Способ синтеза металлоуглеродного нанокомпозита feco/c



Способ синтеза металлоуглеродного нанокомпозита feco/c
Способ синтеза металлоуглеродного нанокомпозита feco/c
Способ синтеза металлоуглеродного нанокомпозита feco/c
Способ синтеза металлоуглеродного нанокомпозита feco/c

 


Владельцы патента RU 2552454:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится к области химии и нанотехнологии. Сначала готовят раствор полиакрилонитрила (ПАН) и ацетилацетоната Fe(CH3COCH=C(CH3)O)3·6H2O в диметилформамиде при температуре 40°C. Вводят раствор ацетата кобальта Со(СН3СОО)2·4H2O в диметилформамиде. Концентрация ПАН составляет 5% от массы диметилформамида, железа 5÷20% и кобальта 5÷20% от массы ПАН. Выдерживают раствор до полного растворения всех компонентов, после чего удаляют диметилформамид путем выпаривания при температуре не более 70°C. Полученный твердый остаток нагревают посредством высокоинтенсивного инфракрасного излучения путём выдержки по 15 мин при температуре 150°C и 200°C, затем 10 минут при финальной температуре 600÷800°C. Нагревание твёрдого остатка на всех этапах ведут со скоростью 20°C/мин при давлении в реакционной камере 10-2÷10-3 мм рт. ст. Полученный металлоуглеродный нанокомпозит FeCo/C содержит наночастицы FeCo с размером 5-50 нм. Исключается необходимость использования дополнительных восстановительных агентов. 1 табл., 3 ил., 3 пр.

 

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава) в составе нанокомпозитов FeCo/C.

Способ синтеза металлоуглеродных нанокомпозитов на основе полимеров (ПАН) и различных соединений металлов позволяет без использования сложного технологического оборудования получать многофункциональные материалы, при этом возможно достаточно простое управление электрофизическими, физико-химическими, магнитными свойствами получаемых материалов.

Известно в настоящее время несколько способов синтеза наночастиц Fe-Co-сплавов. В работе [Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li. Synthesis and microwave absorption properties of FeCo nanoplates // Journal of Alloys and Compounds. 2010. V. 493. P. 549-552] предложена методика синтеза наноразмерных пластин, содержащих сплав FeCo. Нанопластины получают с помощью восстановления в гидразин-гидрате N2H4·H2O в присутствии NaOH солей FeSO4·7H2O и CoCl2·6H2O, предварительно растворенных в дистиллированной воде. Наряду с преимуществами (простота метода синтеза и несложное аппаратурное оформление процессов) метод обладает и рядом существенных недостатков. Так, в полученных наноматериалах присутствует значительное количество окисных форм металла, что требует проведения в дальнейшем процесса восстановления, причем наночастицы металла будут за счет процессов агломерации существенно увеличиваться в размерах.

Методика [М. Hesani, A. Yazdani, В. Abedi Ravan, М. Ghazanfari The effect of particle size on the characteristics of FeCo nanoparticles // Solid State Communications. 2010. V. 150. P. 594-597] позволяет синтезировать наночастицы сплава FeCo очень малых размеров из совместного раствора FeCl3·6H2O и CoCl2·6H2O в воде, но с использованием сложной восстановительной системы, включающей Na2BO4. К недостаткам метода следует отнести то, что полученные наночастицы требуют дальнейшей стабилизации путем покрытия их различными поверхностно-активными веществами с целью изолирования наночастиц как от воздействия кислорода воздуха, так и для создания препятствия процессам агломерации.

С другой стороны, в методике [Chen Wang, Ruitao Lv, Zhenghong Huang, Feiyu Kang, Jialin Gu. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites // Journal of Alloys and Compounds. 2011. V. 509. P. 494-498] рассматривается один из вариантов синтеза металлоуглеродного нанокомпозита на основе терморасширенного графита, включающего наночастицы сплава на развитой поверхности. Нанокомпозит получают путем процессов эксфолиации графита под действием ультразвука в присутствии FeSO4 и CoSO4. При этом к недостаткам метода стоит отнести необходимость измельчения графита, использование мощного ультразвукового оборудования для процессов эксфолиации графита, использование смеси концентрированных азотной и серной кислоты, нагрев до существенных температур (порядка 600°C), сложность контроля размера и фазового состава наночастиц.

Наиболее близким аналогом является способ, описанный в патенте RU N2492923 от 20.09.2013.

Отличительной особенностью предлагаемого нами способа от указанного выше является возможность синтеза наночастиц сплава FeCo в составе нанокомпозита при температурах ниже температуры плавления металлов, при этом процесс проводится в вакууме.

В настоящем изобретении техническим результатом является получение металлоуглеродных нанокомпозитов FeCo/C, содержащих наночастицы FeCo с размером от 5 до 50 нм, при ИК-нагреве композита Соац·4H2O/Feац.ац·6H2O/ПАН. При этом процесс восстановления обходится без использования каких-либо дополнительных внешних восстановительных агентов, а размером наночастиц можно управлять, изменяя условия проведения процесса синтеза (температура, концентрация металла).

Способ синтеза нанокомпозита включает в себя стадии приготовления совместного раствора полиакрилонитрила (ПАН) с молекулярным весом 1,5·105÷2·105, ацетата кобальта (Со(СН3СОО)2·4H2O) и ацетилацетоната железа (Fe(CH3COCH=C(CH3)O)3 6H2O) в диметилформамиде (ДМФА) в следующих соотношениях: концентрация ПАН составляет 5% от массы растворителя, концентрация железа 5÷20% и кобальта 5÷20% от массы ПАН, выдержку в течение 8 часов при температуре 40°C до полного растворения Соац·4H2O, Feац.ац·6Н2О и ПАН в ДМФА; удаление ДМФА путем выпаривания при температуре не более 70°C, ИК-пиролиз полученного твердого остатка, представляющего собой композит Соац·4H2O/Feац.ац·6H2O/ПАН. Все химические реактивы имеют класс чистоты «химически чистые».

Технический результат достигается использованием выбранных определенных исходных компонентов (полиакрилонитрила (ПАН), соединений металла (Соац·4H2O, Feац.ац·6H2O)), условий проведения процесса растворения компонентов и процесса удаления растворителя, ИК-нагрева полученного твердого остатка Соац·4H2O/Feац.ац·6Н2О/ПАН при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин с выдержкой 15 мин при температуре 150°C и 200°C, а также выдержкой в течение 10 мин при финальной температуре 600÷800°C, в результате чего получается целевой продукт - металлоуглеродный нанокомпозит FeCo/C, содержащий наночастицы FeCo с размером от 5 до 50 нм.

Для анализа фазового состава нанокомпозита и определения размера наночастиц FeCo использован рентгеновский дифрактометр EMMA (Австралия), излучение Cu, графитовый монохроматор, а также Дифрей 401 с Cr-излучением. Для прямого измерения размеров наночастиц использован электронный микроскоп LEO912 АВ OMEGA, ускоряющее напряжение 60-120 кВ, увеличение 80х-500000х. Средний размер наночастиц интерметаллида FeCo рассчитан по результатам РФА из дифрактограмм по уравнению Дебая-Шерера:

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ - длина волны рентгеновского Cu - излучения (1,54056 Å), Θ - дифракционный угол, град.

Размер наночастиц оценивался по микрофотографиям проб нанокомпозита, полученным методом просвечивающей электронной микроскопии (ПЭМ).

Пример 1. Готовится 20 мл совместного раствора ПАН, СОац·4Н2О и Feац.ац·6H2O в ДМФА с концентрациями железа 10% и кобальта 10% от массы полимера и концентрацией ПАН 5% от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mFeац.ац·6H2O составляет 0,46 г, mCoац·4H2O составляет 0,32 г, mПАН составляет составляет 1 г; а также в коническую колбу, с объемом 50 мл, наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Соац·4Н2О, Feац.ац·6H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры 40°C. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается красно-бурый вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры не более 70°C, и выдерживается в нем до завершения процесса выпаривания (mтв.ост. остается постоянной). Полученный твердый остаток красно-бурого цвета подвергается температурной обработке в установке ИК-нагрева. Процесс проводится при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин в несколько этапов: 1) при температурах 150°C и 200°C с выдержкой в течение 15 минут при каждой соответствующей температуре; 2) при финальной температуре 700°C с выдержкой в течение 10 минут.

В процессе ИК-нагрева твердого остатка Соац·4Н2О/Feац.ац·6Н2О/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Со и Fe из соединения, а за счет дальнейшего взаимодействия формируются наночастицы интерметаллида FeCo. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит FeCo/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц FeCo. Средний размер наночастиц составил 18 нм. На фиг.1 приведена дифрактограмма нанокомпозита и результаты фазового анализа нанокомпозита FeCo/C, на фиг. 2 представлена одна из серии микрофотографий нанокомпозита FeCo/C, полученная методом просвечивающей электронной микроскопии (ПЭМ), на фиг. 3 показано распределение наночастиц FeCo по размерам.

Пример 2. Готовится 20 мл совместного раствора ПАН, Соац·4Н2О и Feац.ац·6H2O в ДМФА с концентрациями железа 20%, кобальта 20% от массы полимера и ПАН 5% от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mFeац.ац·6H2O составляет 0,92 г, mCoац·4H2O составляет 0,64 г, mПАН составляет 1 г; а также в коническую колбу, с объемом 50 мл, наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Соац·4H2O, Feац.ац·6H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры 40°C. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается красно-бурый вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры не более 70°C, и выдерживается в нем до завершения процесса выпаривания (mтв.ост. остается постоянной). Полученный твердый остаток красно-бурого цвета подвергается температурной обработке в установке ИК-нагрева.

Процесс проводится при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин в несколько этапов: 1) при температурах 150°C и 200°C с выдержкой в течение 15 минут при каждой соответствующей температуре; 2) при финальной температуре 800°C с выдержкой в течение 10 минут.

В результате получается нанокомпозит FeCo/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц FeCo. Средний размер наночастиц составил 37 нм.

Пример 3. Готовится 20 мл совместного раствора ПАН, Соац·4H2O и Feац.ац·6H2O в ДМФА с концентрациями железа 5%, кобальта 5% от массы полимера и ПАН 5 мас.% от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mFeац.ац·6H2O составляет 0,23 г, mCoац·4H2O составляет 0,16 г, mПАН составляет 1 г; а также в коническую колбу, с объемом 50 мл, наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Coац·4H2O, Feац.ац·6H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры 40°C. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается красно-бурый вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры, не превышающей 70°C, и выдерживается в нем до завершения процесса выпаривания (mтв.ост остается постоянной). Полученный твердый остаток красно-бурого цвета подвергается температурной обработке в установке ИК-нагрева.

Процесс проводится при давлении в реакционной камере 10-2÷10-3 мм рт. ст. и скорости нагрева 20°C/мин в несколько этапов: 1) при температурах 150°C и 200°C с выдержкой в течение 15 минут при каждой соответствующей температуре; 2) при финальной температуре 600°C с выдержкой в течение 10 минут.

В результате получается нанокомпозит FeCo/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц FeCo. Средний размер наночастиц составил 12 нм.

Таким образом, условия проведения процесса синтеза (температура; давление в реакционной камере; концентрация Fe и Со в полимере) определяют размер наночастиц FeCo. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры наночастиц FeCo в зависимости от условий проведения процесса синтеза (температура финальной стадии ИК-нагрева, концентрации металлов) (таблица 1).

Способ синтеза металлоуглеродного нанокомпозита, включающий ряд последовательных стадий, а именно приготовления совместного раствора полиакрилонитрила (ПАН) и ацетилацетоната Fe(CH3COCH=C(CH3)O)3·6H2O в диметилформамиде, выдержки до полного растворения всех компонентов, удаления диметилформамида путем выпаривания, нагревания полученного твердого остатка посредством высокоинтенсивного инфракрасного излучения, отличающийся тем, что приготовление указанного совместного раствора осуществляют при температуре 40°C, дополнительно вводя раствор ацетата кобальта Со(СН3СОО)2·4H2O в диметилформамиде, при этом концентрация ПАН составляет 5% от массы диметилформамида, концентрация железа 5÷20% и кобальта 5÷20% от массы ПАН, удаление диметилформамида проводят при температуре не более 70°C, а твердый остаток нагревают на всех этапах со скоростью 20°C/мин при давлении в реакционной камере 10-2÷10-3 мм рт. ст., выдерживают по 15 мин при температуре 150°C и 200°C, а выдержку при финальной температуре 600÷800°C проводят в течение 10 минут с получением целевого продукта - металлоуглеродного нанокомпозита FeCo/C, содержащего наночастицы FeCo с размером от 5 до 50 нм.



 

Похожие патенты:

Изобретение относится к химической промышленности. Способ разделения фуллеренов включает растворение фуллеренов в о-ксилоле, высокотемпературную обработку полученного раствора при 70-90°C 60-120 минут с получением концентрата С60 и раствора, направляемого на низкотемпературную обработку при (-15)÷(-25)°C в течение 10-30 часов.

Изобретение относится к устройствам для получения неорганических материалов. Устройство содержит рабочую камеру 1, включающую источник высокотемпературной ионизированной среды 2 и источник инертного газа 4, корпус которой имеет систему охлаждения в виде рубашки 8, заполненной хладагентом, полость камеры 1 сообщена с контейнером 3 исходного неорганического порошкообразного материала - кремния или углерода, рабочая камера 1 оснащена вакуум-установкой 5, а в полости камеры 1 размещен теплообменник 9 для аккумулирования перерабатываемого исходного материала, соединенный с источником теплообменной среды и закрепленный на одной из сторон рабочей камеры 1, соединенной с корпусом посредством шарнира 10.

Изобретение относится к области химии и может быть использовано при изготовлении приборов наноэлектроники, оптоэлектроники, сенсоров, фотовольтаики, а также для хранения энергии.

Изобретение может быть использовано в химической промышленности, косметике и медицине при изготовлении косметических средств, лекарств, антиоксидантов, антимикробных средств, радиопротекторов, соединений для доставки генного материала.
Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов.

Изобретение относится к области химической технологии получения композитных углерод-металлических материалов и может быть использовано при изготовлении катализаторов, сорбентов, наполнителей полимеров, фармацевтических препаратов, неподвижных хроматографических фаз.

Группа изобретений относится к области нанотехнологий, в частности к технологиям получения углеродных наноструктур и наноматериалов для применения в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей, и касается полых углеродных наночастиц, углеродного наноматериала и способа его получения.

Изобретение относится к коксохимии и металлургии и может быть использовано в производстве конструкционных графитированных материалов и изделий, работающих в условиях высоких температур, нейтронного облучения, эрозии, агрессивных сред и режимного трения.

Изобретение относится к способу получения углеродных нановолокон и/или углеродных нанотрубок. Способ включает пиролиз дисперсного целлюлозного и/или углеводного субстрата, импрегнированного соединением элемента или элементов, металл или сплав которых, соответственно, способен образовывать карбиды, в по существу свободной от кислорода атмосфере, содержащей летучее соединение кремния, необязательно в присутствии соединения углерода.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели.

Изобретение может быть использовано в химической технологии. Для получения наноразмерных и наноструктурированных материалов на основе слоистых трихалькогенидов переходных металлов общей формулы MQ3, где M=Ti, Zr, Hf, Nb, Та; Q=S, Se, Те, в качестве исходного материала используют порошкообразные трихалькогениды, которые диспергируют в наноразмерные частицы посредством ультразвуковой обработки в органическом растворителе.

Изобретение относится к химической энзимологии, в частности к созданию наночастиц антиоксидантного фермента супероксиддисмутазы для медицинского применения в виде полиэлектролитного комплекса типа фермент/поликатион/полианион, характеризующихся тем, что фермент покрыт внутренней оболочкой из поликатиона и внешней оболочкой из полианиона, где в качестве поликатиона использован протамин или полиаргинин, в качестве полианиона использован блок-сополимер поли(глутаминовой кислоты) и полиэтиленгликоля (ПГ-ПЭГ), при этом наночастица имеет гидродинамический диаметр в диапазоне 40-70 нм.
Изобретение относится к области биофизики и прикладной биохимии и может быть использовано для контролируемого введения веществ в микрообъекты. Для этого вводят в микрообъект нанокапилляр, содержащий не менее двух изолированных друг от друга каналов, с последующим введением вещества.

Изобретение относится к способам получения порошков нанокристаллического диоксида титана, которые могут быть использованы для фотокаталитической очистки и обеззараживания воздуха и воды, создания фотоэлектрических преобразователей энергии, новых композиционных и каталитических материалов.

Изобретение относится к химической промышленности. Способ разделения фуллеренов включает растворение фуллеренов в о-ксилоле, высокотемпературную обработку полученного раствора при 70-90°C 60-120 минут с получением концентрата С60 и раствора, направляемого на низкотемпературную обработку при (-15)÷(-25)°C в течение 10-30 часов.

Изобретение относится к получению термостойких нанокомпозитов. В качестве исходного материала для матрицы используют гранулированный материал или тонкоразмолотый порошок диоксида титана, или диоксида циркония, или диоксида олова, или их смесь.

Изобретение относится к области изготовления наноструктур, а именно к синтезу оксидных пленок нанометровой толщины на поверхности полупроводников класса АIIIBV, и может быть применено при формировании элементов электроники на поверхности полупроводников, в высокочастотных полевых транзисторах и длинноволновых лазерах, а также в солнечных элементах.
Изобретение может быть использовано в области порошковой металлургии. Способ получения карбида титана включает нагрев шихты, состоящей из диоксида титана и порошка нановолокнистого углерода с удельной поверхностью 138…160 м2/г, взятых в массовом соотношении диоксида титана к порошку нановолокнистого углерода 68,5:31,5, при температуре 2250°C.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении катализаторов и сорбентов. Графеновая пемза состоит из графенов, расположенных параллельно на расстояниях больше 0,335 нм, и аморфного углерода в качестве связующего по их краям, при соотношении графена и связующего от 1:0,1 до 1:1 по массе.
Изобретение относится к области производства керамических конструкционных и функциональных материалов. Для получения керамического композитного материала на основе оксидов алюминия и циркония проводят стабилизацию в тетрагональной фазе диоксида циркония механическим способом: смешивают в активаторе соль циркония и стабилизатор (соль редкоземельного элемента), затем смесь термообрабатывают при температуре 500-600°C в течение 1-3 часов.

Изобретение относится к фотокаталитическим материалам с адсорбционными и антибактериальными свойствами. Материал содержит текстильную целлюлозосодержащую основу, фотокаталитический слой, представляющий собой комплекс из диоксида кремния, модифицированного алюминат-ионами, и диоксида титана анатазной модификации, и слой адсорбента из оксида алюминия бемитной структуры, который расположен между фотокаталитическим слоем и текстильной основой.
Наверх