Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов



Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов
Способ обработки гидроакустических шумоподобных фазоманипулированных сигналов

 


Владельцы патента RU 2552534:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" (RU)

Изобретение относится к области гидроакустики и может быть использовано для обработки гидроакустических сигналов в условиях реального канала распространения. Техническим результатом является повышение помехоустойчивости при решении задачи обнаружения гидроакустического сигнала в реальных условиях эксплуатации (мощность сигнала много меньше уровня гидроакустических шумов) при низкой вычислительной мощности аппаратного обеспечения. Согласно способу обработки гидроакустических шумоподобных фазоманипулированных сигналов принимают сигнал s(t), оцифровывают сигнал, получают уk, предварительно выравнивают амплитуды y ˙ k = s i g n [ y k ] , где s i g n [ x ] = { + 1 п р и x 0 1 п р и x < 0 , выполняют смещение в область низких частот и определяют реальную составляющую и мнимую составляющую сигнала (fs - средняя частота обрабатываемого шумоподобного фазоманипулированного сигнала, fd - частота дискретизации системы обработки сигнала, Ns - длина окна обработки, должна равняться целому числу периодов в отсчетах частоты дискретизации, т.е. Ns=n·Ts·fd, где n=1, 2, 3…), для полученного сигнала y ˜ j = A j + i B j ( i = 1 - мнимая единица) фильтром нижних частот подавляют высокочастотные составляющие, - импульсная характеристика фильтра, Nф - длина импульсной характеристики фильтра), проводят операцию децимации частоты дискретизации с шагом Nд сигнала где Nд - шаг дискретизации, равный отношению частоты дискретизации fd исходного сигнала и удвоенной частоты среза N д = f d 2 f c p = f d Δ f , после чего частота дискретизации сигнала становится равна fd2=2fср=Δf, вторично выполняют выравнивание амплитуд сигнала y ˙ j д = s i g n [ y j д ] и для полученного сигнала y ˙ j д вычисляют значение корреляционной функции Y j = Σ k = 1 N c p y ˙ j д m k , где Ncp - длительность обрабатываемого сигнала в отсчетах частоты дискретизации fd2, mk - опорный сигнал коррелятора в знаковой форме, вычисляют пороговое значение Υ п о р = n 2 k n , где n - количество знаков в модулирующей псевдослучайной последовательности, k - это целое число, определяемое заданной вероятностью ложных срабатываний ρлож (при этом k≤n и выбирают как наибольшее число, при котором выполняется условие ρ л о ж 0.5 k Σ j = k n C n i , где C n i - число сочетаний i по n : C n i = n ! i ! ( n i ) ! ) , сравнивают значение корреляционной функции Yj с пороговым значением Yпор, а наличие сигнала определяют при превышении значения корреляционной функции порогового значения.

 

Изобретение относится к области гидроакустики, а именно к способам обработки гидроакустических сигналов в условиях реального канала распространения, и может применяться в гидроакустических системах связи, управления и позиционирования. Способ обработки может быть использован для обнаружения гидроакустического шумоподобного фазоманипулированного сигнала известной формы. Также возможно применение при организации многоабонентской системы с разделением каналов путем кодирования сигналов различными бинарными псевдослучайными последовательностями из одного семейства.

Известен способ классической линейной корреляционной обработки шумоподобных сигналов с целью оценки их параметров [1, 2]. В основе данного способа лежит вычисление скалярного произведения (u, ν) двух сигналов u(t), ν(t), которое также называется корреляцией и свидетельствует о подобии (похожести) сигналов:

где u(t) - исходный наблюдаемый сигнал в канале;

ν(t) - опорный сигнал, идентичный принимаемому.

Затем используется правило максимума корреляции:

где k - номер сигнала из множества рассматриваемых сигналов;

j - номер принятого сигнала;

Hj - это гипотеза о том, что именно сигнал под номером j является искомым.

Правило максимума корреляции означает, в частности, что из М возможных сигналов с одинаковой энергией фактически принятым считается тот, который имеет максимум корреляции с наблюдением ν(t). Предпочтение отдается тому из сигналов, который наиболее подобен наблюдению ν(t) в сравнении с остальными при условии, что в качестве критерия похожести принята величина корреляции.

Недостатком данного способа является низкая помехоустойчивость в условиях небелого шума (поскольку данный способ не является оптимальным для данных условий), а также то, что способ не может быть использован в асинхронных системах, когда неизвестен момент и интервал излучения сигналов.

Известен способ демодуляции сигналов с относительной фазовой модуляцией, описанный в патенте РФ №2271071, 2006 г., МПК H06L 27/22. В данном способе принимают сигнал S(t), фильтруют и выравнивают его амплитуду, генерируют опорный сигнал S0(t), вычисляют корреляционную функцию Y(t). Затем фильтруют результат произведения сигналов S0(t) и SС(t) в блоке уменьшения уровня помехи, обусловленной изменением полярности видеосигнала на выходе фильтра низких частот за время, т.е. времени, в течение которого на длительности элемента сигнала Т формируется корреляционная функция Y(t). Затем интегрируют корреляционную функцию Y(t) последовательно на длительности Т и фиксируют ее значение Yn по окончанию элемента сигнала. Вычисляют абсолютное значение разности |ΔYn| между текущим и предшествующим значением корреляционных функций Yn и Yn-1, соответственно на n-м и на (n-1)-м временных интервалах T. Полученное значение модуля разности сравнивают с предварительно сформированным порогом Yпор по правилу: если выполняется неравенство |ΔYn|>Yпор, то решение о демодулируемом символе принимают равным «единице», а в случае невыполнения неравенства принимают равным «нулю».

Недостатком способа является относительно низкая помехозащищенность, обусловленная тем, что решение о демодулируемом символе принимается путем сравнения с предварительно сформированным в отсутствии помех неизменным порогом Yпор, который не учитывает изменения фазы демодулируемого сигнала в результате воздействия помехи.

Известен также способ демодуляции сигналов с относительной фазовой модуляцией, описанный в патенте РФ №2454014, 2010 г., МПК H04L 27/00, H04L 13/18, первый вариант. В известном способе демодуляции сигналов с относительной фазовой модуляцией принимают сигнал S(t), фильтруют и выравнивают его амплитуду, генерируют опорный сигнал S0(t), вычисляют корреляционную функцию Y(t) между опорным сигналом S0(t), иотфильтрованным сигналом с выровненной амплитудой Sc(t) путем их перемножения Y(t)=Sc(t)·S0(t), интегрируют корреляционную функцию Y(t) последовательно на временных интервалах длительностью Т и фиксируют ее значение Yn по окончанию n-го интервала времени Т, где n=1, 2,…, вычисляют модуль разницы |ΔYn| значений корреляционных функций Yn и Yn-1 соответственно на n-м и на (n-1)-м временных интервалах Т, полученное значение модуля разницы |ΔYn| сравнивают с предварительно заданным пороговым значением Yпop корреляционной функции и при выполнении условия |ΔYn|>Yпop присваивают принятому информационному элементу значение «единицы», в противном случае - «нуля». Предварительно формируют случайную L-элементную последовательность с равным числом единичных и нулевых элементов в ней, где L есть целое число, а затем изменяют эту последовательность, для чего принятый на n-м временном интервале T демодулированный информационный элемент записывают первым элементом в L-элементную последовательность, сдвигая все ее элементы на один бит при сохранении ее общей длины L, корректируют пороговое значение корреляционной функции Yпор, для чего вычисляют число «единиц» в измененной L-элементной последовательности, вычисляют отклонение Δ Y п о р п порогового значения корреляционной функции от предварительно заданного его значения Yпop и рассчитывают значение Δ Y п о р к о р путем алгебраического сложения предварительно заданного порогового значения корреляционной функции Yпop и вычисленного ее отклонения Δ Y п о р п на n-м временном интервале Т, Δ Y п о р к о р = Y п о р + Δ Y п о р п , после чего все действия по демодуляции сигнала S(t) на последующем (n+1)-м временном интервале Т повторяют с учетом откорректированного значения Δ Y п о р к о р . А отклонение Δ Y п о р п порогового значения корреляционной функции вычисляют по формуле:

где k(l) - число «единиц» в L-элементной последовательности. Данный способ наиболее близок к заявленному и далее именуется как способ-прототип.

Недостатками способа-прототипа также являются относительно низкая помехоустойчивость (прием ведется при отношениях сигнал/шум более 6 дБ) и избыточность вычислительных операций.

Задачей, на решение которой направлено заявляемое изобретение, является повышение помехоустойчивости при решении задачи обнаружения гидроакустического сигнала в реальных условиях эксплуатации (мощность сигнала много меньше уровня гидроакустических шумов) при низкой вычислительной мощности аппаратного обеспечения.

Технический результат достигается тем, что принимают сигнал s(t) со средней частотой fs и полосой частот Δf, фильтруют и выравнивают его амплитуду, генерируют опорный сигнал s0(t), вычисляют корреляционную функцию Y(t) между опорным сигналом s0(t) и отфильтрованным сигналом с выровненной амплитудой sc(t) путем их перемножения Y(t)=sc(t)s0(t), интегрируют корреляционную функцию Y(t), согласно изобретению принимают сигнал s(t), оцифровывают сигнал, получают уk, предварительно выравнивают амплитуды y ˙ k = s i g n [ y k ] , где s i g n [ x ] = { + 1 п р и x 0 1 п р и x < 0 , выполняют смещение в область низких частот и определяют реальную составляющую и мнимую составляющую сигнала (fs - средняя частота обрабатываемого шумоподобного фазоманипулированного сигнала, fd - частота дискретизации системы обработки сигнала, Ns - длина окна обработки, должна равняться целому числу периодов в отсчетах частоты дискретизации, т.е. Ns=n·Ts·fd, где n=1, 2, 3…), для полученного сигнала y ˜ j = A j + i B j ( i = 1 - мнимая единица) фильтром нижних частот подавляют высокочастотные составляющие, - импульсная характеристика фильтра, Nф - длина импульсной характеристики фильтра), проводят операцию децимации частоты дискретизации с шагом Nд сигнала где Nд - шаг дискретизации, равный отношению частоты дискретизации fd исходного сигнала и удвоенной частоты среза N д = f d 2 f c p = f d Δ f , после чего частота дискретизации сигнала становится равна fd2=2fcp=Δf , вторично выполняют выравнивание амплитуд сигнала y ˙ j д = s i g n [ y j д ] и для полученного сигнала y ˙ l д вычисляют значение корреляционной функции Y j = k = 1 N c p y ˙ j д m k , где Ncp - длительность обрабатываемого сигнала в отсчетах частоты дискретизации fd2, mk - опорный сигнал коррелятора в знаковой форме, вычисляют пороговое значение Y п о р = n 2 k n , где n - количество знаков в модулирующей псевдослучайной последовательности, k - это целое число, определяемое заданной вероятностью ложных срабатываний ρлож (при этом k<n и выбирают как наибольшее число, при котором выполняется условие ρ л о ж 0.5 k Σ i = k n C n i , где C n i - число сочетаний i по n : C n i = n ! i ! ( n i ) ! ) , с пороговым значением Yпор сравнивают значение корреляционной функции Yj>Yпop, определяют наличие сигнала в случае, если значение корреляционной функции превышает пороговое значение.

Заявляемый способ обработки гидроакустических шумоподобных фазоманипулированных сигналов включает:

- выравнивание амплитуд сигнала, результатом которого является дискретный сигнал, принимающий одно из двух значений (1 и -1);

- смещение сигнала в область низких частот;

- фильтрацию высокочастотных составляющих, начиная с частоты среза fср, которая определяется как половина ширины полосы частот сигнала;

- децимацию частоты дискретизации сигнала интегральным способом до удвоенного значения граничной частоты fcp для сокращения количества вычислительных операций по обработке сигнала;

- вторичное выравнивание амплитуд сигнала, результатом которого является дискретный сигнал, принимающий одно из двух значений (1 и -1);

- знаковую корреляционную обработку полученного сигнала с опорным сигналом;

- сравнение полученных корреляционных величин с заданным порогом.

Данный способ предназначен для обработки гидроакустического шумоподобного фазоманипулированного сигнала, модулируемого по методу прямой последовательности с целью обнаружения сигнала заданной формы и оценки его временной задержки (момента прихода).

При реализации способа выполняется выравнивание амплитуд принятого сигнала, представленного в дискретной форме, реализующее знаковую функцию:

y ˙ k = s i g n [ y k ] ,

где уk - это дискретные отсчеты принимаемого сигнала,

sign[] - знаковая функция:

Операция выравнивания амплитуд выполняется с целью сокращения разрядности цифровых блоков, выполняющих фильтрацию, смещение полосы частот сигнала и децимацию частоты дискретизации. В способе-прототипе выравнивание амплитуд перед фильтрацией отсутствует и выполняется лишь один раз уже после фильтра.

Затем полученный сигнал смещается в область низких частот и представляется в виде квадратурной суммы:

y ˜ j = A j + i B j ,

где Aj - реальная составляющая сигнала,

Bj - квадратурная составляющая сигнала,

i = 1 - мнимая единица.

Реальная и мнимая составляющие сигнала при этом вычисляются следующим образом:

где fs - средняя частота обрабатываемого шумоподобного фазоманипулированного сигнала,

fd - частота дискретизации системы обработки сигнала,

Ns - длина окна обработки, должна равняться целому числу периодов в отсчетах частоты дискретизации, т.е. Ns=n·Ts·fd, где n=1, 2, 3…

Смещение в область низких частот позволяет понизить частоту дискретизации сигнала наиболее эффективно. В способе-прототипе смещение в область низких частот не используется.

Полученный сигнал y ˜ j смещен в область низких частот и проходит через фильтр низких частот:

где hj - импульсная характеристика фильтра низких частот,

Nф - длина импульсной характеристики фильтра.

Частота среза фильтра выбирается равной половине полосы частот сигнала.

Фильтрация позволяет повысить помехоустойчивость за счет среза высокочастотной помехи.

Далее удвоенная частота среза 2fcp (ширина полосы частот сигнала) выбирается в качестве частоты дискретизации системы после децимации частоты интегральным способом:

где Nd - шаг дискретизации, равный отношению частоты дискретизации fd исходного сигнала и удвоенной частоты среза (Nd=fd/2fcp).

Децимация частоты дискретизации также отличает заявленный способ обработки гидроакустического сложного фазоманипулированного сигнала от способа-прототипа. Операция децимации позволяет существенно сократить количество вычислительных операций вычисления корреляции при условии, что полоса частот принимаемого сигнала много меньше верхней частоты сигнала.

Над полученным сигналом повторно выполняется операция выравнивания амплитуд:

Операция выравнивания амплитуд выполняется с целью сокращения разрядности цифровых блоков, выполняющих корреляционную обработку. Кроме того, знаковая корреляционная обработка является более помехоустойчивой в условиях небелых шумов, к которым также относятся и гидроакустические шумы.

Далее низкочастотный сигнал с пониженной частотой дискретизации проходит знаковую корреляционную обработку с целью выделения полезного сигнала:

где Ncp - длительность обрабатываемого сигнала в отсчетах частоты дискретизации fcp,

mk - опорный сигнал коррелятора в знаковой форме.

Далее по заданному порогу Yпop происходит определение наличия сигнала в канале. Вычисляют пороговое значение Y п о р = n 2 k n , где n - количество знаков в модулирующей псевдослучайной последовательности, k - это целое число, определяемое заданной вероятностью ложных срабатываний ρлож (при этом k≤n и выбирают как наибольшее число, при котором выполняется условие ρ л о ж 0.5 k Σ i = k n C n i , где C n i - число сочетаний i по n : C n i = n ! i ! ( n k ) ! ) , с пороговым значением Yпор сравнивают значение корреляционной функции Yj>Yпop, определяют наличие сигнала в случае, если значение корреляционной функции превышает пороговое значение.

Описанный цикл вычислений выполняется каждый момент времени j, с частотой дискретизации системы, что позволяет детектировать сигнал в реальном времени.

Отличительными от способа-прототипа признаками заявляемого способа являются: 1) предварительное выравнивание амплитуд сигнала до операции фильтрации; 2) смещение сигнала в область низких частот; 3) децимация частоты дискретизации сигнала интегральным способом для сокращения количества вычислительных операций по корреляционной обработке сигнала; 4) способ вычисления порогового значения. Наличие отличительных от прототипа признаков позволяет сделать вывод о соответствии заявляемого способа критерию ″новизна″.

Обзор известных изобретений показал, что заявленный способ обладает новым свойством, позволяющим минимизировать значение вероятности ложной тревоги, эффективно бороться с импульсной помехой и тем самым увеличить помехоустойчивость обработки гидроакустических сигналов, за счет выполнения операций в предложенной последовательности. Данное обстоятельство позволяет сделать вывод о соответствии разработанного способа критерию ″существенные отличия″.

Пример реализации способа.

Пусть есть излучатель гидроакустического шумоподобного фазоманипулированного сигнала, модулируемого по методу прямой последовательности. Средняя частота сигнала fs=41666 Гц, ширина полосы частот сигнала, определяемая по уровню 0.1, равна Δf=10 кГц, нижняя граница спектра fн,=36166 Гц, верхняя граница спектра fB=46166 Гц, длина одного символа сигнала задана количеством периодов средней частоты сигнала Np=8, длительность сигнала τ=24,3 мс, модулирующий код из семейства М-последовательностей длины 127. Данные условия актуальны для гидроакустических систем с короткой базой, работающих в условиях мелкого моря.

На входе приемного устройства пороговый детектор, работающий на частоте fd=192 кГц (частота современных АЦП), который осуществляет прием сигнала. Сигнал в бинарном виде, представляющий собой смесь полезного сигнала и шумовой составляющей, с выхода детектора, подвергается смещению в область низких частот (fср=0 Гц, fH=-5 кГц, fB=5 Гц), полоса частот при этом остается прежней. Полученный сигнал проходит через фильтр низких частот с частотой среза fср=5 кГц, который подавляет высокочастотные составляющие сигнала (5(f)→0 при f>5 кГц). Затем происходит сокращение частоты дискретизации исходного сигнала в целое число раз Nд, которое определяется как округленное до меньшего целого значение частного fd/2fcp, то есть в данном случае 192000/10000=19,2 и после округления Nд=19. То есть после операции децимации частота дискретизации равна 10,1 кГц, а длительность сигнала в отсчетах частоты дискретизации равна 242. После чего происходит корреляционная обработка и каждое значение корреляции подвергается сравнению с заданным порогом h=0.45. Данное значение порога было h определено при помощи методов математической статистики и обеспечивает верное срабатывание приемного устройства с вероятностью не менее 95% для SNR ≥-18 дБ в условиях белого шума или SNR≥-7 дБ в условиях небелого шума реального гидроакустического канала.

Источники информации

1. Valery P. Ipatov, Spread Spectrum and CDMA. Principles and Applications / John Willy & Sons Ltd, 2005 - 398 p.

2. Linnik M.A., Karabanov I.V., Burdinskiy I.N. Threshold Methods of Sonar Pseudonoise Phase-shift Signal Detection / The First Russia and Pacific Conference on Computer Technology and Applications (Russia Pacific Computer 2010) 6-9 September, 2010 Russian Academy of Sciences, Far Eastern Branch. - Владивосток, 2010. - С.404-408.

Способ обработки шумоподобных фазоманипулированных сигналов, основанный на том, что принимают сигнал s(t) со средней частотой fs и полосой частот Δf, фильтруют и выравнивают его амплитуду, генерируют опорный сигнал s0(t), вычисляют корреляционную функцию Y(t) между опорным сигналом s0(t) и отфильтрованным сигналом с выровненной амплитудой sc(t) путем их перемножения Y(t)=sc(t)s0(t), интегрируют корреляционную функцию Y(t), отличающийся тем, что принимают сигнал s(t), оцифровывают сигнал, получают уk, предварительно выравнивают амплитуды y ˙ k = s i g n [ y k ] , где s i g n [ x ] = { 1 п р и x < 0 + 1 п р и x 0 , выполняют смещение в область низких частот и определяют реальную составляющую и мнимую составляющую сигнала (fs - средняя частота обрабатываемого шумоподобного фазоманипулированного сигнала, fd - частота дискретизации системы обработки сигнала, Ns - длина окна обработки, должна равняться целому числу периодов в отсчетах частоты дискретизации, т.е. Ns=n·Ts·fd, где n=1, 2, 3…), для полученного сигнала y ˜ j = A j + i B j ( i = 1 - мнимая единица) фильтром нижних частот подавляют высокочастотные составляющие, _ импульсная характеристика фильтра, Nф - длина импульсной характеристики фильтра), проводят операцию децимации частоты дискретизации с шагом Nд сигнала где Nд _ шаг дискретизации, равный отношению частоты дискретизации fd исходного сигнала и удвоенной частоты среза N д = f d 2 f c p = f d Δ f , после чего частота дискретизации сигнала становится равна fd2=2fср=Δf, вторично выполняют выравнивание амплитуд сигнала y ˙ j д = s i g n [ y j д ] и для полученного сигнала y ˙ j д вычисляют значение корреляционной функции Y j = Σ k = 1 N c p y ˙ j д m k , где Nср _ длительность обрабатываемого сигнала в отсчетах частоты дискретизации fd2, mk - опорный сигнал коррелятора в знаковой форме, вычисляют пороговое значение Υ п о р = n 2 k n , где n - количество знаков в модулирующей псевдослучайной последовательности, k - это целое число,определяемое заданной вероятностью ложных срабатываний ρлож (при этом k<n и выбирают как наибольшее число, при котором выполняется условие ρ л о ж 0.5 k Σ i = k n C n i , где C n i - число сочетаний i по n : C n i = n ! i ! ( n i ) ! ) , с пороговым значением Yпор сравнивают значение корреляционной функции Yj>Yпор, определяют наличие сигнала в случае, если значение корреляционной функции превышает пороговое значение.



 

Похожие патенты:
Изобретение относится к способам распознавания радиосигналов и может быть использовано в технических средствах распознавания вида и параметров модуляции радиосигналов.

Группа изобретений относится к приемникам сигналов спутниковых радионавигационных систем GPS и ГЛОНАСС открытого кода частотного диапазона L1. Технический результат заключается в обеспечении надежного слежения за сигналами уровня 30 дБГц без срывов при рывке до 8000 G/c, что соответствует на 9.5 дБ более высокой чувствительности в тех же динамических условиях.

Изобретение относится к радиосвязи. Техническим результатом является подавление увеличения потребляемой мощности терминала, предотвращая при этом снижение точности измерения SINR, вызываемое ошибками ТРС на базовой станции.

Изобретение относится к технике обработки шумоподобных сигналов (ШПС) и может быть использовано в радиолокационных и радионавигационных системах, а также в системах связи.

Изобретение относится к области радиотехники и может быть использовано для создания перспективных радиосредств с программируемой архитектурой с цифровой обработкой сигналов непосредственно на радиочастоте в условиях воздействия блокирующих сигналов для обеспечения устойчивой радиосвязи в сложной помеховой обстановке.

Изобретение относится к телекоммуникационным технологиям и может быть использовано для подавления нежелательных сигналов, т.е. электромагнитных помех.

Изобретение относится к технике связи и может быть использовано для поддержания поиска соты в системе беспроводной связи. Устройство для поддержки поиска соты содержит процессор, выполненный с возможностью отправлять передачу основной синхронизации в первом местоположении кадра, при этом первое местоположение является неперекрывающимся по меньшей мере с одним другим местоположением, используемым по меньшей мере для одной другой передачи основной синхронизации, отправленной, по меньшей мере, посредством одной соседней соты, и отправлять передачу дополнительной синхронизации во втором местоположении кадра, и запоминающее устройство, соединенное с процессором, при этом передачи основной и дополнительной синхронизации формируются на основе одной из нескольких длин циклического префикса.

Использование: в области передачи информации. Технический результат заключается в повышении достоверности и скорости передачи информации.

Изобретение относится к области электросвязи, а именно к цифровой радиосвязи , и может быть использовано для создания сверхширокополосного импульсного передатчика.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в обеспечении надежного приема квадратурно-модулированных сигналов повышенной структурной скрытности.

Изобретение относится к технике радиосвязи и может быть для использовано для компенсации узкополосных помех. Технический результат - повышение помехоустойчивости приема двоичных цифровых сигналов в результате компенсации ансамбля узкополосных помех, полоса ΔfП каждой из которых и полоса ΔfС полезного сигнала удовлетворяют условию Δ f П Δ f С < < 1 . Компенсация сигналов узкополосных помех в смеси поступающего на вход приемника полезного сигнала и сигнала помех осуществляется путем вычитания компенсирующего сигнала помех, сформированного в специальном канале приемника в результате отличий частоты и фазы несущего колебания полезного сигнала, и несущих колебаний сигналов помех. При этом обеспечивается компенсация ансамбля неперекрывающихся по спектру узкополосных помех, принимаемых совместно с цифровым ФМ сигналом, спектр которого в процессе компенсации не изменяется, что принципиально отличает предлагаемое устройство от обеляющего фильтра. При этом предполагается, что при передаче используется квадратурная фазовая модуляция, по одному квадратурному каналу которой передается высокоскоростная информация, а по другому квадратурному каналу передается псевдошумовой сигнал (ПШС), тактовая частота которого равна тактовой частоте информационного высокоскоростного сигнала и мощность PПШС которого значительно меньше Р П Ш С Р С < < 1 мощности высокоскоростного информационного сигнала PС. Применение ПШС с большой базой позволяет уменьшить мощность узкополосных помех в базу раз в результате их разрушения при перемножении с опорным ПШС в канале синхронизации по несущей. Дополнительное уменьшение мощности помех обеспечивается узкополосной схемой ФАП в составе схемы синхронизации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технике связи и может быть использовано в радиочастотной (RF) распределительной системе. В распределительной системе, включающей множество компонентов, подключенных к процессору посредством сети Ethernet и подключенных к распределительной системе антенны посредством коаксиального кабеля, посредством процессора выполняется способ самовыявления радиочастотной конфигурации, в котором предписывают первому радиочастотному (RF) компоненту RF распределительной системы предоставить сгенерированный модулированный сигнал на RF порте, принимают указание от второго RF компонента, когда им посредством RF порта обнаружен указанный сигнал от первого RF компонента, причем указание указывает, что первый RF компонент и второй RF компонент электрически соединены через RF порты. Этапы предписания и приема повторяют для оставшихся RF компонентов RF распределительной системы. На основе этапов предписания, приема и повтора определяют RF конфигурацию RF распределительной системы на основе этапов предписания, приема и повтора и отображают аппаратные соединения между RF компонентами на устройстве отображения с указанием того, существует ли ошибка в конфигурации. Технический результат - облегчение обнаружения ошибок в конфигурации. 3 н. и 11 з.п. ф-лы, 7 ил.

Изобретение относится к передаче управляющей информации восходящей линии связи, содержащейся в блоке битов, через радиоканал в базовую станцию. Технический результат состоит в создании в LTE формата физического управляющего канала восходящей линии связи (PUCCH), способного переносить большое количество битов. Для этого предусмотрена передача управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую радиостанцию. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а пользовательское оборудование и базовая радиостанция содержатся в сети радиосвязи. Управляющая информация восходящей линии связи содержится в блоке битов. Пользовательское оборудование отображает блок битов в последовательность комплексных оцененных символов модуляции и блочно расширяет последовательность комплексных оцененных символов модуляции посредством символов расширения дискретного преобразования Фурье - мультиплексирования с ортогональным частотным разделением каналов (DFTS-OFDM). 5 н. и 15 з.п. ф-лы, 23 ил.

Изобретение относится к радиоприемникам и может использоваться в телеуправлении спутником. Достигаемый технический результат - подавление запрещенных полос в синтезаторах частот при их использовании в устройствах преобразования частоты. Устройство двойного преобразования частоты содержит цепь усиления и фильтрации, два смесителя, два синтезатора частот, средства управления частотами FOL1, FOL2 первого и второго синтезаторов частоты для получения требуемых соотношений их частот для получения заданных первой и второй промежуточных частот. Приемник телеуправления для геостационарного спутника содержит средства для демодуляции сигнала на заданной промежуточной частоте, формируемой устройством двойного преобразования частоты. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к устройству беспроводной связи. Технический результат состоит в уменьшении энергопотребления, уменьшении количества составных частей и улучшении производительности при приеме сигнала, что достигается отсутствием модуля переключения антенны. Для этого устройство беспроводной связи включает в себя усилитель мощности (31), который усиливает сигнал передачи, схему (37) передачи, которая обрабатывает усиленный сигнал передачи, антенну (13) и блок (10e) управления, который поочередно активирует и деактивирует усилитель мощности (31), причем схема (37) передачи сконфигурирована для согласования импеданса между схемой (37) передачи и антенной (13), когда активируется усилитель мощности (31), и приведения импеданса, наблюдаемого от антенны (13) в направлении схемы (37) передачи, в высокоимпедансное состояние, когда деактивируется усилитель мощности (31). 4 н. и 14 з.п. ф-лы, 52 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении достоверности приема информации. Для этого описан способ прямой дискретизации сигналов нескольких радиодиапазонов, включающий прием сигнала первого радиодиапазона (331) посредством первого интерфейса и сигнала по меньшей мере одного другого радиодиапазона (332, 333) посредством по меньшей мере одного другого интерфейса, причем первый радиодиапазон и по меньшей мере один другой радиодиапазон соответствуют различным частотным диапазонам, и первый радиодиапазон или по меньшей мере один другой радиодиапазон представляет собой диапазон цифрового радиовещания по стандарту DAB. Далее способ включает прием (104) сигнала выбора посредством интерфейса, причем сигнал выбора указывает на то, предусмотрена ли дальнейшая обработка сигнала первого радиодиапазона (331) и/или сигнала по меньшей мере одного другого радиодиапазона (332, 333). В зависимости от сигнала выбора осуществляется дискретизация (106) сигнала первого радиодиапазона (331) с общей частотой дискретизации и/или сигнала указанного по меньшей мере одного другого радиодиапазона (332, 333) с указанной общей частотой дискретизации. 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции сигналов с фазовой манипуляцией. Некогерентный цифровой демодулятор кодированных сигналов с фазовой манипуляцией содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов, генератор тактовых импульсов, два вычислительных устройства, заданное число квадратичных преобразователей, равное числу кодовых последовательностей, образующих блок квадратичных преобразователей и решающее устройство, при этом каждое вычислительное устройство состоит из заданного числа вычислителей откликов. 7 ил.

Изобретение относится к радиотехнике, в частности к технике цифровой сотовой радиосвязи, и может быть использовано для создания цифровых радиотелефонных сетей нового поколения. Технический результат заключается в создании радиотракта с цифровым (номерным) способом вызова и адресации корреспондентов, обеспечивающего конфиденциальность передачи информации. Предложены способ адресации корреспондентов мобильной радиосети, основанный на принципе кодового разделения каналов, и устройство динамической адресации радиосредств мобильной радиосети. Устройство состоит из Регистра передаваемых команд, Регистра принимаемых команд, Регистра динамической адресации передатчика, Регистра динамической адресации приемника, Генератора псевдослучайных кодовых последовательностей передатчика, Генератора псевдослучайных кодовых последовательностей приемника, Модулятора и Демодулятора радиочастотных сигналов, Блока вычислителя-преобразователя кодов. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к электрорадиотехнике и может использоваться в охранных системах и системах мониторинга состояния контролируемых объектов. Технический результат состоит в повышении устойчивости работы в условиях плотной городской застройки с высоким уровнем промышленных помех и интерференционных замираний, обусловленных многолучевостью сигналов, отраженных от городских строений. Для этого вводят N≥1 территориально разнесенных приемных станций, с выходов которых информационные сигналы по дополнительным каналам связи передают на соответствующие входы пульта централизованного наблюдения, причем в каждой приемной станции антенна выполнена в виде двух пространственно-разнесенных антенных элементов, которые через антенные усилители подключены к первому и второму входам двухканального приемника, первый и второй выходы которого подключены соответственно к первому и второму входам блока цифровой обработки сигналов, выход которого подключен к входу блока вторичной цифровой обработки сигналов, выход которого подключен к входу блока передачи данных, выход которого является выходом приемной станции. 2 з.п. ф-лы, 6 ил.

Изобретение относится к системам управления питанием мобильных устройств. Технический результат - обеспечение работы важных программ при предразряженном состоянии батареи. Предложены архитектура и соответствующие способы для управления питанием нестационарных медицинских устройств. Медицинское устройство описано с помощью набора услуг, каждой из которых присвоен уровень приоритета (от произвольного до особо важного), при этом архитектура управления питанием позволяет использовать сменные модули управления различных уровней. Контроллер безопасности питания контролирует систему для обеспечения надлежащего поддержания услуг особой важности, а также обеспечения оповещений, когда остающийся заряд аккумулятора близок к критическому уровню. Контроллер надежности обеспечивает оптимальное распределение питания между различными услугами. Модуль контроля устройства оценивает характеристики устройства, которые могут быть использованы на других уровнях. Общая архитектура обеспечивает безопасное и оптимальное управление услугами и обеспечивает работу устройства по принципу «снизу вверх». 3 н. и 15 з.п. ф-лы, 6 ил.
Наверх