим слоем менее 10 атомарных процентов кислорода. Изобретение позволяет повысить надежность электронных устройств. 2 н. и 15 з.п. ф-лы, 1 ил.

 

Настоящее изобретение относится к электронным устройствам, в частности - к устройствам, содержащим один или более органических слоев в качестве электронно-функциональных слоев и/или в качестве несущих слоев.

Производство надежных электронных устройств, содержащих такие органические слои, может быть затруднено по меньшей мере по следующим причинам.

Было обнаружено, что если совокупность электронных элементов установлена на пластиковой подложке с использованием покрывающего ее органического планаризирующего слоя, то электронные элементы и/или поверхности раздела между электронными элементами такого устройства имеют тенденцию испытывать деградацию, обусловленную примесями, такими как влага и/или кислород.

Кроме того, в органическом электронном устройстве проводящие элементы часто имеют форму паттернированных неорганических металлических слоев, и поэтому может возникать проблема обеспечения достаточного сцепления между неорганическим металлическим слоем и подлежащим органическим слоем, таким как органический планаризующий слой.

Целью настоящего изобретения является обеспечение одного или более способов, позволяющих производить более надежные электронные устройства.

Настоящее изобретение обеспечивает способ, включающий: формирование на несущей подложке множества электронно-функциональных элементов, образованных стопкой слоев, содержащей нижний проводящий слой, причем этот способ включает формирование между несущей подложкой и нижним проводящим слоем непроводящего слоя, который обеспечивает увеличение сцепления нижнего проводящего слоя с несущей подложкой.

В одном из вариантов осуществления настоящего изобретения непроводящий слой содержит нитридный слой.

В одном из вариантов осуществления настоящего изобретения несущая подложка содержит полимерную основу.

В одном из вариантов осуществления настоящего изобретения несущая подложка содержит полимерную основу и покрывающий ее планаризирующий (выравнивающий) слой.

В одном из вариантов осуществления настоящего изобретения непроводящий слой сформирован непосредственно на планаризирующем слое.

В одном из вариантов осуществления настоящего изобретения нижний проводящий слой образует пары электродов «исток-сток» транзисторной матрицы.

В одном из вариантов осуществления настоящего изобретения нижний проводящий слой образует затворные шины транзисторной матрицы.

В одном из вариантов осуществления настоящего изобретения непроводящий слой формируют с использованием способа конформального осаждения.

В одном из вариантов осуществления настоящего изобретения способ дополнительно включает снижение уровня загрязнений в несущей подложке перед формированием непроводящего слоя.

В одном из вариантов осуществления настоящего изобретения нитридный слой имеет атомарную чистоту, превышающую 90%, на поверхности раздела с нижним проводящим слоем.

Настоящее изобретение также обеспечивает конструкцию устройства, содержащую: несущую подложку и множество электронно-функциональных элементов, образованных стопкой слоев, содержащей нижний проводящий слой, причем конструкция устройства между несущей подложкой и нижним проводящим слоем содержит непроводящий слой, который обеспечивает увеличение сцепления нижнего проводящего слоя с несущей подложкой.

В одном из вариантов осуществления настоящего изобретения непроводящий слой содержит неорганический нитридный материал.

В одном из вариантов осуществления настоящего изобретения неорганический нитридный материал имеет атомарную чистоту, превышающую 90%, на поверхности раздела с нижним проводящим слоем.

В одном из вариантов осуществления настоящего изобретения несущая подложка содержит полимерную основу.

В одном из вариантов осуществления настоящего изобретения несущая подложка содержит полимерную основу и покрывающий ее планаризирующий слой.

В одном из вариантов осуществления настоящего изобретения непроводящий слой сформирован непосредственно на планаризирующем слое.

В одном из вариантов осуществления настоящего изобретения нижний проводящий слой образует пары электродов «исток-сток» транзисторной матрицы.

В одном из вариантов осуществления настоящего изобретения нижний проводящий слой образует затворные шины транзисторной матрицы.

В одном из вариантов осуществления настоящего изобретения непроводящий слой является неорганическим непроводящим слоем и обеспечивает увеличение сцепления нижнего проводящего слоя с органической поверхностью несущей подложки.

Настоящее изобретение также обеспечивает способ, включающий: формирование одного или более электронных элементов на подложке устройства и обеспечение между подложкой устройства и одним или более электронными элементами барьерного слоя, который служит в качестве основной защиты вышележащих электронных элементов против проникновения влаги и кислорода через подложку устройства.

В одном из вариантов осуществления настоящего изобретения способ дополнительно включает: крепление подложки устройства к носителю с использованием одного или более адгезивных слоев и формирование одного или более электронных элементов на подложке устройства, которая закреплена на носителе, причем барьерный слой служит в качестве основной защиты вышележащих электронных элементов против проникновения влаги и кислорода из адгезивных слоев через подложку устройства.

В одном из вариантов осуществления настоящего изобретения барьерный слой обеспечивает меньшую скорость пропускания водяного пара, чем любой слой, расположенный между носителем и подложкой устройства.

В одном из вариантов осуществления настоящего изобретения барьерный слой обеспечивает скорость пропускания водяного пара менее 1 г/м2/24 часа.

В одном из вариантов осуществления настоящего изобретения подложку устройства формируют непосредственно на адгезивном элементе, который обеспечивает крепление подложки устройства к носителю.

В одном из вариантов осуществления настоящего изобретения адгезивный элемент содержит адгезивные слои на противоположных сторонах несущего слоя.

В одном из вариантов осуществления настоящего изобретения между подложкой устройства и электронными элементами обеспечен планаризирующий слой.

В одном из вариантов осуществления настоящего изобретения способ не включает дополнительное обеспечение между подложкой устройства и носителем какого-либо слоя, единственной функцией которого является предотвращение проникновения влаги и кислорода в подложку устройства.

Один из вариантов осуществления настоящего изобретения подробно описан ниже, исключительно в качестве примера, со ссылкой на прилагаемые графические материалы, где:

Фиг.1 иллюстрирует получение множества дисплейных устройств согласно одному из вариантов осуществления настоящего изобретения.

На фиг.1 показан процесс получения двух дисплейных устройств, содержащих тонкопленочные транзисторные матрицы (TFT-матрицы) в качестве соединительных плат, на общем носителе согласно одному из вариантов осуществления настоящего изобретения.

Однако способ, описанный ниже и проиллюстрированный на Фиг.1, можно использовать также для получения большего числа дисплейных устройств на общем носителе.

Лист 2 материала подложки устройства временно прикрепляют к стеклянному носителю 4 (также называемому «материнской платой») с помощью соответствующего адгезивного элемента 1, например - адгезивного элемента, содержащего один или более акриловых адгезивных слоев. Из листа 2 материала подложки устройства получают впоследствии множество подложек устройств путем разрезания листа 2 материала подложки после завершения обработки подложек прямо на носителе 4 in situ. Носитель 4 не является частью изготавливаемых устройств, и адгезивный элемент 1 содержит один или более слоев, состоящих из адгезива, клейкость которого можно снизить под действием тепла или УФ-излучения, чтобы обеспечить отделение подложек устройств от носителя 4 на последующей стадии процесса изготовления.

Лист 2 материала подложки устройства является пленкой, состоящей из полиэтилентерефталата (ПЭТ). Другим примером полимерной подложки для такого рода устройства является пленка, состоящая из полиэтиленнафталина (ПЭН).

Слой 3 планаризирующего материала наносят поверх листа 2 материала подложки устройства. Планаризирующим материалом может быть любой материал, который обеспечивает однородную гладкую поверхность, на которой могут быть сформированы транзисторные элементы. Например, планаризирующий слой может состоять из УФ-отверждаемого акрилового покрытия или термоотверждаемого покрытия на основе нанодиоксида кремния/полисилоксана. Другими примерами подходящих органических планаризирующих материалов являются цианоакрилаты, эпоксидные смолы, фторполимеры пластизоль и акрилаты. Планаризирующий слой 3 может быть нанесен с использованием таких способов, как нанесение покрытия ножевым устройством, трафаретная печать, флексографическая печать, нанесение покрытия распылением, струйная печать, центрифугирование или экструзионное нанесение покрытия из щелевой головки.

Затем посредством напыления в вакууме на планаризирующий слой 3 осаждают нитрид алюминия в форме непрерывной пленки 5. Осаждение посредством напыления в вакууме обеспечивает пленку нитрида алюминия, соответствующую подлежащему планаризирующему слою, и поэтому обеспечивает такую же плоскую поверхность, пригодную для формирования на ней последующих элементов.

Затем непосредственно на нитридный слой 5 наносят паттернированный нижний слой 6 из металлического золота в каждой из зон А и В устройства с получением пар электродов «исток-сток» и сигнальных шин транзисторных матриц. Паттернированный слой 7 золота получают посредством напыления соответствующих непрерывных слоев золота на нитридный слой 5 в зонах А и В устройства и последующего паттернирования непрерывных слоев золота с использованием способа оптической литографии или способа лазерной абляции. Расстояние между электродами пары «исток-сток» определяет ширину полупроводникового канала соответствующего транзистора.

Примерами альтернативных материалов для нижнего проводящего слоя, который обеспечивает пары 6 электродов «исток-сток» и т.п., в такого рода устройстве являются материалы, обладающие удельным сопротивлением менее 5 Ом/100 кв. футов и высокой работой выхода, равной по меньшей мере 5 эВ. Альтернативно, для обеспечения высокой электропроводности и высокой работы выхода можно использовать бислои, состоящие из двух металлических материалов. Примерами комбинаций проводящих материалов являются серебро (Ag) и медь (Cu), а также оксид никеля (NiO) и палладий (Pd).

Следующая стадия включает формирование остальных элементов на соединительной плате дисплея. Совокупность остальных элементов обозначена на Фиг.1 цифрой 7. Остальными элементами являются полупроводниковые каналы между парами электродов «исток-сток», затворные диэлектрические элементы, отделяющие каждый полупроводниковый канал от затворного электрода того же транзистора, затворные шины, которые соединяют затворные электроды и средства для адресации каждого транзистора, и другие элементы, такие как пиксельные электроды, электрически соединенные с соответствующими стоковыми электродами. После завершения изготовления соединительной платы на соединительную плату ламинируют переднюю панель 20, содержащую средства отображения информации.

Полупроводниковые каналы представляют собой слой поли(9,9'-диоктилфлуорен-со-бис-N,N')-(4-бутилфенил)дифениламина (TFB), который наносят посредством флексографической печати в каждой из зон А и В устройства поверх паттернированного металлического слоя 6 в качестве полупроводникового слоя, покрывающего пары электродов «исток-сток» и имеющиеся между ними зазоры. Концентрацию раствора и условия нанесения выбирают такими, чтобы получить сухую твердую пленку полупроводника с толщиной, предпочтительно равной примерно 50 нм.

Другими примерами подходящих полупроводниковых материалов являются: другие полифлуорены, например - поли(диоктилфлуорен-со-битиофен) (F8T2); политиофены, пентацен или производные пентацена (например, триизопропилсилилэтинил(TIPS)пентацен). Другими примерами способов нанесения покрытия для формирования полупроводникового слоя являются центрифугирование, погружение, нанесение покрытия с помощью ножевого устройства, нанесение покрытия с помощью планки, нанесение покрытия посредством плоскощелевой экструзии, нанесение распылением, струйная печать, глубокая печать, офсетная печать, трафаретная печать, напыление и осаждение из паровой фазы.

После этого для получения затворных диэлектрических элементов посредством флексографической печати в зонах А и В устройства наносят один или более слоев 10 затворного диэлектрического материала на подлежащий активный полупроводниковый слой. Материалы и растворители для нанесения этих полупроводниковых и затворных диэлектрических слоев тщательно выбирают в соответствии со способом, описанным в публикации WO 01/47043, с целью минимизации деградации полупроводникового слоя в процессе нанесения затворного диэлектрического слоя.

Другими примерами способов нанесения покрытия для формирования затворного диэлектрического слоя являются центрифугирование, погружение, нанесение покрытия с помощью ножевого устройства, нанесение покрытия с помощью планки, нанесение покрытия посредством плоскощелевой экструзии, нанесение распылением, струйная печать, глубокая печать, офсетная печать, трафаретная печать, напыление и осаждение из паровой фазы.

Другими примерами подходящих затворных диэлектрических материалов, которые можно наносить в форме раствора, являются:

полиметилметакрилат (ПММА), который растворим, например, в этилацетате; Cytop®, представляющий собой аморфный фторполимер, который можно приобрести в компании ФПС Chemicals Europe, Ltd., и который растворим, например, в перфторидном растворителе, таком как перфтортрибутиламин (FC43); и полиизобутилен (PIB). Каждый затворный диэлектрический элемент может иметь многослойную конструкцию, содержащую стопку из двух или более слоев различных диэлектрических материалов между полупроводниковым слоем и затворным электродом.

Затворные шины получают посредством осаждения способом распыления и паттернирования верхнего слоя золота. Паттернирование осуществляют посредством фотолитографии или лазерной абляции. Примерами других подходящих для затворных электродов материалов являются другие хорошо проводящие металлы, такие как медь (Cu), материал, с которым можно работать в форме раствора, содержащий неорганические наночастицы серебра или других металлов, и проводящие полимеры, такие как PEDOT/PSS. Проводящий слой для формирования затворных шин можно получить с использованием других способов осаждения из паровой фазы, например - посредством испарения. Альтернативно, проводящий слой для формирования затворных шин можно получить посредством нанесения покрытия из проводящего материала, с которым можно работать в форме раствора (или его предшественника) на подлежащий затворный диэлектрический слой (или слои). Примерами подходящих способов нанесения являются центрифугирование, погружение, нанесение покрытия с помощью ножевого устройства, нанесение покрытия с помощью планки, нанесение покрытия посредством плоскощелевой экструзии, глубокая печать, офсетная печать, трафаретная печать или струйная печать.

Изолирующий нитридный слой 5 выполняет две функции: (i) увеличения сцепления между планаризирующим слоем 3 и нижним слоем 6 золота; и (ii) барьера, защищающего вышележащие электронные элементы (и любые другие вышележащие чувствительные элементы) от проникновения влаги и кислорода через полимерную подложку.

Что касается функции (i), то было обнаружено, что уровень сцепления между изолирующим нитридным слоем 5 и слоем 6 металлического золота достаточно высок для того, чтобы не нужно было использовать промежуточный слой металла в качестве слоя, способствующего сцеплению, непосредственно под слоем 7 золота. Увеличение сцепления, обеспечиваемое изолирующим нитридным слоем, можно подтвердить с использованием способа испытания согласно стандарту ASTM D3359-09, в котором сцепление металла с подложкой измеряют с использованием способа с клейкой лентой. Более конкретно, используют лезвие для того, чтобы прорезать параллельные линии в слое, подвергающемся испытанию (то есть в слое металла, сцепление которого с подлежащей подложкой необходимо измерить), с получением сетчатой картины прорезанных линий. На сетку помещают клейкую ленту и разглаживают ее, чтобы обеспечить хороший контакт с испытываемым слоем с сетчатым рисунком. Затем клейкую ленту тянут за свободный конец под углом 180º и обнажившийся при этом испытываемый слой с сетчатым рисунком исследуют на предмет наличия дефектов сцепления. С помощью этого испытания было продемонстрировано, что изолирующий нитридный слой 5 увеличивает сцепление нижнего металлического слоя 6 с подлежащим планаризирующим слоем 3. Хорошее сцепление характеризуется отсутствием отсоединения испытываемого слоя в квадратах сетки.

Авторы настоящего изобретения обнаружили, что степень чистоты нитрида на поверхности нитридного слоя, на которую осаждают золото, может влиять на способность нитридного слоя к увеличению сцепления. В этом варианте осуществления настоящего изобретения были осуществлены операции с целью снижения атомарного процента кислорода на поверхности нитридного слоя. Во-первых, напыление нитридного слоя осуществляют после откачивания воздуха из распылительной камеры до базового давления ниже примерно 10-4 Па и выдерживания подложки под таким низким давлением в течение длительного времени. Это снижает концентрацию кислорода в распылительной камере, а также концентрацию кислорода, содержащегося в полимерной подложке в форме влаги. Нагревание подложки при таком низком давлении также способствует дегазации полимерной подложки и снижению содержания кислорода в распылительной камере. Кроме того, после осаждения посредством распыления нитридного слоя 5 нитридный слой подвергают плазменной обработке, например - обработке аргоновой (Ar) или азотной (N2) плазмой. Авторы настоящего изобретения обнаружили, что хороший уровень сцепления между слоем золота и нитридным слоем удается получить при атомарной чистоте, превышающей 90% (то есть, если поверхность нитрида содержит менее 10 атомарных процентов кислорода).

Что касается функции (ii), то считается, что важный путь, по которому загрязняющие вещества, такие как влага и кислород, достигают электронных элементов в такого рода производственном процессе, - это путь через адгезивный слой (или слои) адгезивного элемента 1 и лист 2 материала подложки устройства, включая поверхность раздела между адгезивным слоем и листом 2 материала подложки устройства. В частности, полагают, что адгезивный слой (или слои) обеспечивает путь для проникновения таких загрязняющих веществ через его поверхности раздела с другими слоями, такими как вышележащий лист 2 материала подложки устройства, изображенный на Фиг.1. Нитридный слой 5 обеспечивает барьер против проникновения таких веществ. Нитридный слой 5 формируют таким образом, чтобы обеспечить скорость проникновения водяного пара (WVTR) не более примерно 1-10-7 г/м2/д (например, 0,5 г/м2/д) при измерении в следующих условиях: атмосферное давление, 100%-ная относительная влажность воздуха и температура, равная 38ºС. Для измерения скорости проникновения водяного пара можно использовать прибор для измерения проницаемости для водяного пара производства компании Mocon, Inc.

Нитридный слой 5 обнаруживает меньшую WVTR по сравнению с любыми другими слоями, расположенными между нижним проводящим слоем 6 и нижней поверхностью адгезивного элемента 1, и поэтому он обеспечивает основную защиту электронных элементов против проникновения влаги и кислорода через любые адгезивные слои, образующие адгезивный элемент 1.

Нитридный слой 5 можно заменить другим промежуточным слоем, который выполняет по меньшей мере одну из функций (i) и (ii), указанных выше. Например, если нет проблемы с хорошим сцеплением между нижним металлическим слоем 6 и подлежащим слоем (то есть планаризирующим слоем в примере, изображенном на Фиг.1), то слой должен служить лишь в качестве барьерного слоя для защиты вышележащих электронных элементов против проникновения влаги и кислорода через лист 2 материала подложки устройства.

С другой стороны, если лист материала подложки устройства сам служит барьером против проникновения влаги и кислорода (это возможно в том случае, если в качестве листа материала подложки устройства используют неорганическое стекло), то промежуточный слой 5 должен выполнять лишь функцию увеличения сцепления между нижним металлическим слоем 6 и подлежащим планаризирующим слоем 3.

Примерами других материалов, пригодных для промежуточного слоя 5, являются другие неорганические нитриды и неорганические оксиды, являющиеся электроизоляторами, в частности, те из них, которые можно осаждать посредством распыления или с использованием других способов осаждения из паровой фазы.

Одним из преимуществ использования изолирующего материала для промежуточного слоя 5 является то, что в этом случае нет необходимости паттернировать промежуточный слой 5 для предотвращения коротких замыканий между элементами вышележащего нижнего металлического слоя 6, что выгодно с точки зрения уменьшения числа стадий процесса и снижения риска искривления и/или другого искажения многослойной стопки во время обработки. Было показано, что удельное сопротивление промежуточного слоя, равное по меньшей мере 5·1012 Ом/100 кв. футов, является достаточным для предотвращения возникновения значительных токов утечки между истоковым и стоковым электродами через промежуточный слой 5. Кроме того, отсутствие паттернирования промежуточного слоя 5 фотолитографическим способом, в котором используется растворитель/травитель, обеспечивает преимущество, состоящее в снижении риска образования остаточных количеств растворителя под нижним металлическим слоем 6. Присутствие остатков растворителя обычно нежелательно, так как растворитель может диффундировать через устройство и оказывать неблагоприятное влияние на общие эксплуатационные характеристики и стабильность устройства.

Для обеспечения дополнительной защиты против проникновения влаги и кислорода в электронные элементы через подложку устройства одним из вариантов является добавление дополнительного барьерного слоя между одним или несколькими адгезивными слоями адгезивного элемента 1 и листом 2 материала подложки устройства, но такой дополнительный слой не использован в примере, изображенном на Фиг.1. Нитридный слой 5 обеспечивает основную защиту тонкопленочной транзисторной матрицы (TFT-матрицы) против проникновения кислорода и влаги через лист 2 материала подложки устройства.

Способ, описанный выше, применим также к альтернативным конфигурациям устройств, например - к конфигурации TFT-матрицы с нижними затворами, в которой нижний металлический слой 6 образует затворные шины, а верхний металлический слой 6 образует пары электродов «исток-сток» и соединительные/сигнальные шины транзисторной матрицы.

Мы выбрали в качестве примера соединительную плату дисплея, содержащую активную TFT-матрицу, чтобы описать один из вариантов осуществления настоящего изобретения. Однако способы, описанные в данной работе, могут быть применены к другим TFT-устройствам, содержащим или не содержащим другие компоненты, такие как внутренние соединения, сопротивления и конденсаторы. Примерами других применений являются логические схемы, активные матричные схемы для запоминающих устройств и программируемые пользователем матрицы вентильных элементов. Описанные выше способы также применимы к другим видам электронных устройств, таких как светоизлучающие диоды (LED) или фотогальванические устройства.

Кроме того, для приведенного выше описания способов согласно вариантам осуществления настоящего изобретения мы выбрали пример с использованием нитридного слоя 5 для обеспечения основной защиты против проникновения разрушающих веществ из адгезивных слоев, используемых для крепления подложки устройства к плоскому носителю. Однако такие же способы применимы для предотвращения проникновения разрушающих веществ в том случае, если подложка устройства закреплена на других технологических инструментах, таких как несущие ролики в рулонной технологии.

Кроме того, для приведенного выше описания способов согласно вариантам осуществления настоящего изобретения мы выбрали пример с формированием множества TFT-матриц на листе материала подложки устройства и последующим разделением листа материала подложки устройства на отдельные подложки устройств. Однако такие же способы применимы и в случае, если одну или более подложек устройств по отдельности прикрепляют к носителю перед формированием одного или более электронных элементов на одной или более подложках устройств.

В данном описании раскрыты по отдельности все конкретные признаки изобретения, и любые комбинации из двух или более таких признаков в объеме, в котором эти признаки или комбинации могут быть осуществлены на основании настоящего описания как целого с использованием общих знаний специалистов в данной области техники, независимо от того, решают ли эти признаки или комбинации признаков какие-либо проблемы, описанные в данной заявке, и без ограничения в отношении объема формулы изобретения. Заявитель указывает, что аспекты настоящего изобретения могут представлять собой любой конкретный признак или комбинацию признаков. На основании приведенного выше описания специалисту в данной области техники будет очевидно, что в пределах объема настоящего изобретения могут быть выполнены различные модификации.

1. Способ формирования электронного устройства, включающий формирование на несущей подложке множества электронно-функциональных элементов, образованных стопкой слоев, содержащей нижний проводящий слой, причем способ включает этап формирования между несущей подложкой и нижним проводящим слоем непроводящего слоя, который обеспечивает увеличение сцепления нижнего проводящего слоя с несущей подложкой, где непроводящий слой содержит нитридный слой, содержащий на поверхности раздела с нижним проводящим слоем менее 10 атомарных процентов кислорода.

2. Способ по п. 1, отличающийся тем, что электронное устройство содержит транзисторную матрицу, нижний проводящий слой образует проводящие элементы транзисторной матрицы, несущая подложка содержит полимерную пленку, и способ включает формирование непроводящего слоя поверх несущей подложки и последующее формирование нижнего проводящего слоя поверх непроводящего слоя и несущей подложки.

3. Способ по п. 2, отличающийся тем, что несущая подложка содержит планаризирующий слой поверх полимерной пленки.

4. Способ по п. 3, отличающийся тем, что непроводящий слой сформирован непосредственно на планаризирующем слое.

5. Способ по любому из пп. 2-4, отличающийся тем, что нижний проводящий слой образует пары электродов «исток-сток» транзисторной матрицы.

6. Способ по любому из пп. 2-4, отличающийся тем, что нижний проводящий слой образует затворные шины транзисторной матрицы.

7. Способ по любому из пп. 1-4, отличающийся тем, что непроводящий слой формируют с использованием способа конформного осаждения.

8. Способ по любому из пп. 1-4, отличающийся тем, что формирование нитридного слоя осуществляют посредством напыления, причем перед формированием указанного нитридного слоя осуществляют нагревание несущей подложки в распылительной камере при давлении ниже 10-4 Па.

9. Способ по п. 8, отличающийся тем, что дополнительно нитридный слой подвергают плазменной обработке.

10. Способ по п. 1 или 2, отличающийся тем, что несущую подложку подвергают дегазации до осаждения непроводящего слоя.

11. Способ по п. 1 или 2, отличающийся тем, что нижний проводящий слой представляет собой слой металла, образованный непосредственно на непроводящем слое, и указанный непроводящий слой представляет собой неорганический непроводящий слой, образованный непосредственно на органической поверхности несущей подложки, который обеспечивает увеличение сцепления нижнего проводящего слоя с органической поверхностью несущей подложки.

12. Конструкция электронного устройства, содержащая несущую подложку и множество электронно-функциональных элементов, образованных стопкой слоев, содержащей нижний проводящий слой, причем конструкция устройства между несущей подложкой и нижним проводящим слоем содержит непроводящий слой, который обеспечивает увеличение сцепления нижнего проводящего слоя с несущей подложкой, при этом непроводящий слой содержит нитридный слой, содержащий на поверхности раздела с нижним проводящим слоем менее 10 атомарных процентов кислорода.

13. Конструкция электронного устройства по п. 12, отличающаяся тем, что электронное устройство содержит транзисторную матрицу, нижний проводящий слой образует проводящие элементы транзисторной матрицы, несущая подложка содержит полимерную пленку, и непроводящий слой сформирован поверх несущей подложки до того, как нижний проводящий слой сформирован поверх непроводящего слоя и несущей подложки.

14. Конструкция электронного устройства по п. 13, отличающаяся тем, что несущая подложка содержит планаризирующий слой поверх полимерной пленки.

15. Конструкция электронного устройства по п. 14, отличающаяся тем, что непроводящий слой сформирован непосредственно на планаризирующем слое.

16. Конструкция электронного устройства по любому из пп.13-15, отличающаяся тем, что нижний проводящий слой образует пары электродов «исток-сток» транзисторной матрицы.

17. Конструкция электронного устройства по любому из пп.13-15, отличающаяся тем, что нижний проводящий слой образует затворные шины транзисторной матрицы.



 

Похожие патенты:

Использование: для создания дисплеев, включая дисплеи объемного изображения, и в оптических приемно-передающих устройствах. Сущность изобретения заключается в том, что органический светоизлучающий диод включает несущую основу, выполненную в виде прозрачной подложки, внутри которой герметично установлены прозрачный анод, светоотражающий катод и размещенный между ними набор слоев органических веществ, состоящий, по меньшей мере, из прозрачного слоя транспортировки дырок, эмиссионного слоя, содержащего органические вещества для излучения красного (R), зеленого (G) и синего (B) цветов, слоя транспортировки электронов, анод, катод и слои органических веществ выполнены в виде полых цилиндров, соосно вставленных друг в друга.
Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего люминофорсодержащее соединение и проводящий материал, и нанесение тонкой пленки из полученного раствора на упомянутую подложку.

Изобретение относится к белковым фотоэлектрическим преобразователям. Не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь выполнен с возможностью работы без присутствия жидкости, такой как вода, внутри и снаружи устройства, и имеет структуру, в которой твердый белковый слой состоит из переносящего электроны белка и помещен между первым электродом и вторым электродом, при этом твердый белковый слой непосредственно иммобилизирован на обоих электродах.

Изобретение относится к способу нанесения конформного покрытия на электронное устройство, содержащему: (A) нагревание соединения конформного покрытия, содержащего париленовое соединение конформного покрытия для покрытия электронных схем или компонентов, которые чувствительны к влаге, для образования газообразных мономеров соединения конформного покрытия, (B) объединение нитрида бора с газообразными мономерами, и (C) контактирование поверхности электронного устройства с газообразными мономерами и нитридом бора при условиях, при которых на по меньшей мере части поверхности формируется конформное покрытие, содержащее соединение конформного покрытия и нитрид бора и придающее по меньшей мере этой части поверхности водостойкость.

Изобретение относится к интегральным оптоэлектронным устройствам, содержащим светоизлучающие полевые транзисторы. Описано оптоэлектронное устройство, содержащее светоизлучающий полевой транзистор (LEFET) с активным слоем из органического полупроводника и волноводом, сформированным в канале светоизлучающего полевого транзистора.

Изобретение относится к электролюминесцентному устройству (10), содержащему органический светоизлучающий слой (50) и средство (70) герметизации с замкнутым контуром, герметизирующее боковую сторону стека (59) электролюминесцентных слоев, и для электрического подключения противоэлектрода (40) к источнику электрического тока.

Использование: для получения светоизлучающих устройств. Сущность изобретения заключается в том, что устройство содержит подложку, имеющую первый коэффициент преломления, прозрачный электрод, связанный с органическим слоем и расположенный между органическим слоем и подложкой, при этом прозрачный электрод имеет второй коэффициент преломления, отличающийся от первого коэффициента преломления.

Изобретение относится к области органической электроники, а именно к органическим фотовольтаическим устройствам (солнечным батареям и фотодетекторам), изготовленным с использованием органических фторсодержащих соединений в качестве модифицирующих добавок.

Изобретение относится к органическому светоизлучающему устройству (OLED). Технический результат - предоставление устройства OLED, которое предоставляет улучшенную интенсивность излучаемого света, особенно для использования на большой площади.

Использование: для изготовления органических светоизлучающих диодов. Сущность изобретения заключается в том, что светоизлучающий диод содержит прозрачную или частично прозрачную подложку с нанесенной на нее слоистой структурой, содержащей по меньшей мере один органический электролюминесцентный слой и транспортные подслои из органических веществ n- и p-типов проводимости, расположенных на границах электролюминесцентный слой - контактный слой.

Изобретение относится к полупроводниковым преобразователям солнечной энергии в электрическую и тепловую и может быть использовано в электрических устройствах, например солнечных батареях, которые имеют формирующие структуры на основе композиционных материалов. В частности, изобретение относится к фотоэлектрическому элементу, состоящему из электронодонорного и электроноакцепторного слоев, в составе электроноакцепторного слоя содержащему метанофуллерены, где в качестве метанофуллеренов используются соединения общей формулы в которой R = -СООСН3, -Cl, а в качестве электронодонорного слоя используется допированный соляной кислотой полианилин или полианилин на основе метансульфокислоты. Целью настоящего изобретения является повышение эффективности работы преобразователей солнечной энергии в электрическую и напряжения холостого хода. 1 табл., 4 пр.

Изобретение относится к композиции для создания органических фотогальванических элементов. Композиция включает электронодонорный компонент и электроноакцепторный компонент. В качестве электронодонорного компонента она содержит моно- или полиядерные фталоцианин или нафталоцианин, или их металлокомплексы планарного или сэндвичевого строения. В качестве электроноакцепторного компонента композиция содержит поли[2-метокси-5-(2-этилгексилокси)-1,4-фениленвинилен] структуры: Соотношение компонентов следующее (мас.%): электронодонорная часть - 1-5%, электроноакцепторная часть - 99-95%. Изобретение позволяет получить композицию, которая способна образовывать однородные растворы и имеет поглощение в диапазоне длин волн от 300 до 2500 нм. 3 з.п. ф-лы, 5 пр.

Изобретение относится к твердотельным источникам света на основе органических светоизлучающих диодов. Органический светоизлучающий диод с белым спектром излучения содержит несущую основу, выполненную в виде прозрачной подложки с размещенными на ней прозрачным слоем анода и металлическим слоем катода, между которыми расположен светоизлучающий слой, при этом светоизлучающий слой содержит низкомолекулярный поливинилкарбазол, 2-(4-бифенилил)-5-(4-трет-бутилфенил)-1,3,4-оксадиазол и разветвленный олигоарилсилан представленной формулы. Диод может содержать следующие дополнительные слои: инжекции дырок, электронно-блокирующий слой, дырочно-блокирующий слой, а также слой инжекции электронов. Изобретение обеспечивает расширение ассортимента органических светодиодов, высокие рабочие характеристики и диапазон излучения от 350 до 750 нм. 9 з.п. ф-лы, 3 ил.

Изобретение относится к оксиду р-типа, оксидной композиции р-типа, способу получения оксида р-типа, полупроводниковому прибору, аппаратуре воспроизведения изображения и системе. Оксид р-типа является аморфным соединением и представлен следующей композиционной формулой: xAO∙yCu2O, где x обозначает долю молей AO и y обозначает долю молей Cu2O, x и y удовлетворяют следующим условиям: 0≤x<100 и x+y=100 и А является любым одним из Mg, Са, Sr и Ва или смесью, содержащей, по меньшей мере, два элемента, выбранные из группы, состоящей из Mg, Са, Sr и Ва. Оксид р-типа производится при относительно низкой температуре и в реальных условиях и способен проявлять отличные свойства, то есть достаточную удельную электропроводность. 7 н. и 4 з.п. ф-лы, 36 ил., 8 табл., 52 пр.

Изобретение относится к области органической электроники, а именно к сопряженному полимеру на основе карбазола, бензотиадиазола, бензола и тиофена формулы (Poly-1), где n=5-200. Сопряженный полимер применяют в качестве электролюминесцентного материала в органических светоизлучающих диодах, используемых для создания дисплеев и осветительных панелей. Изобретение позволяет получить сопряженный полимер с максимумом люминесценции в диапазоне 600-630 нм, обладающий улучшенной химической и термической стабильностью. 2 н.п. ф-лы, 5 ил., 1 табл., 2 пр.

Изобретение относится к новым сопряженным полимерам, которые могут быть использованы в качестве электролюминесцентного материала в органических светоизлучающих диодах. Предлагается сопряженный полимер на основе карбазола и цикопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах. Предложенный сопряженный полимер имеет максимум люминесценции в диапазоне 510-570 нм, обладает повышенной стабильностью и улучшенными зарядово-транспортными свойствами. 2 н.п. ф-лы, 9 ил., 2 пр.

Изобретение относится к органическому соединению, представленному формулой (1), в которой каждый R1-R20 независимо выбирают из атомов водорода, замещенных или незамещенных алкильных групп, замещенных аминогрупп, замещенных или незамещенных арильных групп. При этом алкильную группу выбирают из группы, состоящей из метильных, этильных, н-пропильных, изопропильных, н-бутильных, втор-бутильных, трет-бутильных, октильных, циклогексильных, 1-адамантильных и 2-адамантильных групп; аминогруппу выбирают из группы, состоящей из N,N-дифениламино, N,N-динафтиламино, N,N-дифлуорениламино, N-фенил-N-толиламино, N,N-дитолиламино, N-метил-N-фениламино, N,N-дианизолиламино, N-мезитил-N-фениламино, N,N-димезитиламино, N-фенил-N-(4-трет-бутилфенил)амино, N-фенил-N-(4-трифторметилфенил)амино групп; арильную группу выбирают из группы, состоящей из фенильных, нафтильных, инденильных, бифенильных, терфенильных и флуоренильных групп. В случае когда алкильная группа или арильная группа замещены, заместитель выбирают из группы, состоящей из алкильных групп, алкоксигрупп, аминогрупп, арильных групп, гетероциклических групп и арилоксигрупп. Также изобретение относится к органическому светоизлучающему устройству, дисплейному устройству, устройству обработки видеоинформации, системе освещения, устройству формирования изображения, облучающему источнику света. Предлагаемое соединение имеет высокий квантовый выход и излучает свет в зеленой области только за счет своей основной структуры. 7 н. и 9 з.п. ф-лы, 36 пр., 8 табл., 3 ил.

Изобретение относится к светоизлучающим устройствам. Светоизлучающее устройство, которое обеспечивает улучшение светового выхода органических светоизлучающих диодов (OLED), содержит по меньшей мере один пористый оксид металла или металлоида, расположенный между подложкой и прозрачным проводящим материалом в OLED. Показатель преломления световыводящего слоя и рассеяние света можно регулировать путем изменения размера пор, плотности пор, легирования оксида металла, введения изолирующего, проводящего или полупроводящего компонента или заполнения пор. Способ формирования светоизлучающего устройства включает формирование на подложке по меньшей мере одного световыводящего слоя, содержащего пористый оксид металла или металлоида, например с использованием химического осаждения из паровой фазы при атмосферном давлении, и затем получение на световыводящем слое прозрачного проводящего материала. 3 н. и 11 з.п. ф-лы, 10 ил.

Изобретение относится к новому полимеру бензодитиофена, способу его получения, к полимерной смеси и составу, используемым в качестве полупроводников в органических электронных устройствах, к применению полимера, а также к оптическому, электрооптическому или электронному компоненту или устройству. Полимер бензодитиофена имеет формулу I. Способ получения полимера заключается в проведении реакции полимеризации исходных мономеров. Полимерная смесь включает вышеуказанный полимер и полимер, имеющий полупроводниковые свойства, свойства переноса заряда, переноса дырки/электрона, блокирования дырки/электрона, электропроводимости, фотопроводимости или светоизлучения. Состав включает вышеуказанный полимер или полимерную смесь и растворитель, предпочтительно органический растворитель. Полимер применяют в качестве переносчика носителей заряда, полупроводникового, электропроводящего, фотопроводящего или светоизлучающего вещества. Оптический, электрооптический или электронный компонент или устройство включает вышеуказанный полимер, полимерную смесь или составы. Изобретение позволяет получить полимер бензодитиофена, обладающий хорошей способностью к переработке, высокими пленкообразующими свойствами, электронными свойствами, в особенности высокой подвижностью носителей заряда, а также повысить эффективность органических электронных устройств. 7 н. и 8 з.п. ф-лы, 2 табл., 15 пр.

Изобретение относится к органическому электронному устройству, в частности к ОСИД устройству, и к способу его изготовления. Способ изготовления органического электронного устройства (100) включает в себя следующие этапы: изготовление, по меньшей мере, одного функционального элемента, включающего в себя органический слой (120); нанесение неорганического слоя (140, 141) герметизации поверх функционального элемента; нанесение структурированного органического слоя (150,151) герметизации поверх неорганического слоя (140) герметизации; травление неорганического слоя (140) герметизации для создания, по меньшей мере, одного отверстия; нанесение, по меньшей мере, одной проводящей линии (161, 162) в указанном отверстии таким образом, чтобы она была, по меньшей мере, частично размещена внутри слоев (140, 150) герметизации и доступна извне во внешней контактной точке (CT). Техническим результатом данного изобретения являлось предоставление средств альтернативного изготовления органических электронных устройств, в частности средств, которые являются гибкими относительно двухмерной формы устройств. 13 з.п. ф-лы, 13 ил.
Наверх