Сплав для соединения монокристалла алмаза с металлами

Изобретение относится к порошковой металлургии, в частности к сплавам для соединения кристаллов алмаза с металлами группы железа и сплавами на их основе, и может найти применение для изготовления одно- и многокристального алмазного инструмента. Состав сплава припоя содержит, в мас.%: 51,8-58,2 меди, 16,8-23,2 олова, 16,8-23,2 титана, 3,2-9,5 молибдена. Отсутствие в составе припоя серебра и низкая температура пайки существенно снижают риск возникновения микротрещин и разупрочнения кристаллов алмаза при пайке. 1 пр., 1 табл., 1 ил.

 

Область, к которой относится изобретение

Изобретение относится к порошковой металлургии, в частности к припоям для закрепления кристаллов алмаза с металлами группы железа и сплавами на их основе, и может найти применение для изготовления одно- и многокристального алмазного инструмента.

Уровень техники

Известен состав припоя для пайки монокристаллов синтетического алмаза с металлическими проводниками, содержащий медь, олово, титан, серебро в соотношении (1-1,5):(1,05-1,5):(1,05-1,5):(2-2,5), что соответствует следующим мас.% [1]:

медь 16,50-24,25
олово 17,35-24,25
титан 17,35-24,25
серебро 34,00-41,25

Данный припой используется для получения омических контактов при помощи лазерной сварки тонких токопроводящих металлических проводов с полупроводниковым монокристаллом алмаза. Недостатком указанного припоя является недостаточная твердость и низкая механическая прочность соединения. Механическая прочность омического соединения на отрыв не превышает 0,04 кг на один контакт.

Известны припой и способ пайки алмаза на металлическую подложку с помощью этого припоя [2]. В качестве основных компонентов припоя используют золото или серебро и медь. Кроме того, припой содержит 0,001-5% ванадия, предпочтительно не более 2%. В процессе пайки происходит направленная кристаллизация припоя со стороны алмаза на поверхность соединения алмаза с подложкой, образуется карбид ванадия, который улучшает соединение паяного соединения. Припой позволяет повысить прочность соединения алмаза с подложкой, предотвращает коррозию паяного соединения и улучшает внешний вид паяного изделия. Однако использование в качестве основных компонентов золота и серебра значительно удорожает припой.

Наиболее близким аналогом изобретения по совокупности существенных признаков является припой, содержащий серебро, медь, олово, титан, карбид титана и карбид кремния при следующем соотношении компонентов, мас.% [3]:

медь 14,4-18,4
олово 14,4-18,4
титан 14,4-18,4
карбид титана 4,5-15,6
карбид кремния 0,3-0,7
серебро 38,0-43,0

при соотношении серебра, меди, олова и титана 3,1:1,2:1,2:1,2. Включение в состав известного припоя карбида титана в количестве 4,5-15,6% и карбида кремния в количестве 0,3-0,7% при вышеуказанном соотношении остальных компонентов повышает механическую прочность закрепления монокристалла алмаза с металлами до уровня, обеспечивающего возможность создания однокристального инструмента. С применением данного припоя изготовлено и испытано однокристальное алмазное сверло. Пайка монокристалла алмаза к корпусу инструмента из стали марки P6 осуществлялась в условиях вакуума (10-3 мм рт.ст.) или инертной среды (аргон) при температурах 1050-1150°C. Прочность соединения монокристалла алмаза со стальным корпусом сверла определялась косвенным методом - путем измерения суммарной длины просверленных отверстий в кристаллическом кварце для сверл диаметром 0,4-0,5 мм. Недостатком известного состава припоя является наличие в нем дорогостоящего компонента - серебра, а также высокая температура пайки или спекания сплава, что может вызвать образование микротрещин и разупрочнение кристаллов алмаза в особенности синтетических, менее термостойких по сравнению с природными алмазами.

Задачей предлагаемого изобретения является исключение из состава припоя дорогостоящего компонента-серебра и снижение температуры пайки-спекания без снижения механической прочности соединения монокристалла алмаза с металлами. Отсутствие в составе припоя серебра и низкая температура пайки-спекания удешевляют пайку кристаллов алмаза к металлу за счет снижения цены состава припоя и экономии энергии, затрачиваемой на операцию пайки-спекания. Кроме того, низкая температура пайки-спекания существенно снижает риск образования микротрещин и разупрочнения монокристаллов алмаза при спекании.

Технический результат достигается тем, что припой, содержащий медь, олово, титан, дополнительно содержит молибден при следующем соотношении компонентов, мас.%:

медь 53,0-59,5
олово 14,25-22,75
титан 14,25-22,75
молибден 3,5-8,5

Известно, что медь и олово, как и серебро, в чистом виде слабо взаимодействуют с углеродом алмаза и не являются карбидообразующими металлами, расплавы этих металлов не смачивают поверхность алмаза и слабо адгезируют к его поверхности [4]. При жидкофазном спекании-пайке в вакууме (10-3 мм рт.ст.), начиная с температуры 700°C, титан в сплаве меди (53,0-59,5 мас.%) с оловом (14,25-22,75 мас.%) интенсивно взаимодействует с углеродом алмаза, частично растворяя углерод и образуя прочную карбидную фазу, и обеспечивает растекание и сильную адгезию состава припоя на твердой поверхности алмаза. Тем самым титан, помимо алмазоудержания за счет образования химической связи в контактной зоне алмаз-металл, способствует механическому зацеплению состава припоя с неровностями поверхности алмаза на атомном уровне. Олово в количестве 14,25-22,75 мас.% вводится для снижения температуры спекания и увеличения жидкотекучести сплава. Содержание олова ниже 14,25 мас.%) недостаточно для снижения температуры пайки-спекания припоя до 900°C. При содержании олова в сплаве свыше 22,75% идет образование хрупких фаз в областях, обогащенных медью, то есть сплав охрупчивается в зоне контакта.

Молибден в количестве 3,5-8,5 мас.% вводится в состав припоя в качестве легирующей добавки для повышения твердости и механической прочности сплава. Кроме того, молибден обеспечивает частичное связывание растворенного в припой свободного углерода алмаза с образованием карбида и тем самым препятствует интенсивной графитизации алмаза в межфазной области алмаз-расплав. Содержание молибдена в припое в количестве ниже минимального значения указанного диапазона недостаточно для эффективного упрочнения состава припоя и его влияние на структуру и свойства припоя незначительно. При содержании более 8,5 мас.% молибден охрупчивает припой и приводит к снижению прочностных характеристик сплава, а также требует повышения температуры пайки или спекания.

Краткое описание чертежей

На фиг.1 приведена схема определения прочности контакта алмаз-металл при испытаниях на сдвиг.

Пример осуществления способа

Готовят шихту из порошков меди марки ПМС-ЦГОСТ 4960-75), олова марки ПО1 (ГОСТ 9723-73), титана марки ПТЭС (ТУ-48102279) и молибдена марки МП4 (ТУ-481931680). Смешивание компонентов шихты проводили в лабораторной шаровой вибрационной мельнице при соотношении массы шаров и шихты 10:1 в течение 6-8 ч. Приготовленная шихта с различными соотношениями ее компонент использовалась для пайки-спекания монокристаллов алмаза 1 к металлическим стержням-держателям 2, изготовленным из марки стали-20 (ГОСТ 1050-88), в условиях вакуума (10-3 мм рт.ст.) при температурах 845-900°C (см. Фиг.1). Перед пайкой-спеканием приготовленная шихта сначала пластифицировалась органическим клеем, выгорающим при температуре 400°C. Затем пластифицированная шихта наносилась на плоский торец стержня-держателя 2, на которую устанавливался монокристалл алмаза 1. Для пайки использовались предварительно отобранные без видимых дефектов под 10X лупой природные кристаллы алмазов 1 изометрической формы весом 0,18-0,30 карат. Поверхность алмазов не подвергалась механической обработке. В процессе пайки-спекания в вакуумной печи монокристалл алмаза 1 удерживается в заданном положении с помощью специального устройства-приспособления (на фиг.1 не показано), при этом осуществляется соединение пары алмаз-металл за счет галтели припоя 3.

Авторами проведены экспериментальные исследования по определению прочности контакта алмаз-металл путем прямых механических испытаний для образцов монокристалла алмазов, подпаянных к стальным стержням-держателям с использованием заявленного состава припоя и припоя-прототипа, описанного в патенте РФ [3]. Испытания образцов для определения прочности контакта алмаз-металл на сдвиг (по 8 штук каждого состава припоя) осуществлялись при комнатной температуре с применением разрывной машины UTS-20K по схеме, приведенной на фиг.1. Стержень-держатель 2 с монокристаллом алмаза 1 закреплялся на опоре 5, установленной на нижней станине машины. Скорость ножа машины 4 при нагружении образцов составляла 2 мм/мин. При прямых механических испытаниях измеряются усилие разрушения контакта F (H) и площадь поверхности S (м2), возникшей по границе алмаз-металл. При этом прочность контакта алмазоудержания припоя σотр. (МПа) вычисляется по формуле σотр.=F/S. Результаты испытаний и соотношение компонентов состава припоя приведены в таблице 1. В таблице представлены значения механической прочности контакта алмаз-металл, усредненные по результатам 8 измерений для каждого состава припоя. Как видно из таблицы 1, прочность при сдвиге контакта алмаз-металл, изготовленного с использованием заявленного состава припоя, лежит в интервале 181,3-211,2 МПа, что по порядку величины сравнима с прочностью контакта, полученного с применением известного состава припоя - прототипа.

Таким образом, предложенный состав припоя обеспечивает высокую механическую прочность контакта алмаз-металл, равную 181,3-211,2 МПа, при температуре пайки-спекания в интервале 845-900°C.

Таблица 1
Состав сплава, мас.% Температура пайки-спекания, °C Прочность контакта при сдвиге, МПа
Cu Sn Ti Mo
53,0 21,75 21,75 3,5 845 197,4
56,0 19,5 19,5 5,0 870 211,2
59,0 16,25 16,25 8,5 900 181,3
Прототип
Cu Sn Ti Ag TiC SiC
15,96 15,96 15,96 40,0 11,52 0,6 1100 210,8

Использованные источники

[1] - Патент РФ №2084032, класс H01C 13/00, приоритет от 05.07.1994 г., опубл. 10.07.1997 г.;

[2] - Патент США №6889890, класс B23K 31/02, приоритет от 10.02.2002 г., опубл. 18.06.2006 г. №;

[3] - Патент РФ №2270743, класс B23K 35/28, B23K 35/30, приоритет от 14.02.2002 г., опубл. 27.08.2003 г.;

[4] - Найдич Ю.В., Колесниченко Г.А. // Взаимодействие металлических расплавов с поверхностью алмаза и графита. - Киев: Науково думка, 1967 - С.29-35.

Припой для соединения монокристаллов алмаза с металлами группы железа и сплавами на их основе, содержащий медь, олово, титан, отличающийся тем, что он дополнительно содержит молибден при следующем соотношении компонентов, мас.%:

медь 51,8-58,2
олово 16,8-23,2
титан 16,8-23,2
молибден 3,2-9,5



 

Похожие патенты:
Изобретение относится к области металлургии и касается составов сплавов на основе меди, которые могут быть использованы для изготовления монет. Сплав для изготовления монет содержит, мас.%: никель 7,0-13,0; серебро 17,0-23,0; олово 17,0-23,0; индий 5,0-7,0; медь 40,0-48,0.

Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам для газотермического напыления. Может использоваться в машиностроении при производстве, модернизации и ремонте подшипников скольжения.

Изобретение относится к сплавам на основе меди, в частности к медным сплавам, легко обрабатываемым точением, резкой или фрезерованием, и может быть использовано для изготовления соединителей, электромеханических или микромеханических деталей.
Изобретение относится к области металлургии, а именно к составам сплавов на основе меди, которые могут быть использованы для изготовления монет, бижутерии. Сплав на основе меди содержит, мас.%: медь 50,0-54,0; серебро 20,0-25,0; золото 2,0-3,0; галлий 10,0-13,0; олово 10,0-13,0.
Изобретение относится к области металлургии и касается составов сплавов на основе меди, которые могут быть использованы для изготовления бижутерии, наградных знаков, монет.

Изобретение относится к медно-оловянным сплавам и может быть использовано для соединительных элементов в электронике и электротехнике. .
Изобретение относится к области металлургии, а именно к составам сплавов на основе меди, которые могут быть использованы для изготовления монет, деталей перьевых ручек, бижутерии.
Изобретение относится к порошковой металлургии, в частности к порошковым композиционным материалам на основе меди. .
Изобретение относится к металлургии цветных металлов и сплавов и может быть использовано при производстве колокольной литейной продукции судового, церковного и сувенирного назначения.
Изобретение относится к цветной металлургии и может быть использовано в машиностроении. .

Изобретение относится к порошковой металлургии, в частности к получению алмазных абразивных инструментов. Композиционный алмазосодержащий материал содержит, мас.%: технический порошок алмазов зернистостью 315/250 мкм - 5,0-7,0; ультрадисперсный порошок алмазов зернистостью 2/0 мкм - 1,0-3,0; олово - 18,0-20,0; медь - остальное.

Изобретение относится к порошковой металлургии, в частности к изготовлению алмазной буровой коронки методом пропитки. Разовую графитовую пресс-форму изготавливают со сквозными отверстиями, формы и размеры которых соответствуют нижней проекции сечения секторов матрицы коронки, при укладке алмазов, загрузке, формовании и прессовании шихты матрицы под графитовую пресс-форму помещают основание, верхняя поверхность которого повторяет профиль поверхности нижней части секторов матрицы, при спекании в вакуумной печи основание удаляют, при этом под каждым сектором матрицы коронки располагают таблетки из пропитываемого металла или сплава так, чтобы пропитка происходила снизу вверх.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении инструментов для резания и шлифования строительных материалов. Абразивное изделие содержит основание и абразивную деталь, включающую три различные фазы, связанные одна с другой и включающие абразивные частицы, металлическую матрицу и пропитывающий материал.

Изобретение относится к порошковой металлургии, к способам получения композиционных материалов и может быть использовано в качестве связок при изготовлении режущего инструмента со сверхтвердым материалом.

Изобретение относится к порошковой металлургии, к способам получения композиционных материалов и может быть использовано в качестве связок при изготовлении режущего инструмента со сверхтвердым материалом для стройиндустрии и машиностроения.
Изобретение относится к области инструментального производства и, в частности, к изготовлению режущих элементов, изготавливаемых из сверхтвердых материалов, таких как алмазы и кубический нитрид бора.

Изобретение относится к порошковой металлургии, в частности к получению алмазометаллических композитов на основе железоуглеродистого связующего. .
Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивного инструмента из сверхтвердых материалов (алмаза, нитрида бора) на металлической связке.
Изобретение относится к порошковой металлургии, в частности к получению алмазометаллических композитов. .
Изобретение относится к области получения алмазных композиционных материалов (композитов), состоящих из плотной массы кристаллов алмаза, связанных связующим материалом.
Изобретение может быть использовано при контактной сварке оцинкованных сталей. Композиционный материал содержит компоненты в следующем соотношении, мас.%: титан 0,2-1,1, углерод 0,05-0,20, медь - остальное.

Изобретение относится к порошковой металлургии, в частности к сплавам для соединения кристаллов алмаза с металлами группы железа и сплавами на их основе, и может найти применение для изготовления одно- и многокристального алмазного инструмента. Состав сплава припоя содержит, в мас.: 51,8-58,2 меди, 16,8-23,2 олова, 16,8-23,2 титана, 3,2-9,5 молибдена. Отсутствие в составе припоя серебра и низкая температура пайки существенно снижают риск возникновения микротрещин и разупрочнения кристаллов алмаза при пайке. 1 пр., 1 табл., 1 ил.

Наверх