Способ автономного определения азимута гиростабилизированной платформы

Изобретение относится к области гироскопических систем и может быть использовано в навигационных системах. Технический результат - расширение функциональных возможностей. Для этого определение азимута производится при введении одного из гироблоков системы стабилизации в компасный режим путем его отключения от штатного канала системы стабилизации, при осуществлении стабилизации и горизонтирования платформы в измененном канале стабилизации с помощью соответствующего акселерометра, отключаемого от датчика моментов гироблока и подключаемого через усилитель к двигателю стабилизации платформы измененного канала, а также при осуществлении режима «памяти» в азимутальном канале. В расчетный момент времени на датчик моментов гироблока подаются управляющие сигналы, возвращающие гироскоп в исходное положение. Определение азимута исходного положения платформы производится по сигналам с датчика угла гироблока и акселерометра. Использование управляющих сигналов дает возможность сократить время измерительного процесса за счет совмещения его с процессом приведения компасного гироскопа в исходное положение при одновременном обеспечении заданной точности определения азимута платформы, а также возможность для ТГС дальнейшего непрерывного функционирования по назначению.

 

Существуют различные способы автономной азимутальной ориентации платформы трехосного гиростабилизатора (ТГС), основанные на использовании штатных двухстепенных гироблоков и акселерометров в различных режимах работы системы стабилизации и систем приведения платформы и гироскопов в требуемые (исходные) положения [1]. При определении азимута с необходимой точностью с помощью гироскопа его ось чувствительности должна изменять свое положение относительно Земли. В ряде способов это осуществляется путем поворотов платформы с гироскопом в различные фиксируемые относительно Земли положения. В этом случае определяется азимут фиксируемого положения платформы, что не позволяет проводить измерения при азимутальных смещениях основания ТГС. Операции переориентации платформы увеличивают время определения азимута и усложняют переход к дальнейшему функционированию ТГС по назначению.

Существуют также способы автономного азимутального ориентирования платформы с помощью двухстепенного гироскопа без связи платформы с Землей [2, 3]. Это обеспечивается путем использования режима непрерывного функционирования системы стабилизации платформы в процессе измерений. Изменение положения оси чувствительности гироскопа производится за счет видимых отклонений платформы относительно Земли или (и) поворотов гироскопа относительно платформы, для чего один из штатных гироблоков переводится в компасный режим. В связи с этим возникает необходимость учета этих отклонений после проведения измерений.

Известен способ азимутальной ориентации гиростабилизированной платформы ТГС по углу поворота гироскопа, основанный на использовании одного из штатных двухстепенных гироблоков системы стабилизации платформы относительно горизонтальных осей в режиме гирокомпаса [2].

Гироблок отключается от системы стабилизации, стабилизация и горизонтирование платформы осуществляется по сигналам соответствующего акселерометра, отключаемого от датчика моментов гироблока и подключаемого к двигателю стабилизации. Относительно вертикальной оси платформа стабилизируется в инерциальном пространстве. Сигналы с датчика угла гироблока непрерывно измеряются и используются для определения азимута начального (исходного) положения платформы.

Основным преимуществом этого способа является возможность азимутального ориентирования гиростабилизированной платформы без ее связи с Землей и в условиях азимутальных смещений основания ТГС. Недостатком способа является необходимость учета при дальнейшем функционировании ТГС угловых отклонений платформы и компасного гироскопа или приведения их в исходное положение. При этом наиболее значительными являются углы поворота компасного гироскопа. Реализация способа связана с необходимостью усложнения конструкции гироскопа и измерительной системы.

Наиболее близкий по технической сущности является способ определения азимута гиростабилизированной платформы ТГС, также основанный на использовании одного из штатных гироблоков системы стабилизации в компасном режиме, аналогично первому рассмотренному способу [3]. Относительно вертикальной оси осуществляется режим «памяти», что позволяет удерживать платформу в исходном положении при проведении измерений. Способ имеет преимущества, отмеченные ранее для компасного режима гироблока. Недостатком является необходимость возвращения гироскопа в исходное положение со значительных углов поворота.

Целью настоящего изобретения является устранение отмеченных недостатков вышеуказанных способов, связанных с необходимостью приведения платформы и гироскопа в исходные положения для реализации дальнейшего функционирования ТГС по назначению. Для устранения недостатка, вызванного значительными углами поворота гироскопа, предлагается совместить операцию возвращения гироскопа в исходное положение с измерительным процессом.

В начале измерений один из гироблоков системы стабилизации относительно горизонтальной оси отключается от системы стабилизации и включается в компасный режим. Стабилизация и горизонтирование платформы относительно этой оси осуществляется по сигналам соответствующего акселерометра путем отключения его от датчика моментов гироблока и подключения через усилитель к двигателю стабилизации. Относительно вертикальной оси платформа включается в режим «памяти» и удерживается в исходном положении. Под действием гироскопического момента, вызванного вращением Земли, гироскоп компасного гироблока поворачивается в сторону меридиана. При его повороте на заранее определенный угол на датчик моментов гироблока подаются расчетные управляющие сигналы, возвращающие компасный гироскоп в исходное положение. Определение азимута исходного положения платформы производится путем обработки информации с акселерометра и с датчика углов поворота гироскопа как на участке компасного режима, так и на участке возвращения гироскопа в исходное положение. В результате по окончании измерений платформа и гироскоп остаются в исходных положениях, обеспечивающих дальнейшее непрерывное функционирование ТГС по назначению.

Оценка азимута осуществляется на основе динамических моделей движения гироскопа к меридиану

и на участке возврата гироскопа в исходное положение

где β,βв - углы отклонения гироскопа от исходного положения при движении к меридиану и возврате в исходное положение;

Мупр - управляющий момент;

I - момент инерции гироскопа;

f - коэффициент демпфирования;

Н - кинетический момент гироскопа;

А0 - азимут исходного положения платформы;

ωв, ωг - вертикальная и горизонтальная проекции угловой скорости

вращения Земли;

ωгб - угловая скорость собственного ухода компасного гироскопа;

Δωдр - угловая скорость нескомпенсированного режимом «памяти»

дрейфа платформы относительно вертикальной оси;

δ*, γ* - статические ошибки системы горизонтирования платформы.

Управляющий момент рассчитывается с учетом возможности сокращения времени измерительного процесса за счет совмещения его с процессом приведения компасного гироскопа в исходное положение и одновременного обеспечения заданной точности определения азимута платформы. Алгоритмы обработки измерительной информации на участке возвращения могут отличаться от алгоритмов, определенных для начального участка движения гироскопа.

Сравнительный анализ существенных признаков способа определения азимута, выбранного прототипом, и предлагаемого способа показывает, что предлагаемый способ азимутальной ориентации отличается тем, что в определенный момент времени измерений на датчик моментов гироблока подают расчетные управляющие сигналы, которые возвращают гироскоп в исходное положение, а азимут платформы определяют по сигналам с акселерометра и датчика углов гироблока, снимаемым в процессе движения гироскопа к меридиану и его возвращения в исходное положение. Таким образом, предложенный способ имеет новизну. Авторам неизвестна совокупность существенных признаков, применяемых для решения данной технической задачи, что соответствует критерию «изобретательский уровень».

Источники информации

1. Хлебников Г.А. Начальная выставка инерциальных гироскопических систем. М.: ВАД, 1994, стр.285-307.

2. Патент РФ №2324897, 2006.

3. Патент РФ №2428658, 2010.

Способ автономного определения азимута гиростабилизированной платформы трехосного гиростабилизатора, заключающийся в том, что используют один из гироблоков системы стабилизации платформы относительно горизонтальной оси, отключаемый от системы стабилизации и включаемый в компасный режим, стабилизацию и горизонтирование платформы относительно этой оси осуществляют с помощью соответствующего акселерометра, относительно вертикальной оси платформа находится в режиме «памяти», отличающийся тем, что в определенный момент времени измерений на датчик моментов гироблока подают расчетные управляющие сигналы, которые возвращают гироскоп в исходное положение, а азимут платформы определяют по сигналам с акселерометра и с датчика углов гироблока, снимаемым в процессе движения гироскопа к меридиану и его возвращения в исходное положение.



 

Похожие патенты:

Изобретение относится к области навигационного приборостроения и может быть использовано для определения положения платформы трехосного гиростабилизатора в азимуте, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к системам автоматического регулирования, а конкретно к двухосным управляемым гиростабилизаторам оптической линии визирования, работающим на подвижных объектах и предназначенным для стабилизации и наведения линии визирования.

Способ коррекции дрейфа микромеханического гироскопа, используемого в системе дополненной реальности на движущемся объекте. Изобретение относится к области навигационного приборостроения.

Изобретение относится к области гироскопических систем и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Азимутальная ориентация платформы трехосного гиростабилизатора по приращениям угла прецессии гироблока относится к области приборостроения и может быть использована для определения азимута, например, в высокоточных системах различного назначения.

Изобретение относится к области навигационного приборостроения и может быть использовано для контроля гиростабилизированных платформ космического назначения. .

Изобретение относится к гироскопической технике, а именно к управляемым гиростабилизаторам с косвенной стабилизацией, работающим на подвижных объектах. .

Изобретение относится к системам автоматического управления и может найти применение для стабилизации поля зрения и управления линией визирования оптических приборов, размещаемых на подвижных объектах.

Изобретение относится к области корректируемых по информации от навигационных спутников гироскопических систем навигации морских объектов. .

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства. Техническим результатом является уменьшение погрешности измерений. В способе осуществляют калибровку устройства (S) инерционного датчика, установленного в произвольной позиции на борту транспортного средства (V), на основе формирования (200-500) матрицы (R) преобразования, приспособленной преобразовывать реально измеренные данные динамических параметров транспортного средства (V), найденных в локальной системе (x, y, z) координат, в данные, указывающие динамические параметры транспортного средства (V) в системе (X, Y, Z) координат транспортного средства, причем значение каждого элемента матрицы (R) преобразования модифицируют посредством наложения ограничения ортогональности (600) матрицы. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к судовым системам ориентации и может найти применение в системах угловой ориентации устройств корабля с учетом статических и динамических деформаций корпуса корабля, а также ошибок установки систем на корабле. Технический результат - расширение функциональных возможностей. Для этого система содержит блок ориентации, соединенный с системой корабля, навигационный комплекс корабля, преобразователи координат, интегрирующие, множительные и запоминающие устройства, а также фильтры нижних частот. Угловое положение блока ориентации осуществляется замкнутыми системами автоматического регулирования, образованными из элементов системы. Текущие значения углов ориентации вычисляются путем совместной обработки в общей горизонтальной системе координат скоростей изменений этих углов, определенных блоком ориентации, и углов ориентации, определенных навигационным комплексом. Статические поправки к углам бортовой и килевой качек вычисляются, сглаживаются фильтрами и запоминаются как разности измеренных блоком ориентации и навигационным комплексом соответствующих величин. Статическая поправка курса вычисляется, сглаживается фильтром и запоминается после определения статических поправок к углам бортовой и килевой качек. Статическая поправка курса определяется путем сравнения между собой направлений, вокруг которых в данный момент времени происходят наклоны палубы корабля в местах расположения блока ориентации и навигационного комплекса. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области гироскопии и может быть использовано для выставки в плоскость горизонта и на заданный азимут стабилизированной платформы (СП) трехосного гиростабилизатора (ТГС) системы управления ракет-носителей и разгонных блоков космического назначения, запускаемых со стартовых комплексов наземного базирования и морских платформ. В предлагаемом способе после грубого приведения СП в плоскость горизонта включается система стабилизации, в датчики моментов (ДМ) двухстепенных поплавковых интегрирующих гироскопов (ГБ) системы стабилизации СП подаются токи компенсации уходов СП, затем вычисляется отклонение СП от плоскости горизонта и нескомпенсированные скорости поворота СП относительно осей ОХП и ΟΖП, вычисляются проекции горизонтальной составляющей скорости вращения Земли на оси чувствительности ГБ по осям рыскания (Р) и тангажа (Т), грубо определяется азимут корпуса ТГС, затем уточняются масштабные коэффициенты акселерометров, составляющие уходов ГБ Ρ и Τ и калибровочные коэффициенты их трактов путем выставки СП в четыре положения с азимутом 0°, 90°, 180° и 270°, компенсацией уходов СП и проведением измерений в этих положениях, после чего СП осью ОХП грубо выставляется на азимут запуска, в ДМ ГБ подаются токи компенсации собственных уходов ГБ и составляющих вектора вращения Земли, уточняются проекции горизонтальной составляющей скорости вращения Земли на оси чувствительности ГБ Τ и Ρ и производится их пересчет на направления север-юг, запад-восток, вычисляется рассогласование оси ОХП с азимутом запуска, вычисленное рассогласование устраняется поворотом вокруг вертикальной оси на рассчитанный угол, и СП удерживается у азимута запуска токами компенсации. Технический результат – уменьшение погрешности выставки трехосного гиростабилизатора стабилизированной платформы в плоскость горизонта и на заданный азимут. 2 ил.

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в гироскопических стабилизаторах. Способ стабилизации гироскопической платформы заключается в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, при этом при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенном стабилизирующем двигателе, измеряя при этом напряжение на выходе усилителя стабилизации. Технический результат – повышение качества стабилизации и обеспечения необходимого запаса устойчивости системы. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения и может быть использовано в высокоточных навигационных системах различного назначения для определения положения платформы трехосного гиростабилизатора в азимуте. Технический результат – расширение функциональных возможностей за счет обеспечения возможности определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, а также сокращения времени и повышения точности определения азимута. Для этого измерения производятся в инерциальном управляемом режиме движения платформы относительно вертикальной оси и инерциальном режиме относительно двух или одной из горизонтальных осей. Перед началом измерений платформа горизонтируется точной системой приведения и грубо устанавливается и удерживается в требуемом исходном положении по азимуту. Затем система удержания платформы по азимуту и система точного приведения платформы в горизонт по двум или одной из горизонтальных осей отключается, а в датчик моментов азимутального гироблока подаются расчетные сигналы, увеличивающие скорость и угол поворота платформы по азимуту. Азимут исходного положения платформы определяют путем обработки сигналов с акселерометров об изменяющихся видимых уходах платформы относительно двух или одной горизонтальных осей, а также информации о видимых уходах по азимуту и об углах поворота гироскопов систем стабилизации платформы относительно двух или одной горизонтальных осей. 1 з.п. ф-лы.

Изобретение относится к гироскопической технике, а конкретно к двухосным гироскопическим стабилизаторам оптических элементов, работающим на подвижных объектах и предназначенным для стабилизации и управления оптическими элементами, и может найти применение в создании систем типа бинокль, перископ, лазерный дальномер. Заявленный гиростабилизатор оптических элементов, содержащий трехстепенной гироскоп, у которого во внешней рамке установлен гироузел, с которым кинематически шарнирно связан оптический элемент, и коррекционный двигатель, при этом оптический элемент представляет два зеркала, установленные во внешней рамке гироскопа симметрично относительно оси подвеса гироузла, а в кинематические шарнирные связи введены пружины, причем оси вращения зеркал параллельны оси подвеса гироузла, на котором с одной стороны в направлении оси ротора гиромотора установлена штанга с закрепленным на ее конце шарикоподшипнике, а на противоположном конце закреплена направляющая механического арретира, при этом шарикоподшипник штанги может перемещаться по направляющей бугеля, которая имеет П-образное сечение и средний радиус, равный длине штанги от центра подвеса гироузла до шарикоподшипника, при этом ось вращения бугеля находится в корпусе прибора и перпендикулярна оси подвеса внешней рамки. Технический результат состоит в увеличении угла обзора и угловых скоростей слежения с увеличением точности управления оптическими элементами с уменьшением массы и габаритов. 2 з.п. ф-лы, 7 ил.

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного назначения (ОВН) типа танков, БМП, БМД, БТР и т.п. Техническим результатом является повышение эксплуатационных возможностей за счет сохранения конструктивных установочных размеров в модернизируемом ОВН при установке на него нового прицельного комплекса (ПК) с независимой линией визирования (ЛВ), улучшение ремонтопригодности ОВН в условиях эксплуатации при установке модернизированного ПК с независимой ЛВ. Система стабилизации содержит прицельный комплекс с управляющей и силовой электроникой, связанной с внешним управляющим сигналом, датчики, двигатель, электрически связанный с первым выходом управляющей и силовой электроники, оптические узлы и механизмы. При этом система разделена на электроблок, размещенный в ОВН и содержащий управляющую и силовую электронику, и блок электромеханический, размещенный в прицельном комплексе, устанавливаемом на ОВН и содержащий датчики, двигатель, оптические узлы и механизмы, а также блок памяти и последовательный порт памяти. Элементы системы стабилизации соединены согласно блок-схеме на фиг. 1. 1 ил.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

Группа изобретений относится к средствам для определения положения объектов в заданной системе координат. Инерциальный блок для закрепления на вращающемся узле транспортного средства, сочлененный с его силовым оборудованием, содержит по меньшей мере один датчик ускорения, и/или по меньшей мере один магнитометр, выполненный с возможностью определения угла наклона вращающегося узла, и/или по меньшей мере одно счетное устройство, выполненное с возможностью определения количества вращений вращающегося узла, и два гироскопа, выполненные с возможностью определения направления на уровне обода вращающегося узла в целях предоставления информации об углах для определения положения, при этом данные первого гироскопа умножаются на ряд синусов, а данные второго гироскопа умножаются на ряд косинусов, причем оба ряда выбираются таким образом, чтобы обеспечить максимально точное представление рядов значений акселерометра, и чтобы сумма ряда была равна нулю с максимально возможной точностью. Также предложено устройство, содержащее множество инерциальных датчиков, которое крепится к транспортному средству. Указанный инерциальный блок реализует соответствующий способ определения координат транспортного средства. Описанная выше группа изобретений позволяет с высокой точностью определять координаты транспортных средств. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к области навигационного приборостроения и может быть использовано для создания прецизионных систем инерциальной навигации подвижных объектов. Опора карданова подвеса гиростабилизатора содержит стабилизирующий двигатель, преобразователь координат, цапфу оси подвеса, шарикоподшипник, редуктор, корпус, токоподвод коллекторного типа. Особенность конструкции опоры карданова подвеса гиростабилизатора состоит в том, что в нее введены: косозубое люфтовыбирающее колесо с фланцем, четыре люфтовыбирающие пружины, дополнительный фланец опоры, при этом шарикоподшипник выполнен в виде дуплексного шарикоподшипника, цапфа выполнена с косозубым зубчатым венцом, редуктор представляет собой два конических зубчатых колеса и червяк, который находится в зацеплении с косозубым венцом цапфы и косозубым венцом люфтовыбирающего колеса, токоподвод расположен внутри цапфы. Техническим результатом является повышение точности разворота рамок карданова подвеса, уменьшение массы и габаритов конструкции опоры, улучшение технологичности конструкции опоры карданова подвеса гиростабилизатора. 3 ил.
Наверх