Линейный акселерометр



Линейный акселерометр
Линейный акселерометр
Линейный акселерометр
Линейный акселерометр

 


Владельцы патента RU 2552553:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ) (RU)

Изобретение относится к измерительной технике. Акселерометр содержит кремниевую подложку, на которую нанесен пьезоэлектрический слой, например, из окиси цинка в виде прямоугольной вытянутой дорожки. С обеих сторон пьезоэлектрической дорожки и в ее середине установлены встречно-штыревые электроды. На центральный электрод подается электрический импульс, который распространяется со скоростью звука от центрального электрода к внешним. Одновременно под действием внешнего линейного ускорения акустическая волна ускоряется или замедляется в зависимости от направления векторов скорости звука и действующего внешнего линейного ускорения. При отсутствии ускорения импульс от центрального электрода к внешним приходит одновременно, при действии ускорения - в разное время. Разность времен прохождения мерных участков акустической волной прямо пропорциональна действующему ускорению. Изобретение обеспечивает повышение точности измерений. 1 ил.

 

Изобретение относится к измерительной технике и может применяться для создания датчиков линейных ускорений.

Известен микромеханический датчик линейных ускорений [1], который содержит чувствительный элемент маятникого типа из монокремния и тензорезисторы на поверхностных акустических волнах (ПАВ), размещенные на упругом подвесе маятника.

Недостатком известного датчика является температурная нестабильность нулевого сигнала и коэффициента крутизны статической характеристики из-за сильной зависимости характеристик преобразователей на ПАВ от температуры.

Наиболее близким к заявляемому изобретению может служить акселерометр на ПАВ, содержащий подложку из монокремния, на которой сформирован пьезоэлектрический слой в виде вытянутой прямоугольной дорожки [2].

Недостатком данного акселерометра на ПАВ является низкая точность и надежность вследствие сложности устройства, в котором необходимо иметь подвижный узел в виде маятника и электронный блок, выявляющий перемещения маятника.

Эти недостатки устраняются предлагаемым решением.

Задачей, на решение которой направлено изобретение, является повышение надежности акселерометра.

Технический результат - повышение точности измерений. Этот технический результат достигается тем, что в акселерометр введены три одинаковых встречно-штыревых электрода, первый и второй из которых размещены по краям пьезоэлектрического слоя, а третий - в его середине, одновибратор, выход которого соединен с третьим встречно-штыревым электродом, первый и второй приемники ультразвукового сигнала и управляющее устройство, входы первого и второго приемников ультразвукового сигнала соединены, соответственно, с первым и вторым встречно-штыревыми электродами, выходы приемников соединены с первым и вторым входами управляющего устройства, а выход управляющего устройства соединен со входом одновибратора.

К существенному отличию заявленного устройства, по сравнению с известным, относится то, что оно реализуется без подвижного узла с исключением упругих подвесов, которые обычно вносят основные погрешности.

Предлагаемый линейный акселерометр иллюстрируется чертежом. Акселерометр содержит подложку 1 из монокремния, одинаковые первый и второй встречно-штыревые электроды 2, 3, третий встречно-штыревой электрод 4, пьезоэлектрический слой 5, первый и второй приемники ультразвукового сигнала 6 и 7, управляющее устройство 8 и одновибратор 9.

На подложке 1 из монокремния нанесен пьезоэлектрический слой 5, например из окиси цинка, в виде прямоугольной вытянутой дорожки. На обоих концах пьезоэлектрической дорожки установлены первый и второй встречно-штыревые электроды 2 и 5. Аналогичный третий встречно-штыревой электрод 4 установлен в средине пьезоэлектрического слоя. Встречно-штыревой электрод 4 соединен с выходом одновибратора 9, а вход одновибратора 9 соединен с выходом управляющего устройства 8. Выходы первого и второго встречно-штыревых электродов 2 и 3 соединены, соответственно, с первым и вторым входами управляющего устройства 8.

На встречно-штыревой электрод 4 подается электрический импульс от одновибратора 9, который распространяется от него со скоростью звука к первому и второму встречно-штыревым электродам 2 и 3, которые соединены с первым и вторым приемниками 6 и 7 акустического давления. Одновременно под действием внешнего линейного ускорения акустическая волна ускоряется или замедляется в зависимости от направления векторов скорости звука и действующего внешнего линейного ускорения. Так, при совпадении векторов скорости звука и внешнего линейного ускорения время прохождения мерного участка определяется зависимостью:

где L - длина мерного участка, определяемая как расстояние между электродом 4 и встречно-штыревыми электродами 2,3; а - скорость распространения звука в пьезоэлектрической подложке; x ¨ - внешнее линейное ускорение.

При несовпадении векторов скорости звука и внешнего линейного ускорения время прохождения мерного участка определяется зависимостью:

Из формул (1) и (2) величина линейного ускорения определяется в следующем виде:

При отсутствии ускорения импульс от центрального электрода к внешним приходит одновременно, при действии ускорения - в разное время.

Анализ аналогов показывает, что предлагаемое решение соответствует критерию «новизна», технический результат, достигаемый совокупностью признаков, свидетельствует о соответствии критерию «изобретательский уровень», лабораторные испытания свидетельствуют о промышленной применимости.

Источники информации

1. Патент России, №2126161, МПК G01P 15/13, опубл. 10.02.1999.

2. Паршин В.А., Харитонов В.И. Особенности технологии мультисенсорных датчиков с нелегированными упругими подвесами // Датчики и системы. 2002. №2. С.22-24.

Линейный акселерометр, содержащий подложку из монокремния, на которой сформирован пьезоэлектрический слой в виде вытянутой прямоугольной дорожки, отличающийся тем, что в акселерометр введены три одинаковых встречно-штыревых электрода, первый и второй из которых размещены по краям пьезоэлектрического слоя, а третий - в его середине, одновибратор, выход которого соединен с третьим встречно-штыревым электродом, первый и второй приемники ультразвукового сигнала и управляющее устройство, входы первого и второго приемников ультразвукового сигнала соединены, соответственно, с первым и вторым встречно-штыревыми электродами, выходы приемников соединены с первым и вторым входами управляющего устройства, а выход управляющего устройства соединен со входом одновибратора.



 

Похожие патенты:

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей.

Изобретение относится к области приборостроения, в частности к устройствам для измерения линейного ускорения. Волоконно-оптический преобразователь линейного ускорения состоит из двух каналов приемо-передачи оптического излучения и чувствительного элемента, включающего два устройства ориентации оптического излучения, выполненные из кварцевого стекла в форме параллелепипеда, частично покрытые зеркальным напылением, и устройство поглощения оптического излучения, которое консольно закреплено через прокладки между устройствами ориентации оптического излучения и выполнено в виде балки из светопоглощающего материала с грузом, закрепленным на ее конце.

Изобретение относится к приборостроению, а именно к акселерометрам, предназначенным для измерения малых ускорений. Акселерометр содержит ячейку из двух параллельно установленных поляроидов с чувствительным элементом между ними, выполненным из прозрачного тензочувствительного материала - полиуретана, имеющего форму клина.

Изобретение относится к пьезоэлектрическим датчикам и может быть использовано, в частности, в системах диагностики автомобиля и системах автосигнализации. Сущность: датчик включает пьезоэлектрическое рабочее тело и систему регистрации.

Изобретение относится к области измерительной техники, в частности к измерению параметров механических колебаний в широкой полосе частот. Изобретение может быть использовано для измерения волновых параметров механических колебаний различных объектов в строительстве, машиностроении, акустике и т.д.
Изобретение относится к измерительной технике, в частности к технике измерения параметров удара на стендах и может быть использовано при исследовании ударного взаимодействия тел.

Изобретение относится к измерительной технике и предназначено для измерения пиковых ударных ускорений. Пьезоэлектрический датчик ударного ускорения содержит корпус, во внутренней полости которого закреплена опора, имеющая выступы в средней части, равноудаленные от сторон корпуса, на каждом из которых закреплены при помощи промежуточного клеевого слоя пьезоэлемент и инерционная масса.

Изобретение относится к приборостроению, а именно к акселерометрам. .

Изобретение относится к области измерительной техники, в частности к технике высокоточных измерений, и может быть использовано для измерения перемещений и вибраций.

Изобретение относится к измерительной технике, а именно к измерительным элементам линейного ускорения. .

Изобретение относится к измерительной технике и предназначено для вибродиагностики технологического оборудования. Вибродатчик с элементом цифровой калибровки выполнен в виде металлического корпуса с фланцем для крепления на контролируемом объекте. Внутри корпуса датчика размещены первичный пьезокерамический преобразователь и электронная схема сопряжения первичного преобразователя. При этом в состав электронной схемы тракта усиления сигнала включен цифровой потенциометр, позволяющий вернуть коэффициент преобразования датчика к начальному значению. Потенциометр управляется от внешнего блока эталонных импульсов, подаваемых через технологический разъем в корпусе датчика при калибровке в режиме задания на испытательном вибростенде образцовых значений виброскорости на базовой частоте и фиксации выходного сигнала датчика на штатной нагрузке блока регистрации. Технический результат заключается в поддержании паспортных характеристик вибродатчика в течение всего срока эксплуатации. 4 ил.

Изобретение относится к области измерительной техники и касается линейного микроакселерометра с оптической системой. Микроакселерометр включает в себя корпус, две инерционные массы на упругих подвесах, два датчика положения, два компенсационных преобразователя. Датчики положения выполнены в виде двух пар монохроматических излучателей с различным спектром излучения и двух фотоприемников с цветоделением, имеющих не менее двух выходов спектральных диапазонов. Излучатели расположены над инерционной массой, а фотоприемники размещены в корпусе соосно с фотоприемниками. Монохроматические излучатели снабжены ограничителями светового потока. Технический результат заключается в повышении точности измерений и упрощении конструкции. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Пьезоэлектрический акселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и первый пьезочувствительный элемент с осевой поляризацией в виде пары пьезоэлектрических секторов, не соприкасающихся друг с другом, и электродов, контактирующих с боковыми поверхностями пары пьезоэлектрических секторов, при этом кольцевой корпус выполнен из электропроводного материала с возможностью контактирования с боковыми поверхностями пары кольцевых пьезоэлектрических секторов, имеющих различную поляризацию, причем электроды подключены к предусилителю, при этом в него введены второй и третий предуселители, а также второй кольцевой пьезочувствительный элемент, установленный над первым кольцевым пьезочувствительным элементом и выполненный в виде двух пар радиально поляризованных секторов, снабженных электродами, контактирующими с боковыми поверхностями секторов, при этом предуселители выполнены дифференциальными, а сектора пар второго кольцевого пьезочувствительного элемента имеют одинаковую поляризацию, причем три пары первого и второго кольцевых пьезочувствительных элементов через электроды подключены к входам трех соответствующих дифференциальных усилителей. Технический результат - измерение трех компонент вектора ускорения. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Техническим результатом, получаемым от внедрения изобретения, является измерение трех компонент вектора ускорения с помощью пьезоакселерометра, работающего на деформации сдвига. Известный однокомпонентный пьезоакселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и пьезочувствительный элемент в виде трех пьезоэлектрических секторов, один из которых выполнен с осевой поляризацией, и электродов, контактирующих с боковыми поверхностями пьезоэлектрических секторов, при этом кольцевой корпус выполнен из электропроводного материала с возможностью контактирования с боковыми поверхностями пьезоэлектрических секторов, причем электроды подключены к предусилителю, введены второй и третий предусилители, при этом второй и третий пьезоэлектрические сектора выполнены с радиальной поляризацией и подключены ко второму и третьему предусилителям. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано в сейсмоприемных устройствах. Предложен сложенный маятник, который может быть реализован в виде монолитного маятника, который не расположен в вертикальной конфигурации, т.е. повернутый на 90°, либо в направлении по часовой стрелке, либо против часовой стрелки. В частности, вариант такого вертикального сложенного маятника в монолитной конфигурации представляет более компактную реализацию, охарактеризованную высоким разделением вертикальной степени свободы от других степеней свободы. Технический результат - достижение оптимальной механической добротности устройства. 3 н. и 13 з.п. ф-лы, 8 ил.
Наверх