Устройство для испытаний электронных плат на механические воздействия

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной механизм, измерительный щуп и индикатор. Силовой каркас выполнен из четырех опорных стоек, соединенных стержнями по периметру, причем к двум противоположным стержням крепятся поперечины с установленными на них креплениями для ЭП, с возможностью перемещения ЭП вдоль параллельных стержней и вдоль поперечен. Над ЭП на опорные стойки размещен кондуктор, выполненный из кольца с верхней и нижней сетками, в ячейки которых установлены инденторы до упора в поверхность платы. Над кондуктором на опорные стойки закреплен нажимной механизм, состоящий из крестовины с плитой, а измерительный щуп и индикатор зафиксированы в подвесной узел на поперечинах под ЭП. Количество точек установки инденторов определяется по формулам. Технический результат: разработка простого нагрузочного устройства для испытаний на механические воздействия ЭП. 1 з.п. ф-лы, 7 ил.

 

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении).

При эксплуатации приборов в составе различных машин и оборудования (например, космических аппаратов) ЭП с электрорадиоэлементами подвергаются различного вида внешним воздействующим факторам: механическим, климатическим, ионизационному излучению и т.д. К механическим воздействиям относят: статические, вибрационные, линейные, ударные нагрузки и акустический шум. Изделия, предназначенные для функционирования в условиях воздействия механических нагрузок, должны быть прочными и устойчивыми при воздействии этих факторов. Эта способность проверяется в процессе проведения испытаний на механические воздействия как на этапе отработки приборов, так и на этапе изготовления входящих в состав приборов ЭП.

Одним из рекомендуемых способов испытаний ЭП является метод испытаний монотонным изгибом (Стандарт IEC-PAS 62137-3. Технология электронного монтажа. Методы тестирования надежности паяных соединений. Приложение D). Для испытаний ЭП ее устанавливают на две опоры поверхностью с монтажом вниз и при помощи индентора (наконечника) производят на нее давление сверху для создания необходимого уровня нагружения ЭП. Имеются различные модификации такого способа испытаний. Для реализации такой технологии требуется нагрузочное устройство. В настоящее время для проведения испытаний имеются различные устройства нагружения: патент РФ №1582063 [1], патент РФ №1663497 [2], патент РФ №1748007 [3], патент РФ №2416084 [4], патент РФ №2453823 [5]. Предлагаемые решения содержат силовую раму с размещенным на ней устройством для нагружения объекта испытаний, опорные элементы для размещения на них объекта испытаний, средства контроля перемещений объекта испытаний.

Наиболее близким к заявляемому решению является устройство, представленное в патенте РФ №2453823 (прототип). Недостатком предлагаемых устройств является их громоздкость, невозможность точного позиционирования индентора, необходимого для нагружения небольших ЭП с учетом высокой плотности электронных компонент на платах, и, как следствие, использовать такие устройства для испытаний.

Задачей, на решение которой направлено заявляемое изобретение, является устранение указанных недостатков, что позволит более качественно проводить испытания ЭП для различной аппаратуры.

Техническим результатом заявленного изобретения является разработка простого нагрузочного устройства для испытаний на механические воздействия ЭП.

Технический результат достигается тем, что разработано устройство для испытаний ЭП на механические воздействия, которое содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной механизм, измерительный щуп и индикатор. Силовой каркас выполнен из четырех опорных стоек, соединенных стержнями по периметру, причем к двум противоположным стержням крепятся поперечины с установленными на них креплениями для ЭП, с возможностью перемещения ЭП вдоль параллельных стержней и вдоль поперечен. Над ЭП на опорные стойки размещен кондуктор, выполненный из кольца с верхней и нижней сетками, в ячейки которых установлены инденторы до упора в поверхность платы, причем над кондуктором на опорные стойки закреплен нажимной механизм, состоящий из крестовины с плитой, а измерительный щуп и индикатор зафиксированы в подвесной узел на поперечинах под ЭП, при этом количество точек установки инденторов определяется по формулам:

где δj(xi,yi) - перемещение в j точке под влиянием нагрузки, приложенной в i точке; Pi(xi,yj) - нагрузка, приложенная в точке i;

G - коэффициент пропорциональности связывающий перемещение с нагрузкой и цилиндрической жесткостью ЭП;

- цилиндрическая жесткость ЭП, (Е - модуль упругости материала ЭП,

h - толщина ЭП, ν - коэффициент Пуассона материала ЭП), δmax(xj,yj) - максимальное перемещение в точке j;

- суммарное перемещение в j точке;

N - количество точек приложения нагрузки (N≥1);

j - номер точки с максимальным перемещением;

i - номер текущей точки с перемещением;

Δ - погрешность задания перемещения.

Кондуктор и нажимной механизм крепятся к опорным стойкам с помощью гаек.

Сущность изобретения поясняется фигурами.

Фиг. 1-3 - конструкция испытательного устройства.

На Фиг. 1 показано нагрузочное устройство, состоящее из четырех стоек 1, соединенных стержнями 2 и винтами 3, к стержням 2 опорами 4 и винтами 3 крепятся поперечины 5, опоры 4 свободно перемещаются по стержням 2 и фиксируются винтами 6, на поперечинах установлены опоры 7 и подвески 8, они свободно перемещаются по поперечине 5 и фиксируются винтами 6. Подвески 8, перекладина 9, хомутик 10 и винт 11 образуют крепление для измерительного щупа 36 и индикатора 12.

Над ЭП 13 устанавливается кондуктор 14 с прикрепленными к нему сетками 15 с помощью колец 16 и болтов 17 и фиксируется гайками 18 на стойках.

Выше устанавливается нажимной механизм (Фиг. 2), состоящий из крестовины 19 с втулками для направляющих 20, которая крепиться на стойках стенда гайками 21. К крестовине присоединяется стакан 22 с помощью четырех винтов 23, направляющая колонка 24 винтами 25 прикрепляется к плите 26, диск 27 винтами 28 - к стакану 22. Гайка 29 с четырьмя рукоятками 30 и плита 26 объединяют составные части механизма в единое целое. В кондуктор, до упора в поверхность платы устанавливаем инденторы 31, за счет них осуществляется прогиб ЭП (их может быть один или более, в зависимости от того какой нужно воссоздать прогиб поверхности ЭП).

Под ЭП на крепежном механизме фиксируется прибор с измерительным щупом 36 и индикатором 12 с кронштейном 32 (Фиг. 3), который болтами 33 крепится к пластинке 35 и болтом 34 к корпусу прибора 12. Измерительный щуп 36 подводится к поверхности ЭП 13 в точке максимального прогиба. Шкала индикатора 12 зануляется. Под нагрузкой ЭП будет прогибаться, и индикатор 12 будет отображать величину прогиба.

На фигурах продемонстрирован способ установки ЭП на опорах устройства, поясняющий возможность подведения с четырех сторон соединительных кабелей (аналоговых или цифровых сигналов) специализированной аппаратуры для проверки работоспособности ЭП при нагружении.

Фиг. 4,а - конечно-элементная модель блока управления одного из космических аппаратов (ЭП в составе блока показана стрелкой); б) - конечно-элементная модель ЭП из этого блока управления;

Фиг.5 - поля перемещений, полученные при расчете блока с ЭП на квазистатические (а), вибрационные (б) и ударные нагрузки (в) [в качестве примера приведены перемещения в центре ЭП: ось Y - протяженность платы по ширине, ось X -величина прогиба поверхности ЭП под нагрузкой];

Фиг. 6 - графическое изображение огибающей максимальных перемещений поверхности ЭП при ударной нагрузке (а - без нагрузки, 6 - под нагрузкой);

Фиг. 7 - схема расчета предлагаемого метода: точки 1,2,3,4 с координатами (xi,yi) - это точки локального нагружения, точка 5 с координатами (xj,yj) - точка максимальных перемещений (максимального прогиба).

Пример практического исполнения

Применение рассмотренной выше технологии демонстрируется следующим образом. Разрабатывается конечно-элементная модель блока управления одного из космических аппаратов, пример блока управления представлен на Фиг. 4,а. В состав блока входит несколько ЭП. Габариты рассматриваемой ЭП составляют 292×150×30 мм (Фиг. 4,б). ЭП рассчитывается на квазистатические, вибрационные и ударные нагрузки. Результатами расчета являются поля перемещений поверхности ЭП под нагрузкой (Фиг. 5). Максимальными перемещениями по всей ЭП стали перемещения при ударных воздействиях и составляют 2,36 мм. Точка максимального прогиба имеет следующие координаты (0.135,0.146). Используя формулу (1), определяется необходимая нагрузка для осуществления прогиба данной величины (то есть точка i и j совпадают) Pi=221,2 Н, при этом напряжения, возникающие в точке приложения нагрузки, равны σ=P/S=70,45 МПа, где S - площадь поперечного сечения индентора, которым осуществляется нагрузка. Предельные напряжения для материала защитного слоя ЭП σпр=20 МПа. Таким образом, если воздействовать одним индентором на поверхность ЭП в точке максимальных перемещений для создания нужного прогиба, повредиться защитный слой, потому что σ>σпр. Поэтому чтобы не повредить защитный слой, нагрузка распределяется на n точек, количество которых регулируется величиной нагрузки и свободными от монтажа местами на плате.

Для получения полей перемещений при испытаниях ЭП нагрузка осуществляется в n=4 точках с координатами: 1(0.125,0.136), 2(0.125,0.146), 3(0.130,0.156), 4(0.132,0.130) (Фиг. 7). Используя формулы (1) и (2), рассчитываются величины нагрузок, необходимые для прогиба поверхности ЭП, как при ударных нагрузках. Величина прогиба под приложенными нагрузками составила δобщ(xi,yi)=Σδj(xi,yi)=2.358 мм.

Координаты точек приложения и величина нагрузки определены. ЭП фиксируется на опорах разработанного устройства таким образом, чтобы центральная ось симметрии устройства проходила через точку максимального прогиба ЭП. Инденторы устанавливаются в кондуктор на рассчитанные точки. Фиксируется нажимной механизм. Под ЭП устанавливается измерительный щуп и индикатор. Измерительный щуп подводится к нижней стороне ЭП, индикатор зануляется. Вращая рукоятку, плита давит на инденторы, ЭП прогибается и индикатор отображает величину прогиба. При этом к ЭП подсоединено тестирующее электрические и логические цепи устройство. Тестирующее устройство моделирует реальную работу ЭП в составе аппаратуры. На ЭП, подключенную к тестирующему устройству, подано питающее напряжение и снимаются соответствующие электрические показатели. В процессе нагружения (прогиба) не прекращается регистрация электрических показателей, подтверждающих работоспособность ЭП при данной нагрузке.

Из известных авторам источников информации и патентных материалов не известна совокупность признаков, сходных с совокупностью признаков заявленного объекта.

1. Устройство для испытаний электронных плат (ЭП) на механические воздействия, содержащее силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной механизм, измерительный щуп и индикатор, отличающееся тем, что силовой каркас выполнен из четырех опорных стоек, соединенных стержнями по периметру, причем к двум противоположным стержням крепятся поперечины с установленными на них креплениями для ЭП, с возможностью перемещения ЭП вдоль параллельных стержней и вдоль поперечен, при этом над ЭП на опорные стойки размещен кондуктор, выполненный из кольца с верхней и нижней сетками, в ячейки которых установлены инденторы до упора в поверхность платы, причем над кондуктором на опорные стойки закреплен нажимной механизм, состоящий из крестовины с плитой, а измерительный щуп и индикатор зафиксированы в подвесной узел на поперечинах под ЭП, при этом количество точек установки инденторов определяется по формулам:

где δj(xi,yi) - перемещение в j точке под влиянием нагрузки, приложенной в i точке;
Pi(xiyj) - нагрузка , приложенная в точке i;
G - коэффициент пропорциональности, связывающий перемещение с нагрузкой и цилиндрической жесткостью ЭП;
- цилиндрическая жесткость ЭП (Е - модуль упругости материала ЭП, h - толщина ЭП, ν - коэффициент Пуассона материала ЭП), δmax(xj,yj) - максимальное перемещение в точке j;
- суммарное перемещение в j точке;
N - количество точек приложения нагрузки (N≥1);
j - номер точки с максимальным перемещением;
i - номер текущей точки с перемещением;
Δ - погрешность задания перемещения.

2. Устройство по п. 1, отличающееся тем, что кондуктор и нажимной механизм крепятся к опорным стойкам с помощью гаек.



 

Похожие патенты:

Изобретение относится к области полупроводниковой электроники, в частности к модификации электрофизических свойств полупроводниковых транзисторных структур. Способ включает определение критериальных параметров приборов, облучение в пассивном режиме ограниченной выборки однотипных полупроводниковых приборов слабым ИЭМП с варьируемыми параметрами, включая амплитуду импульса, его длительность и частоту следования, обработку экспериментальных данных статистическими методами путем сравнения критериальных параметров полупроводниковых приборов до и после облучения ИЭМП, по результатам которой выявляют положительный эффект модификации и производят повторное облучение необработанных полупроводниковых приборных структур при оптимальных для этого типа приборных структур режимах генерации ИЭМП.
Изобретение относится к полупроводниковой технике, а именно к способам отбраковки мощных светодиодов на основе InGaN/GaN, излучающих в видимом диапазоне длин волн. Способ отбраковки мощных светодиодов на основе InGaN/GaN включает проведение измерений при комнатной температуре в любой последовательности падений напряжения в прямом и обратном направлениях и плотностей тока на светодиодах, отбраковку по определенным критериям, последующее проведение старения светодиодов при определенных условиях, повторное проведение упомянутых измерений при первоначальных условиях, кроме одного, с окончательной отбраковкой ненадежных светодиодов.

Изобретение относится к нанотехнологии и может применяться при изготовлении планарных двухэлектродных резистивных элементов запоминающих устройств. Способ получения резистивного элемента памяти включает в себя создание проводящих электродов на непроводящей подложке, напыление в зазор между электродами металлической пленки и последующий термический отжиг пленки.

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени травления.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к процессам обработки поверхности подложек для выявления дефектов линий скольжения.

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур.

Способ включает воздействие на кристалл исходного импульсного поляризованного немонохроматического излучения коротковолнового инфракрасного диапазона для получения исходного импульсного поляризованного излучения коротковолнового инфракрасного диапазона и импульсного поляризованного излучения гармоники видимого диапазона, выделение импульсного поляризованного излучения гармоники видимого диапазона, преобразование его в электрический сигнал, получение зависимости амплитуды электрического сигнала от длины волны импульсного поляризованного монохроматического излучения второй и суммарной гармоник, определение из нее длины волны 90-градусного синхронизма, по значению которого определяют мольное содержание Li2O в монокристалле LiNbO3.

Изобретение относится к контрольно-испытательному оборудованию изделий электронной техники, а именно к устройствам для сортировки на группы по вольт-амперным характеристикам (ВАХ) фотопреобразователей (ФП) в спутниках, и может быть использовано при производстве фотоэлектрических панелей.
Изобретение относится к различным технологическим процессам, а именно к контролю электрических свойств алмазных пластин на промежуточных стадиях технологического процесса изготовления алмазных детекторов ионизирующих излучений.

Изобретение относится к тестированию матричных БИС считывания и может быть использовано для определения координат скрытых дефектов типа утечек сток-исток, которые невозможно обнаружить до стыковки кристаллов БИС считывания и матрицы фоточувствительных элементов.

Изобретения относятся к контрольно-измерительной технике и могут быть использованы в инженерных сооружениях, оснащаемых системами непрерывного сейсмометрического мониторинга.

Изобретение относится к области строительства, а именно к автоматизированным системам мониторинга технического состояния конструкций здания или сооружения в процессе его эксплуатации.

Изобретение относится к вибрационной технике, в частности к средствам генерирования вибраций. Устройство содержит вал, основной торцевой ротор, дебалансный ротор, основание, обоймы направляющих, подпружиненную платформу, упругие элементы и привод ротора.

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях и может быть использовано при исследованиях динамических характеристик, прочности и устойчивости конструкций и материалов.

Изобретение относится к исследованию характеристик рассеивания энергии при колебаниях и может быть использовано при исследованиях технических свойств материалов, динамических характеристик конструкций и их устойчивости при переменных нагрузках.

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях и может быть использовано при исследовании динамических характеристик, прочности и устойчивости конструкций и материалов.

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя.

Изобретение относится к методам неразрушающего контроля, а именно к виброакустическим методам, и может найти применение для физического контроля железобетонных опор со стержневой напрягаемой арматурой.

Изобретение относится к области измерительной техники, в частности к средствам мониторинга технического состояния различных сооружений, и может быть использовано для текущей оценки и прогноза безопасной эксплуатации зданий и/или сооружений при возможных неблагоприятных воздействиях на объект.

Изобретение относится к испытательной технике, в частности к испытательным устройствам, и предназначено для проведения испытаний плоских конструкций. Устройство включает силовой пол, надувную камеру, по контуру которой установлены ограничительные элементы, опорные элементы, прикрепленные к силовому полу и компрессор.

Изобретение относится к испытанию колонн при центральном и внецентренном сжатии, а также элементов решетки ферм промышленных и гражданских сооружений большого габарита. Способ модернизации двухколонной универсальной испытательной машины с гидравлическим и механическим приводами и основанием, неподвижно заанкеренным в фундаменте, на котором жестко закреплена неподвижная П-образная рама, состоящая из пары параллельных друг другу колонн, оголовки которых соединены друг с другом в единое целое траверсой с гидропульсатором, а также имеющей подвижную по вертикали раму, собранную из верхней опорной траверсы и подвешенной к ней на паре винтовых тяг нижней траверсы подвижной рамы, перемещаемой по вертикали червячным приводом. Гидропульсатор демонтируют, освобождают центральное сквозное отверстие в неподвижной траверсе, демонтируют подвижную траверсу подвижной рамы, а винтовые тяги подвижной рамы присоединяют фланцевыми гайками к траверсе неподвижной рамы. Корпус гидропульсатора неподвижно монтируют по центру на фундаменте машины, снабжают его плунжер сферическим шарниром, с пульта управления включают червячный привод, корректируют и фиксируют проектную отметку по высоте верхней опорной траверсы подвижной рамы. Расширяют пределы испытаний колонн по высоте до 5…6 м, оголовок испытываемой колонны снабжают сферическим шарниром, подтягивают колонну вверх, пропускают ее сквозь освободившееся отверстие в траверсе неподвижной рамы, упирают сферический шарнир оголовка по центру в верхнюю опорную траверсу на проектной отметке. Технический результат состоит в снижении трудоемкости испытаний моделей колонн крупного масштаба, повышении точности испытаний в действующих лабораториях университетов и институтов. 3 ил.
Наверх