Труба нефтяного сортамента хладостойкая



Труба нефтяного сортамента хладостойкая
Труба нефтяного сортамента хладостойкая
Труба нефтяного сортамента хладостойкая
Труба нефтяного сортамента хладостойкая

 


Владельцы патента RU 2552794:

Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") (RU)

Изобретение относится к области металлургии, а именно к конструкционным хладостойким сталям, используемым для изготовления труб нефтяного сортамента, в частности для добычи нефти и газа, которые могут эксплуатироваться как в обычных условиях, так и в условиях макроклиматического холода при снижении температуры до минус 60°C. Труба выполнена из подвергнутой закалке и отпуску стали, содержащей углерод, кремний, марганец, алюминий, серу, фосфор, хром, никель, медь, азот, железо и неизбежные примеси, при следующем соотношении компонентов, мас.%: углерод 0,28-0,34, кремний 0,15-0,37, марганец 0,90-1,20, алюминий 0,02-0,05, сера не более 0,010, фосфор не более 0,015, хром не более 0,25, никель не более 0,25, медь не более 0,25, азот не более 0,012, железо и неизбежные примеси, в том числе ванадий, молибден и титан остальное. Труба имеет предел прочности 900 МПа или менее, предел текучести 830 МПа или менее, сопротивление ударным нагрузкам при 0°С не менее 41 Дж и ударную вязкость при -60°С не менее 70 Дж/см2. 2 ил., 3 табл.

 

Изобретение относится к области металлургии, а именно к конструкционным сталям, используемым при изготовлении труб для добычи нефти и газа, например насосно-компрессорных, которые могут эксплуатироваться как в обычных условиях, так и в условиях макроклиматического холода при снижении температуры до минус 60°C.

Известны низкоуглеродистые марганцовистые стали в хладостойком исполнении со следующими составами (масс.%): углерод 0,09-0,12; кремний 0,20-0,35; марганец 0,90-1,35; молибден 0,01-0,10; никель 1,5-2,0; алюминий 0,020-0,045; церий 0,005-0,010; цирконий 0,005-0,010; сера 0,001-0,008; фосфор 0,001-0,008 [пат. РФ №2233348, опубл. 27.07.2004] и углерод 0,08-0,12; кремний 0,40-0,80; марганец 0,90-1,20; хром 0,01-0,50; молибден 0,20-0,35; никель 0,30-0,90; церий 0,01-0,02; кальций 0,005-0,050; сера не более 0,020; фосфор не более 0,020 [пат. РФ 2340698, опубл. 10.12.2008].

Недостатком данных составов является низкий уровень прочностных свойств (предел прочности (σв) не более 600 МПа и предел текучести (σт) не более 480 МПа) после закалки с отпуском, что не позволяет их применять для труб нефтяного сортамента, подвергающихся значительным растягивающим нагрузкам на протяжении всего срока эксплуатации.

Наиболее близкой к заявляемому изобретению является марганцовистая сталь по ГОСТ 4543-71, имеющая следующее соотношение компонентов (масс.%):

углерод 0,26-0,39;

кремний 0,17-0,37;

марганец 1,40-1,80;

сера не более 0,035;

фосфор не более 0,035;

хром не более 0,30;

никель не более 0,30;

медь не более 0,30;

железо остальное.

Известно применение марганцовистой стали по ГОСТ 4543-71 в качестве материала для изготовления труб нефтяного сортамента группы прочности Е по ГОСТ 633-80, ГОСТ 632-80 по схеме закалки с отпуском [Черная металлургия. Бюл. НТИ №16. 1985 г. с.11-28; заявка на изобретение №2007103426 от 10.08.2008, Бюл. №22].

Недостатком данного состава является то, что хладостойкость, оцениваемая по величине ударной вязкости при температуре испытания минус 60°С (KCV-60), в высокопрочном состоянии (σв не менее 690 МПа и σт не менее 552 МПа) после закалки с отпуском не удовлетворяет требованиям международного стандарта API 5СТ.

Кроме того, марганец в количестве более 1,20% оказывает отрицательное влияние на однородность микроструктуры по сечению за счет его склонности к дендритной ликвации в литом металле, которая приводит к химической неоднородности исходного аустенита и при термической обработке (закалке с отпуском) к формированию выраженной феррито-карбидной полосчатости. Участки микроструктуры, обогащенной карбидной фазой, обладают низкой энергоемкостью и увеличивают скорость разрушения металла, особенно в высокопрочном состоянии и при воздействии пониженных температур.

Технической задачей, на решение которой направлено заявляемое изобретение, является создание марганцовистой хладостойкой стали с повышенной конструктивной прочностью в условиях пониженных температур (от 0°С до минус 60°С).

Технический результат, обеспечиваемый при реализации заявляемого изобретения, выражается в том, что при достижении максимальных показателей предела прочности 900 МПа и предела текучести 830 МПа сопротивление металла ударным нагрузкам удовлетворяет требованиям международного стандарта API 5СТ при пониженной температуре 0°С (работа удара не менее 41 Дж) и требованиям хладостойкого исполнения (ударная вязкость не менее 70 Дж/см2 при снижении температуры до минус 60°С).

Указанный результат достигается тем, что в известном составе марганцовистой стали, содержащей углерод, кремний, марганец, железо и неизбежные примеси, снижено содержание марганца (ниже критической величины проявления ликвации) и вредных примесей неметаллов при следующем соотношении компонентов (масс.%):

углерод 0,28-0,34;

кремний 0,15-0,37;

марганец 0,90-1,20;

алюминий 0,02-0,05;

сера не более 0,010;

фосфор не более 0,015;

хром не более 0,25;

никель не более 0,25;

медь не более 0,25;

азот не более 0,012;

остаточные примеси (V, Mo, Ti) и железо остальное.

Технический результат, обеспечиваемый за счет выбранного содержания отдельных химических элементов в стали, определяется следующими факторами.

Углерод (0,28-0,34) вводится для достижения прочностных свойств, верхнее предельное содержание 0,34% регламентировано во избежание образования закалочных трещин при охлаждении в воде.

Марганец (0,90-1,20) обеспечивает упрочнение стали за счет повышения устойчивости переохлажденного аустенита, не снижая при этом вязкопластических свойств, и дает эффект раскисления стали. При содержании марганца более 1,20% ярко выражена ликвация марганца и ухудшение хладостойкости.

Ограничения серы (не более 0,010) и фосфора (не более 0,015) строго регламентированы для минимизации их отрицательного влияния на стойкости стали против хрупкого разрушения по причине образования сегрегации по границам зерен аустенита.

Хром, никель и медь (не более 0,25 каждого) являются неизбежными примесями в стали, в особенности в результате использования скрап-процесса при производстве стали. Содержание хрома, никеля и меди в количестве до 0,25% каждого дополнительно упрочняет сталь за счет того, что перлитное и бейнитное превращения по диаграмме распада переохлажденного аустенита сдвигаются в область более низких температур.

В условиях Синарского трубного завода были изготовлены трубы из известной, принятой за прототип, и предлагаемой в изобретении стали с оценкой особенностей микроструктуры, уровня механических свойств и хладостойкости. Результаты приведены в таблицах: 1 - варианты химического состава, 2 - механические свойства, 3 - испытания на ударный изгиб и на рисунках: 1 - микроструктура металла после закалки с отпуском, 2 - поверхность разрушения образцов после испытаний на ударный изгиб.

В результате комплексных исследований труб из известной, принятой за прототип, и предлагаемой в изобретении стали после закалки с отпуском установлено следующее:

1) при одном уровне прочностных свойств неудовлетворительная хладостойкость, оцениваемая по величине ударной вязкости при температуре испытания минус 60°С (KCV-60 не менее 70 Дж/см2), сопровождается наличием повышенной неоднородности микроструктуры металла, представляющей собой феррито-карбидную полосчатость в виде светло- и темнотравящихся полос (травление шлифа для выявления микроструктуры в 2-4% растворе азотной кислоты в этиловом спирте). Тип микроструктуры - сорбит отпуска;

2) формирование неоднородной микроструктуры металла обусловлено химической неоднородностью по содержанию марганца вследствие его склонности к дендритной ликвации в литом металле, так соотношение содержания марганца в светло- (Mnсв) и темнотравящихся (Mnтем) полосах сорбита отпуска составляет в среднем 1,38 (Mnсв/Mnтем=1,25…1,51) по данным микрорентгеноспектрального анализа химического состава, то есть разница содержания марганца в различных участках объема металла оценивается до 1,5 раз на образцах с неудовлетворительной хладостойкостью (KCV-60 не менее 70 Дж/см2);

3) поверхность излома образцов после испытаний на ударный изгиб с неудовлетворительной хладостойкостью (KCV-60 не менее 70 Дж/см2) практически полностью образовалась в результате хрупкого разрушения по механизму квазискола. В зоне квазискола присутствуют отдельные элементы вязкого разрушения - гребни отрыва имеющие ямочное строение.

Таким образом, достигаемый уровень прочностных свойств и хладостойкости труб из предлагаемой стали делают эффективным ее использование после закалки с отпуском в соответствии с международным API Spec 5СТ и другими стандартами, которые содержат требования к величине сопротивления металла ударным нагрузкам при температурах 0°С и ниже, а также для эксплуатации в условиях макроклиматического холода при снижении температуры до минус 60°С.

Кроме того, преимуществом заявляемого изобретения является более низкая себестоимость металла по сравнению с прототипом за счет снижения содержания основного легирующего элемента (марганца).

Таблица 1
Варианты химического состава
Состав стали Массовая доля элементов, %
C Si Mn Cr Cu Ni S P A1 N
Труба из предлагаемой стали 1 0,33 0,23 1,16 0,10 0,14 0,11 0,002 0,007 0,02 0,008
2 0,30 0,22 1,05 0,08 0,20 0,13 0,005 0,009 0,02 0,007
Труба из стали по прототипу (ГОСТ 4543-71) 0,34 0,25 1,45 0,16 0,18 0,15 0,011 0,019 - -

Труба нефтяного сортамента, выполненная из подвергнутой закалке и отпуску стали, содержащей углерод, кремний, марганец, алюминий, серу, фосфор, хром, никель, медь, азот, железо и неизбежные примеси, отличающаяся тем, что она выполнена из стали, содержащей компоненты в следующем соотношении, мас.%:

углерод 0,28-0,34
кремний 0,15-0,37
марганец 0,90-1,20
алюминий 0,02-0,05
сера не более 0,010
фосфор не более 0,015
хром не более 0,25
никель не более 0,25
медь не более 0,25
азот не более 0,012
железо и неизбежные примеси, в том числе
ванадий, молибден и титан остальное,

при этом она имеет предел прочности 900 МПа или менее, предел текучести 830 МПа или менее, сопротивление ударным нагрузкам при 0°С не менее 41 Дж и ударную вязкость при -60°С не менее 70 Дж/см2.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к получению высокопрочного холоднокатаного стального листа, используемого в автомобилестроении. Лист изготовлен из стали, содержащей в мас.%: C: 0,02-0,20, Mn: 0,01-4,0, P: 0,001-0,15, S: 0,0005-0,03, N: 0,0005-0,01, O: 0,0005-0,01, Al и Si в количествах не менее 0,001, причем суммарное содержание Si+Al составляет меньше 1,0%, остальное составляют железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к получению нетекстурированной электротехнической листовой стали. Получают сляб из стали, имеющей химический состав, мас.%: С<0,005, Si от 1,2 до 2,2, Mn от 0,2 до 0,4, Р<0,2, S<0,005, Al от 0,2 до 0,6, N<0,005, O<0,005, Fe и неизбежные примеси - остальное, путем выплавки в конвертере, предварительной обработки горячего металла путем циркуляционного рафинирования и непрерывного литья, при этом контролируют количество охлаждающей воды на вторичном охлаждении с обеспечением ее расхода на уровне 100-190 л/мин, а средний уровень перегрева жидкой стали в процессе непрерывного литья контролируют на уровне 10-45°C.

Изобретение относится к получению стальной проволоки, имеющей повышенные магнитные характеристики, для применения в трансформаторах, транспортных средствах, электрических или электронных изделиях.

Высокопрочный холоднокатаный стальной лист с низкой плоскостной анизотропией предела ΔYPL, составляющей 0,03 или менее. Лист выполнен из стали, содержащей, мас.%: C: 0,06-0,12%, Si: 0,7% или менее, Mn: 1,2-2,6%, P: 0,020% или менее; S: 0,03% или менее; sol.Al: 0,01-0,5%; N: 0,005% или менее, по меньшей мере один из Cr: 0,5 или менее, и Mo: 0,5 или менее, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к созданию высокопрочного холоднокатаного стального листа, обладающего превосходной формуемостью и формуемостью при раздаче отверстия.
Изобретение относится к области металлургии, а именно к получению холоднокатаного стального листа, используемого в автомобилестроении, конструкциях зданий, мебели, приборных щитах, бытовой электронике.
Изобретение относится к области металлургии, а именно к проволоке из высокоуглеродистой стали. Проволока выполнена из стали, содержащей, мас.%: С: 0,70%-1,20%, Si: 0,1%-1,5%, Мn: 0,1%-1,5%, Р: 0,015% или меньше (не включая 0%), S: 0,015% или меньше (не включая 0%), Аl: 0,005% или меньше (не включая 0%), В: 0,0005%-0,010%, N: 0,002%-0,005%, и N в твердом растворе: 0,0015% или меньше (включая 0%), железо и неизбежные примеси - остальное.
Изобретение относится к области металлургии, в частности к производству холоднокатаной полосы с высокими вытяжными свойствами для холодной штамповки, применяемой в автомобилестроении.

Изобретение относится к области металлургии, а именно к получению высокопрочного, высоковязкого тонкого стального прутка, используемого для получения изделий, требующих высокой прочности и вязкости.

Изобретение относится к стальным плитам, используемым для изготовления сварных конструкций, таких как трубопроводы, мосты и архитектурные сооружения, которым необходима структурная безопасность.

Изобретение относится к области металлургии. Для повышения механической прочности и обеспечения предела упругости более 1300 МПа полуфабрикат из стали содержит, мас.%: 0,15≤C≤0,40, 1,5≤Mn≤3, 0,005≤Si≤2, 0,005≤Al≤0,1, S≤0,05, P≤0,1, 0,025≤Nb≤0,1 и необязательно: 0,01≤Ti≤0,1, 0≤Сr≤4, 0≤Мо≤2, 0,0005≤В≤0,005, 0,0005≤Ca≤0,005, остальное железо и неизбежные примеси нагревают до температуры T1, составляющей от 1050° до 1250°C, затем производят черновую прокатку при температуре T2, составляющей от 1050° до 1150°C, с общим коэффициентом обжатия εa более 100% с получением листа с не полностью рекристаллизованной аустенитной структурой со средним размером зерна менее 40 микрометров.

Изобретение относится к методу изготовления изделий из аустенитной легкой конструкционной стали с изменяемыми в направлении толщины стенки изделия свойствами материала с составом в вес.%: С от 0,2 до≤1,0, Аl от 0,05 до<15,0, Si от 0,05 до ≤6,0, Мn от 9,0 до<30,0, остальное - железо и неизбежные примеси с добавлением по необходимости Cr≤6,5, Cu≤4,0, Ti+Zr≤0,7, Nb+V≤0,5, В≤0,1.

Высокопрочный холоднокатаный стальной лист с низкой плоскостной анизотропией предела ΔYPL, составляющей 0,03 или менее. Лист выполнен из стали, содержащей, мас.%: C: 0,06-0,12%, Si: 0,7% или менее, Mn: 1,2-2,6%, P: 0,020% или менее; S: 0,03% или менее; sol.Al: 0,01-0,5%; N: 0,005% или менее, по меньшей мере один из Cr: 0,5 или менее, и Mo: 0,5 или менее, остальное Fe и неизбежные примеси.

Изобретение относится к производству профилированной проволоки из низколегированной углеродистой стали, предназначенной для использования в качестве компонента в гибких трубах для морской нефтедобычи.

Изобретение относится к области металлургии, а именно к созданию высокопрочного холоднокатаного стального листа, обладающего превосходной формуемостью и формуемостью при раздаче отверстия.

Изобретение относится к области термомеханической обработки для изготовления стального проката с требуемыми свойствами. Для обеспечения требуемого уровня потребительских свойств металлопроката получают заготовку из стали, содержащей, мас.%: C 0,05-0,18, Si 0,05-0,6, Mn 1,30-2,05, S не более 0,015, P не более 0,020, Cr 0,02-0,35, Ni 0,02-0,45, Cu 0,05-0,30, Ti не более 0,050, Nb 0,010-0,100, V не более 0,120, N не более 0,012, Al не более 0,050, Mo не более 0,45, железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к гальванизированной листовой стали с пределом прочности на растяжение 770 МПа или более, применяемой в автомобилестроении и строительстве и состоящей из участка листовой стали, слоя покрытия, образованного на поверхности участка листовой стали, мягкого слоя, непосредственно прилегающего к границе раздела со слоем покрытия, и внутреннего слоя, отличающегося от мягкого слоя.

Изобретение относится к термической обработке доэвтектоидных низколегированных сталей. Для обеспечения диспергированной структуры и ее композиционной гетерогенизации с формированием наноразмерных фрагментов, позволяющих получить высокие и стабильные механические свойства, заготовку из стали, содержащую С 0,15-0,25 мас.% и Mn 1,2-1,7 мас.%, нагревают до полной аустенитизации структуры, затем проводят ее охлаждение в печи до температуры выдержки 735-740°C или на воздухе до комнатной температуры с последующим нагревом до температуры выдержки 735-740°C, при этом выдержку осуществляют для формирования двухфазной аустенитно-ферритной структуры, а охлаждение после выдержки ведут со скоростью, обеспечивающей неполное мартенситное превращение аустенита и формирование многофазной микроструктуры, после чего проводят высокотемпературный отпуск-старение при 550°C в течение 2-2,5 часов.

Изобретение относится к области производства материалов для броневых изделий и конструкций, подвергающихся воздействию динамических нагрузок. Способ производства листовой стали включает сварку взрывом тыльного и лицевого слоев стали.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листового изделия и обеспечения хорошей свариваемости осуществляют предварительное покрытие стальной полосы или листа алюминием, или алюминиевым сплавом, резку указанной стального листа или полосы с предварительным покрытием для получения стальной заготовки с предварительным покрытием, нагрев заготовки в предварительно нагретой печи до температуры и в течение времени согласно диаграмме в соответствии с толщиной заготовки при средней скорости нагрева Vc в температурном диапазоне от 20 до 700°C, составляющей от 4 до 12°C/с и при скорости нагрева Vc' в температурном диапазоне от 500 до 700°C, составляющей от 1,5 до 6°C/с, затем перемещение указанной нагретой заготовки к штамповочному прессу, горячую штамповку нагретой заготовки в штамповочном прессе для получения горячештампованного стального листового изделия, охлаждение нагретой заготовки от температуры на выходе из печи до температуры 400°C при средней скорости охлаждения, по меньшей мере, 30°C/с.

Изобретение относится к области металлургии. Для обеспечения высоких механических свойств, хорошей способности к пластической деформации и высокой стойкости к коррозии осуществляют выплавку листа из стали, содержащей, мас.%: 0,6≤С≤0,9, 17≤Mn≤22, 0,2≤Al≤0,9%, 0,2≤Si≤1,1, при условии 0,85≤Al+Si≤1,9, 1,2≤Cu≤1,9, S≤0,030, P≤0,080, N≤0,1, при необходимости: Nb≤0,25, предпочтительно 0,070-0,25, V≤0,5, предпочтительно 0,050-0,5, Ti≤0,5, предпочтительно 0,040-0,5, Ni≤2, следы≤Cr≤2, предпочтительно≤1, B≤0,010, предпочтительно 0,0005-0,010, железо и неизбежные примеси - остальное, её отливку в виде сляба, нагрев сляба до температуры 1100-1300°C, горячую прокатку сляба с температурой конца прокатки по меньшей мере 890°C, быстрое охлаждение горячекатаного листа со скоростью не менее 40°C/с с выдержкой между окончанием прокатки и началом охлаждения, проводимой таким образом, чтобы точка, заданная упомянутой выдержкой и температурой конца прокатки, располагалась внутри участка, определяемого диаграммой ABCD'E'F'A, предпочтительно ABCDEFA, на фиг.1, при этом во время выдержки лист естественно охлаждают на воздухе, смотку листа в рулон при температуре менее или равной 580°C. Рулон горячекатаного листа разматывают и проводят по меньшей мере один цикл холодной прокатки с отжигом для получения холоднокатаного листа. Горячекатаный или холоднокатаный лист применяют в автомобильной промышленности. 3 н. и 10 з.п. ф-лы, 2 табл., 1 ил.
Наверх