Способ разрушения ледяного покрова и устройство для разрушения ледяного покрова


 


Владельцы патента RU 2552753:

Аносов Виктор Сергеевич (RU)
Чернявец Владимир Васильевич (RU)
Воробьев Александр Валентинович (RU)
Бродский Павел Григорьевич (RU)
Жильцов Николай Николаевич (RU)
Зеньков Андрей Федорович (RU)
Леньков Валерий Павлович (RU)

Изобретение относится к разрушению ледяного покрова в период льдообразования, дрейфа и в период торошения ледяных полей, расположенных как в условиях мелкого, так и глубокого морей. Устанавливают под лед заряды взрывчатого вещества и устраивают их поочередный подрыв с интервалом времени, равным времени прохождения изгибно-гравитационной волны от места подрыва предыдущего до места подрыва последующего зарядов. Над ледяным покровом устанавливают заряды взрывчатых веществ и подрывают их одновременно с подрывом зарядов, установленных под ледяным покровом. При этом перед установкой зарядов взрывчатого вещества измеряют скорость и направление ветра, подводных течений и дрейфа ледовых полей, определяют толщину льда. Заряды взрывчатого вещества размещают с формированием направления распространения взрывной волны в противоположные стороны от места нахождения морского объекта хозяйственной деятельности. Воздействующее на ледовое покрытие плавсредство снабжено источником газа и системой подачи его с коллектором и содержит кабель-трос, другой конец которого через электромагнитный размыкатель соединен с балластом. Заряды размещают в водонепроницаемых оболочках, выполненных в виде шара. Кабель-трос соединяют с шарами посредством зажигательной свечи. Заряды выполнены в виде объемно-детонирующей смеси. Обеспечивается повышение надежности защиты морских объектов хозяйственной деятельности. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к ледокольному флоту.

Известный способ разрушения ледяного покрова для морских ледоколов, основанный на использовании архимедовой силы, заключается в том, что берут автономный подводный аппарат, состоящий из пустой емкости объемом 100 м3, полого треугольного в сечении гаргрота объемом 20 м3 и машинного отделения, которое связывают с ледоколом силовым электрическим кабелем. Опускают аппарат под лед и с помощью пульта управления, расположенного на борту ледокола, водометного двигателя подводят его к месту разрушения льда. Открывая шибер, наполняют емкость забортной водой. Гаргрот обеспечивает плавучесть всего аппарата, опирающегося гаргротом на нижнюю кромку льда, воздух из гаргрота при заполнении емкости водой выпускают через обратный клапан. Насосом через трубу и обратный клапан откачивают воду из емкости и создают архимедову силу, равную 100 тоннам, с помощью которой в месте соприкосновения острой кромки гаргрота со льдом превышают временное сопротивление льда сдвигу, равное 30 кг/см2, почти в 5 раз. Давление в гаргроте уменьшают до 0,2 атм. После образования во льду трещины ледокол и аппарат продвигают вперед.

Устройство состоит из емкости, гаргрота, машинного отделения, силового электрического кабеля, водометного двигателя с поворотным соплом, водяного насоса с электроприводом, обратного клапана, имеющего возможность только выпускать воду из емкости, заборной трубы, шибера, имеющего возможность заполнять емкость забортной водой, и обратного клапана, имеющего возможность выпускать воздух из гаргрота при заполнении емкости забортной водой. Разрушается ледяной покров толщиной 2,5 и более метров (патент RU №2326785 С1, 20.06.2008 [1]). Известен также способ разрушения ледового покрова и приставка к судну для его осуществления (патент RU №2213675 С2, 10.10.2003 [2]).

Разрушение ледового покрова с надрезкой ограниченного участка ледового покрова осуществляют струями воды, пароводяной смеси или пара, нагреваемыми в теплогенераторе. Струи направляют под углом к поверхности воды, чтобы при надрезании образовывались куски льда с гранями под углом к поверхности воды, а струям придают вращательное движение. Под ледовый покров подается сжатый воздух, предназначенный для предварительного напряжения ледового покрова перед разрушением. После надрезки ледового покрова через лед по щели надрезки пропускают электрический ток в воду. Ледокольная приставка к судну содержит клинообразный каркас, обшивка которого образует вогнутые скулы в виде двухстороннего плуга с верхним ледоразводящим гребнем. Она снабжена одним соединенным через теплогенератор коллектором с соплами. Одно из сопел имеет завихритель, предназначенный для придания потоку рабочего тела вращательного движения. Приставка к судну снабжена включенным в электрическую цепь скользящим контактом под коллектором с соплами, предназначенным для разрушения ледового покрова воздействием электрического тока через ледяной покров и воду. Приставка к судну снабжена механическим или гидравлическим приводом, предназначенным для ее подъема и опускания. Достигается снижение затрат мощности, энергоресурсов и денежных средств для доставки грузов водным путем в условиях ледового покрова водной поверхности.

Известен также способ разрушения ледяного покрова для всплытия подводной лодки (патент RU №2085432 С1, 27.07.1997 [3]). Сущность изобретения: способ разрушения льда для всплытия подводной лодки (ПЛ), включающий подачу струи нагретой жидкости к поверхности льда. Процесс разрушения льда происходит при всплытии ПЛ на перископную глубину и корректировки ее положения. С помощью штанг с насадками с обеспечением минимального зазора между ними и нижней поверхностью льда подают теплую воду и таким образом протапливают лед по всему периметру ПЛ, образуя прорези. Затем подводят ПЛ под участок протопленных в толще льда прорезей, создают положительную плавучесть, взламывают корпусом ослабленный прорезями лед и всплывают в надводное положение. В качестве нагретой жидкости используется вода из циркуляционной трассы, выбрасываемая на штатных режимах за борт, что исключает необходимость размещения на ПЛ громоздкого оборудования (теплообменных аппаратов, насосов и т.п.) и дополнительные расходы энергии на нагрев и перекачку воды.

Известны также способы разрушения ледяного покрова путем выполнения взрывов. Известный способ разрушения ледяного покрова включает установку под лед на расстоянии друг от друга зарядов взрывчатого вещества и их подрыв. Для повышения эффективности разрушения льда взрывами подрыв зарядов производят поочередно, причем каждый из последующих зарядов подрывают с интервалом времени, равным времени прохождения вершины изгибно-гравитационной волны (ИГВ) от места взрыва предыдущего заряда (авторское свидетельство SU №1820188 [4]).

Недостатком данного способа является то, что при проведении взрывных работ для увеличения ледоразрушающей способности ИГВ накапливается только энергия прямого движения воды и ледяного покрова, т.е. колебательного движения, направленного вверх против силы гравитации. Накопление энергии обратного движения вниз в направлении силы тяжести при известном способе не происходит, т.е. возможность увеличения энергии ИГВ используется не в полной мере. Кроме того, после взрыва образуются малые и средние ледяные поля, которые при соответствующих гидрометеорологических условиях будут продолжать движение в сторону, например, морского нефтегазового терминала, создавая угрозу его повреждения или разрушения.

Известен также способ разрушения ледяного покрова, который заключается в том, что под лед устанавливают несколько зарядов, которые подрывают с интервалом времени, равным времени прохождения изгибно-гравитационной волны от места подрыва предыдущего до места подрыва последующего зарядов. При этом дополнительно на лед устанавливают заряды взрывчатых веществ, которые подрывают одновременно с подрывом зарядов, установленных под ледяным покровом. При этом каждый заряд, расположенный над ледяным покровом, устанавливается на расстоянии от каждого заряда, расположенного под ледяным покровом, равном половине длины изгибно-гравитационной волны, что позволяет увеличить амплитуду изгибно-гравитационной волны и тем самым повысить эффективность разрушения ледяного покрова взрывами (патент RU №2124178 [5]). Сущность изобретения заключается в повышении эффективности разрушения ледяного покрова взрывами.

Технический результат, получаемый при осуществлении изобретения, заключается в увеличении амплитуды ИГВ, возбуждаемых подрывом зарядов взрывчатого вещества.

Существенным недостатком известных способов является то, что они позволяют достичь технического эффекта на акваториях, свободных от объектов хозяйственной деятельности, расположенных на акваториях морей, и практически не пригодны в районах расположения таких объектов хозяйственной деятельности, как морские добычные газонефтяные комплексы.

Широко известные способы разрушения льда, основанные на гидравлическом и тепловом методах, также не нашли широкой промышленной применимости из-за их существенных недостатков.

Гидравлический метод разрушения льда в практике известен уже давно. В частности, такой метод применяют при гидротехническом строительстве, когда в зимнее время подготавливают фронт работы для земснарядов. При этом используют мощные гидромониторы, которые струей воды под большим давлением разрушают лед. Применение такого метода требует обеспечения большого давления воды. Для обеспечения большого давления струи воды необходимы мощные установки, что экономически не оправдано.

Тепловой метод включает в себя резание льда с помощью газовых, бензиновых или иных горелок (бензиновый резак). В начальный момент лед начинает быстро таять, но в дальнейшем вода, образующаяся в результате таяния верхнего слоя льда, препятствует интенсивному таянию нижних слоев льда. При этом процесс таяния льда резко замедляется. Результаты проведенных работ не подтвердили мнения о целесообразности использования данного способа.

Как известно, основными динамическими факторами, формирующими ледяной покров, являются ветер, течения и колебания уровня. Существенное влияние на характер процессов торошения оказывают также мелководность, извилистость береговой черты и довольно сложный рельеф дна с большим количеством банок, кос и островов. Все это обусловливает особенности динамики льдов, происходящих на ледовитых морях России. В начальный период формирования ледяного покрова на морском мелководье, когда граница молодых льдов распространяется от берега до глубин 2-3 м, наряду с характерными для всех ледовитых морей зубчато-наслоенными льдами во время подвижек и торошения льда образуются торосы, сидящие на мели, - стамухи. Перечисленные выше факторы существенно влияют на размеры и места их расположения, поэтому различают стамухи по времени и месту их появления, а также по виду льда, из которого они образуются. Характерной особенностью неподвижных стамух, позволяющей отличать их от движущихся вместе с дрейфующим льдом торосов, является образование т.н. «водяной тени» с их подветренной стороны во время ледовых подвижек. Ввиду того, что зимой наряду с процессами льдообразования постоянно происходят противоположные процессы разрушения льда, для зоны контакта припая с дрейфующими льдами характерны ее сезонные смещения. Образованию торосов на границе припая и дрейфующего льда помимо тангенциального напряжения ветра способствуют подъемы уровня при нагонах. При этом образуются мощные гряды торосов длиной в несколько километров и высотой 2 м и более, расположенные перпендикулярно направлению господствующих ветров. При очередном смещении границы припая и дрейфующих льдов возникает новая гряда торосов, параллельная образовавшимся ранее, в результате чего образуется пояс торосов, наблюдаемый на дрейфовых разделах арктических морей. Сжимающие и касательные усилия, возникающие во время контакта льдин, приводят к ломке льда и образованию на их краях торосов. Различают приливное, термическое и ветровое торошение. Приливное торошение на Северном Каспии практически отсутствует, т.к. приливно-отливные колебания уровня здесь не превышают точности измерения. Термическое торошение имеет место в суровые зимы в зоне припая, однако существенного влияния на общую картину торосистости оно не оказывает. Наиболее характерным для большинства морей является ветровое торошение, которому способствуют подледные течения и сгонно-нагонные колебания уровня моря.

Максимальная торосистость, при всех типах зим, отмечается в зоне контакта припая и дрейфующего льда.

Для прибрежных мелководий с ровным и пологим дном характерна такая форма донного рельефа, как следы выпахивания или борозды. Они имеют вид длинных, часто прямолинейных борозд протяженностью от нескольких десятков метров до нескольких километров. Борозды образуются при воздействии на дно торосистых дрейфующих льдов, ориентированы в направлении преобладающих в эти периоды ветров и представляют собой как бы проведенные по дну векторы дрейфа льда. Ширина борозд колеблется от нескольких до 50-100 м и более. Все борозды оканчиваются валами, образованными выпаханным грунтом. Высота некоторых превышает глубину моря, и они выходят на дневную поверхность в виде островков.

Продолжительность существования борозд в илистых грунтах составляет 2-3 года, в песчаном грунте борозды замываются волнением в течение одного сезона. Выпахивающее действие дрейфующих льдов характерно также для береговой зоны. Во время нагонов дрейфующие с моря льды, попадая на сушу, выпахивают верхний слой почвы, оставляя следы выпахивания глубиной до 0,5 м и длиной до нескольких километров. На островах во время интенсивного дрейфа льда вдоль берега образуются мощные навалы льда. Обломки льдин, проникающие при этом в грунт на глубину до 1 метра, сохраняются длительное время.

При посадке торосов на грунт происходит дальнейшее накопление масс льда в результате торошения под воздействием подвижек и дрейфа льда. В результате стамухи могут внедряться в грунт на глубину до нескольких метров. Глубина их проникновения в грунт зависит от физико-механических свойств грунта, массы стамухи, площади соприкосновения, глубины моря.

Поскольку ледовому выпахиванию (взаимодействию дрейфующих льдов с морским дном) подвержены мелководные участки морского дна на большой площади, можно утверждать, что эти процессы имеют массовый (хотя и сезонный) характер и потому играют важную роль в экологии данного водоема. Наряду с чисто механическим перемещением огромных масс донного грунта происходит угнетение донной, островной и прибрежной растительности и организмов.

Большинство морей Арктического бассейна отличается большим разнообразием ледовых процессов. Являясь серьезным естественным препятствием в осуществлении хозяйственной деятельности человека на море, ледяной покров значительно ограничивает их деятельность, создает реальную угрозу их безопасности.

Проводимые в последнее время в шельфовой зоне работы по поиску углеводородов диктуют необходимость поиска более совершенных и не отягощенных серьезными материальными затратами и трудоемкостью.

В источнике информации (Расенко А. «Кайсар» это ледовый защитник // газета «Астраханские известия», 22.01.2004 [6]) в качестве средств защиты морских нефтегазовых терминалов на Каспийском море рассматривается возможность использования для этих целей затопленных на мелководье старых кораблей, которые раньше использовались в качестве мишеней для ракет.

В результате исследований была выполнена оценка характера и интенсивности взаимодействия дрейфующих льдов с неподвижной, вертикально расположенной преградой. Корабли расположены в море на глубинах 5-6 м и на расстоянии от берега от 10 до 50 км.

Эпизодические подвижки и интенсивный дрейф льда под воздействием штормовых ветров, преобладающих в это время года, западного и восточного направлений, а также сгонно-нагонные колебания уровня моря способствуют образованию мощных торосов. Вокруг затопленных кораблей образуются сплошные торосистые поля, а вдоль их бортов - гигантские многослойные навалы из обломков льдин, высота которых составляла от 3-6 до 15 метров над уровнем моря, а их подводные основания достигали дна, образуя торосистые образования, сидящие на грунте, - стамухи.

Полученные результаты ледовых исследований были использованы в 1999 г. в Астрахани, где для нужд казахской компании ОКИОК (Оффшор Казахстан Интернешнл Оперейтинг Компани) была осуществлена реконструкция типовой погружной буровой баржи, которая была специально адаптирована для работы в условиях дрейфующих льдов Северо-Восточного Каспия.

Подводное основание и борта баржи типа «Кайсар» были модифицированы таким образом, чтобы противостоять ледовым нагрузкам, которые изучались и анализировались на протяжении пяти лет. Проводилось компьютерное моделирование. В результате расчетов площадь баржи была увеличена вдвое, добавлены специальные ледовые отражатели с обеих сторон баржи. На месте постановки баржи в море, с обеих сторон от баржи, предусмотрена установка системы мощных металлических свай (глубина заглубления в морское дно до 20 м), назначение которых - сдерживание натиска дрейфующих льдов и активизация процессов торосового образования вокруг платформы. Также известно аналогичное устройство для защиты буровой платформы от воздействия дрейфующих льдов (Karl-Ulrich Evers, Walter Spring Ice mjdel testing of an exploration platform for shallow waters in the North Caspian sea // 16th International Conference on Port and Ocean Engineering under Frctic Conditions "Ice Engineering Applied to Offshore Regions" (Fugust 12-17, 2001 Ottawa, Ontario, Canada) 2001, p.255-264 [7]), при использовании которого также достигается защита буровых объектов от разрушения при движении ледяных полей созданием перед буровым объектом в ледовый период торосов, сидящих на грунте, посредством ледостойких сооружений, которые специально затапливаются по периметру вокруг буровой платформы.

Однако при всех многочисленных достоинствах барж типа «Кайсар» использование данного устройства все-таки не гарантирует абсолютной защиты буровых объектов от воздействия дрейфующих льдов.

Так, в феврале 2002 г., под воздействием штормовых ветров преимущественно западных румбов происходило увеличение сплоченности плавучих льдов в районе Гурьевской бороздины, их интенсивная подвижка, торошение и образование стамух, которое сопровождалось повышением уровня моря, вызванного ветровым нагоном. Это опасное природное явление едва не стало причиной серьезной аварии на казахской буровой платформе «Сункар». Одна из четырех барж типа «Ледовый защитник», специально построенных и затопленных вокруг буровой платформы с целью ее защиты от опасного воздействия дрейфующих льдов, была сдвинута движущимся льдом с места и переместилась по дну на расстояние 120 м. Лишь по счастливой случайности на пути баржи не оказалась буровая платформа.

Известна также полезная модель, которая относится к области нефтяной и газовой промышленности, в частности к защите буровых объектов от разрушения при эксплуатации в море, на Северном Каспии, в ледовых условиях - Устройство для защиты буровых объектов от разрушения при движении ледяных полей (патент на полезную модель RU №79611 [8]).

Техническим результатом устройства [8] является дальнейшее усовершенствование устройств защиты от разрушения буровых объектов морской разведки и добычи. Известное устройство [8] решает задачу защиты от разрушения буровых объектов морской разведки и добычи и содержит защитный барьер, состоящий из металлических щитов, установленных на дне водоема, и винтовые сваи. При этом устройство работает следующим образом. Вокруг бурового объекта устанавливают защитный барьер, обеспечивающий торошение ледяных полей, и закрепляют его четырьмя-шестью винтовыми сваями, которые обеспечивают надежную фиксацию защитного барьера на дне. Винтовые сваи углубляют в грунт на 10 м или более и инициируют образование кольцевой стамухи вокруг бурового объекта. Дрейфующие под действием ветра ледяные поля встречают на своем пути защитный барьер, расположенный вокруг бурового объекта, и ломаются. Заявленный технический результат получают в предположении, что из-за частой смены направлений ветра при всех типах зим, применительно к условиям северной части Каспийского моря, направление и скорость дрейфа льда в море также часто меняется, до 2-5 раз в сутки. Происходит торошение льда, при этом в результате многократной смены направлений ветра с учетом их повторяемости вокруг бурового объекта образуется кольцевой торос, сидящий на грунте, который в дальнейшем защищает его от сдвига и разрушения.

При этом одновременно решается еще одна очень важная проблема - обеспечение экологической безопасности вод Северного Каспия в результате возможных аварийных разливов нефти, поскольку кольцевая стамуха, образовавшаяся вокруг бурового объекта, обеспечивает надежную локализацию источника нефтяного (и любого другого) загрязнения, ограниченного внутренними размерами кольцевой стамухи. Ликвидировать же последствия загрязнения внутри кольцевой стамухи значительно проще, дешевле и безопаснее, чем в открытом море, покрытом дрейфующим, торосистым льдом. Однако технический результат от использования данного технического решения достигается только при условии, что «направление и скорость дрейфа льда в море также часто меняется, до 2-5 раз в сутки». Кроме того, надежная установка винтовых свай сопряжена с дополнительными трудностями, в первую очередь обусловленными типом грунта и глубинами моря в районе расположения морского нефтегазового терминала.

Известен также способ разрушения ледяного покрова (патент RU №2452812 С1, 10.06.2012 [9]). Изобретение относится к области защиты буровых объектов при движении ледяных полей и может быть применено для разрушения ледяного покрова. Способ включает установку под лед зарядов взрывчатого вещества и их поочередный подрыв с интервалом времени, равным времени прохождения изгибно-гравитационной волны от места подрыва предыдущего до места подрыва последующего зарядов. Над ледяным покровом устанавливают заряды взрывчатых веществ и подрывают их одновременно с подрывом зарядов, установленных под ледяным покровом. Перед установкой зарядов взрывчатого вещества измеряют скорость и направление ветра, подводных течений и дрейфа ледовых полей, определяют толщину льда. Заряды взрывчатого вещества размещают с формированием направления распространения взрывной волны в противоположные стороны от места нахождения морского объекта хозяйственной деятельности.

Технический результат заключается в повышении надежности защиты морского объекта хозяйственной деятельности от воздействия ледовых образований. Новые отличительные признаки известного способа [10], заключающиеся в том, что перед установкой зарядов взрывчатого вещества измеряют скорость и направление ветра, подводных течений и дрейфа ледовых полей, определяют толщину льда, а заряды взрывчатого вещества размещают с формированием направления распространения взрывной волны в противоположные стороны от места нахождения морского объекта хозяйственной деятельности, позволяют исключить нежелательное распространение ледовых образований в направлении размещения морского объекта хозяйственной деятельности.

Однако установка зарядов на определенном расстоянии друг от друга представляет собой трудоемкую операцию и не является полностью безопасной.

Известно также устройство для разрушения ледового покрытия, содержащее воздействующее на покрытие плавсредство, снабженное источником газа и системой подачи его под ледовое покрытие. Система подачи газа снабжена коллектором, размещенным под покрытием, и механизмом установки коллектора в подводное положение для создания газовой прослойки в зоне разрушения. Изобретение направлено на расширение арсенала технических средств (патент RU №2314963 С2, 20.01.2008 [10]).

Известное устройство содержит плавсредство, которое снабжено источником газа и системой подачи и регулирования газа в зону разрушения, состоящую из газовых магистралей, органов управления и регулирования и механизма установки газового коллектора в подводное положение для создания газовой прослойки в зоне разрушения. Для приведения в действие устройства механизмом установки газового коллектора в подводное положение газовый коллектор устанавливают в подводное положение.

Включают в работу систему подачи и регулирования газа в зону разрушения. Газ от источника газа по магистралям подачи через органы регулирования поступает в газовый коллектор, а из него - под ледовое покрытие, где и создается газовая прослойка. Газовая прослойка разделяет ледовое покрытие от жидкости, тем самым исключает влияние жидкости на процесс разрушения покрытия. При воздействии сверху нет необходимости преодолевать усилия, вызванные влиянием жидкости как упругой подложки, а при воздействии снизу нет необходимости преодолевать усилия прилипания покрытия к жидкости. Следовательно, в значительной мере снижаются усилия для разрушения ледового покрытия. Однако создание равномерной газовой прослойки не всегда может быть обеспечено, например при наличии килей ледового покрытия или при наличии подводных течений.

Задачей настоящего технического решения является повышение надежности защиты морских объектов хозяйственной деятельности в период льдообразования, дрейфа и в период торошения ледяных полей, расположенных как в условиях мелкого, так и глубокого морей.

Поставленная задача решается за счет того, что в способе разрушения ледяного покрова, включающем установку под лед зарядов взрывчатого вещества и их поочередный подрыв с интервалом времени, равным времени прохождения изгибно-гравитационной волны от места подрыва предыдущего до места подрыва последующего зарядов, в котором дополнительно над ледяным покровом устанавливают заряды взрывчатых веществ и подрывают их одновременно с подрывом зарядов, установленных под ледяным покровом, в котором перед установкой зарядов взрывчатого вещества измеряют скорость и направление ветра, подводных течений и дрейфа ледовых полей, определяют толщину льда, а заряды взрывчатого вещества размещают с формированием направления распространения взрывной волны в противоположные стороны от места нахождения морского объекта хозяйственной деятельности, в отличие от прототипа заряды размещают в водонепроницаемых оболочках, выполненных в виде шара и соединенных с воздействующим на ледовое покрытие плавсредством посредством кабель-троса, который соединен с шарами посредством зажигательной свечи, заряды выполнены в виде объемно-детонирующей смеси.

Кроме того, устройство для разрушения ледового покрова, содержащее воздействующее на ледовое покрытие плавсредство, снабженное источником газа и системой подачи его с коллектором, дополнительно содержит кабель-трос, одним концом соединенный с воздействующим на ледовое покрытие плавсредством, а другим концом через электромагнитный размыкатель соединенный с балластом, по длине кабель-троса установлены зажигательные свечи, соединенные с шарами, заполненными объемно-детонирующей смесью.

Сущность предлагаемого технического решения поясняется чертежом (фигура). На чертеже показана схема размещения зарядов, где изображены: морской объект хозяйственной деятельности 1, защитный барьер 2, ледовый покров 3, места установки зарядов 4 взрывчатых веществ, средства измерения скорости и направление ветра 5, средства измерения подводных течений и дрейфа ледовых полей 6, средства измерения толщины льда 7, плавсредство 8, которое снабжено источником газа 9 и системой подачи и регулирования газа, состоящей из газовых магистралей 10, органов управления и регулирования 11 и газового коллектора 12, кабель-трос 13, одним концом соединенный с воздействующим на ледовое покрытие 3 плавсредством 8, а другим концом через электромагнитный размыкатель 14 соединенный с балластом 15, по длине кабель-троса 13 установлены зажигательные свечи 16, соединенные с шарами 17, заполненными объемно-детонирующей смесью и размещенными в воде 18.

Защитный барьер 2 может быть выполнен как и в известном устройстве [9].

Ввиду того, что практически невозможно исключить движение ледовых образований после выполнения взрывных работ, то вокруг морского объекта хозяйственной деятельности устанавливают защитный барьер 2, который состоит из щитов, установленных на дне водоема и соединенных со сваями. Сваи выполнены в виде якоря-балласта конусообразной формы из железобетона.

Объем шаров 17 определяется толщиной ледового покрова 3. Шары 17 могут быть выполнены из водостойкой ткани.

Предлагаемый способ реализуется следующим образом.

Перед установкой зарядов взрывчатых веществ посредством средства измерения скорости и направление ветра 5 средства измерения скорости и направления подводных течений и дрейфа ледовых полей 6, средства измерения толщины льда 7 определяют скорость и направление ветра, скорость и направление подводных течений и дрейфа ледовых полей, толщину льда. В качестве средства измерения скорости и направления ветра 5 могут быть использованы акустические измерители скорости и направления ветра или стационарный гидрометеорологический комплекс типа «Косметео». В качестве средства измерения скорости и направления подводных течений и дрейфа ледовых полей 6 может быть использован гидроакустический параметрический преобразователь, представляющий собой гидроакустический подводный зонд. Для определения дрейфа ледовых полей также может быть использована информация, получаемая стационарным гидрометеорологическим комплексам типа «Косметео» с искусственных спутников Земли. По полученной информации устанавливают возможные направления распространения взрывной волны относительно морского объекта хозяйственной деятельности, после чего, как и в прототипе, выбирают наиболее безопасные точки установки зарядов взрывчатых веществ. Далее под ледяной покров 3 в воде 18 на расстоянии друг от друга устанавливают подводные заряды взрывчатого вещества.

После этого осуществляют одновременный подрыв первого заряда с1. Второй заряд, так же как и последующие, подрывают с интервалом времени, равным временем прохождения вершины ИГВ от места подрыва предыдущего подводного заряда.

Заряды 4 представляют собой объемно-детонирующую смесь, которой посредством источника газа 9 и системой подачи и регулирования газа, состоящей из газовых магистралей 10, органов управления и регулирования 11 и газового коллектора 12 заполняют шары 17.

Посредством штатного спуско-подъемного устройства плавсредства 8, например лебедки, спускают за борт кабель-трос 13, одним концом соединенный с воздействующим на ледовое покрытие 3 плавсредством 8, а другим концом через электромагнитный размыкатель 14, соединенный с балластом 15, по длине кабель-троса 13 установлены зажигательные свечи 16, соединенные с шарами 17, заполненными объемно-детонирующей смесью.

После спуска кабель-троса 13 за борт подается сигнал на электромагнитный размыкатель 14 и балласт 15 погружается на дно, освобождая при этом кабель-трос 13 с шарами 14. Под действием подводного течения кабель-трос 13 с шарами 14 располагается вдоль ледового покрова 3. После этого последовательно подаются сигналы на зажигательные свечи 16 и осуществляется последовательный подрыв ледового покрытия.

Предлагаемый способ позволяют исключить нежелательное распространение ледовых образований в направлении размещения морского объекта хозяйственной деятельности. Использование предложенного способа позволит преодолевать более мощные ледовые покрытия, увеличить скорость проводки судов и в конечном счете расширить сроки навигации не только на морях, но и на судоходных реках и озерах, а также обеспечить безопасную эксплуатацию морских объектов хозяйственной деятельности.

Источники информации

1. Патент RU №2326785 С1, 20.06.2008.

2. Патент RU №2213675 С2, 10.10.2003.

3. Патент RU №2085432 С1, 27.07.1997.

4. Авторское свидетельство SU №1820188.

5. Патент RU №2124178.

6. Расенко А. «Кайсар» это ледовый защитник // газета «Астраханские известия», 22.01.2004.

7. Karl-Ulrich Evers, Walter Spring Ice mjdel testing of an exploration platform for shallow waters in the North Caspian sea // 16th International Conference on Port and Ocean Engineering under Frctic Conditions "Ice Engineering Applied to Offshore Regions" (Fugust 12-17, 2001 Ottawa, Ontario, Canada) 2001, p.255-264.

8. Патент на полезную модель RU №79611.

9. Патент RU №2452812 С1, 10.06.2012.

10. Патент RU №2314963 С2, 20.01.2008.

1. Способ разрушения ледяного покрова, включающий установку под лед зарядов взрывчатого вещества и их поочередный подрыв с интервалом времени, равным времени прохождения изгибно-гравитационной волны от места подрыва предыдущего до места подрыва последующего зарядов, в котором дополнительно над ледяным покровом устанавливают заряды взрывчатых веществ и подрывают их одновременно с подрывом зарядов, установленных под ледяным покровом, перед установкой зарядов взрывчатого вещества измеряют скорость и направление ветра, подводных течений и дрейфа ледовых полей, определяют толщину льда, а заряды взрывчатого вещества размещают с формированием направления распространения взрывной волны в противоположные стороны от места нахождения морского объекта хозяйственной деятельности, отличающийся тем, что заряды размещают в водонепроницаемых оболочках, выполненных в виде шара и соединенных с воздействующим на ледовое покрытие плавсредством, посредством кабель - троса, который соединен с шарами, посредством зажигательной свечи, заряды выполнены в виде объемно-детонирующей смеси.

2. Устройство для разрушения ледового покрова, содержащее воздействующее на ледовое покрытие плавсредство, снабженное источником газа и системой подачи его с коллектором, отличающееся тем, что дополнительно содержит кабель-трос, одним концом соединенный с воздействующим на ледовое покрытие плавсредством, а другим концом через электромагнитный размыкатель, соединенный с балластом, по длине кабель-троса установлены зажигательные свечи, соединенные с шарами, заполненными объемно-детонирующей смесью.



 

Похожие патенты:

Изобретение относится к области генерирования воздушной ударной волны в ударных трубах и может быть использовано для испытаний конструкций в ударных трубах на действие воздушной ударной волны.

Изобретение относится к горному делу, а именно к способам искусственного оттаивания мерзлых горных пород, и может быть использовано в горной промышленности, преимущественно при разработке месторождений и в строительстве.
Изобретение относится к области сейсмологии и может быть использовано для защиты промышленных и бытовых объектов от землетрясения. .

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии посредством нагружения льда снизу за счет создания силы плавучести.

Изобретение относится к области судостроения и касается вопроса создания новых разрушающих лед технических средств, работающих в сочетании с буксиром, которые смогут формировать достаточно широкий канал для беспрепятственного движения крупнотоннажных судов во льдах.

Изобретение относится к судам, предназначенным для очистки водной поверхности от льда. Судно для очистки акватории от льда включает корпус с кормовой и носовой оконечностями, энергетическую установку для получения энергии для растапливания льда на борту судна и по меньшей мере две съемных емкости для хранения топлива для упомянутой энергетической установки.

Изобретение относится к гидротехническому строительству, а именно к мероприятиям, обеспечивающим предотвращение наводнений. Способ включает мероприятия по разрушению ледового покрова реки и возведению водоограждающего устройства.

Изобретение относится к гидротехнике, а именно к защите промышленных объектов, линий транспорта, связи, различных сооружений от вредного действия водной стихии, и может быть использовано для разрушения ледового покрова на реках и водоемах.

Изобретение относится к области гидрологии, в частности к регулированию ледового режима рек, а именно к технике проведения работ по ликвидации ледовых заторов на реках, и направлено на предотвращение наводнений, возникающих при заторах.
Изобретение относится к проведению предупредительных работ для предотвращения заторообразования на участке реки и может быть использовано для разупрочнения ледяного покрова в местах подводных коммуникаций.

Изобретение относится к ледотехнике, в частности, к выполнению ледокольных работ судами на воздушной подушке. Во время морского отлива судно на воздушной подушке движется с резонансной скоростью вдоль береговой линии на расстоянии от кромки примерзшего к берегу льда и возбуждает во льду резонансные изгибно-гравитационные волны, при этом судну сообщают поперечные периодические перемещения с амплитудой, не превышающей половину длины волны статического прогиба льда, и частотой, равной частоте резонансных изгибно-гравитационных волн.

Устройство противоледовой защиты для гидротехнического сооружения, расположенного на мелководном континентальном шельфе, включает защитные элементы 2 и закрепляющие элементы, соединяющие защитные элементы с дном акватории.

Изобретение относится к области эксплуатации гидротехнических сооружений, работающих в ледовых условиях, и предназначено для предотвращения обледенения подводной части сооружений в водоемах.
Изобретение относится к области судостроения и касается эксплуатации судов в ледовых условиях. Предложен способ движения судна во льдах, включающий создание упора при помощи движителя судна и воздействие его корпуса на массив льда с дополнительным созданием разрежения в воде путем ее забора и откачки из зоны в оконечности корпуса, в направлении которой производится движение судна, при этом откачку воды осуществляют движителем судна или его средством активного управления.

Изобретение относится к области судостроения, в частности к конструкциям кормовых оконечностей судов ледового плавания. Предложена кормовая оконечность судна ледового плавания, содержащая ледорезный выступ, жестко закрепленный на ахтерштевне в диаметральной плоскости судна и расположенный позади пера руля по ходу движения судна.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии посредством нагружения льда снизу за счет создания силы плавучести.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии. Предложено устройство для разрушения ледяного покрова, состоящее из подводного судна, оснащенного балластными цистернами, за счет осушения которых создаются дифферент на корму и сила плавучести.

Изобретение относится к области судостроения, более конкретно - к ледокольным судам и буксирам, предназначенным для эксплуатации во льдах в условиях мелководных акваторий.
Наверх