Электрокардиограф для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени

Изобретение относится к медицинской технике, а именно к устройствам для измерения биоэлектрических потенциалов сердца. Электрокардиограф содержит блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь. Электрокардиограф имеет многоканальную структуру и содержит несколько идентичных каналов. В качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки. Выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей. Изобретение направлено на повышение разрешающей способности электрокардиографической аппаратуры для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени без применения как аналоговых, так и программных фильтров, накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью ранней диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности. 20 ил.

 

Изобретение относится к медицинской технике, а именно к устройствам для измерения биоэлектрических потенциалов, используемых преимущественно в приборах медицинской диагностики.

Известно устройство [Куриков С.Ф., Прилуцкий Д.А., Селищев С.В. Применение сигма-дельта-аналого-цифрового преобразования в многоканальных электрокардиографах uran.donetsk.ua>~masters…fkita/pichka/librar], в котором применяются дельта-сигма аналого-цифровые фильтры (АЦП), при этом во входных цепях не применяются традиционные фильтры - заграждающий 50 Гц, антитреморный, фильтр высокой частоты и фильтр низкой частоты. Постоянная составляющая на входе ЭКГ компенсируется за счет 5-6 дополнительных бит сигма-дельта-АЦП. Недостатком данного устройства является использование программных фильтров, выполненных на компьютере, для улучшения отношения сигнал/шум с целью повышения разрешающей способности измерительных каналов, которые приводят к искажению тонкой структуры биопотенциала. Достигнуты следующие технические параметры:

- диапазон входных напряжений от 1,2 мкВ; 5 мкВ; 10 мкВ до 10 мВ;

- диапазоны частот - (0-40)/(0-146) Гц;

- частота квантования - 2000 Гц.

Известно электродное устройство [SU 2469642, МПК A61B, опубл. 20.12.2012 г. Бюл. №35], содержащее диэлектрический корпус, в котором расположен диэлектрический пористый контактный элемент, на нерабочей стороне которого выполнено углубление с нанесенным на его поверхность слоем серебра, соединенным с отводящим элементом спаем, причем для насыщения диэлектрического пористого контактного элемента использован электролит, отличающееся тем, что весь объем пор диэлектрического пористого контактного элемента заполнен наночастицами серебра, покрытыми хлоридом серебра, и пропитан электролитом, при этом слой серебра через токоотводящий серебряный элемент с помощью спая электрически связан с проводником, подключенным к входу электрографического прибора, а на нерабочую сторону контактного элемента нанесен герметик, покрывающий углубление и место спая.

Электродное устройство по п.1, отличающееся тем, что в качестве электролита выбран состав, мас.%:

вода 31-35
хлористый калий 10-13
агар-агар 2-3
полиакриламид 0,5-0,8
глицерин остальное

Метрологические и эксплуатационные параметры медицинских наноэлектродов превышают параметры всех известных в мире медицинских электродов.

Известно устройство [SU 2240720, МПК A61B 5/04, опубл. 27.11.2004 г. Бюл. №48], выбранное в качестве прототипа, содержащее блок питания, два электрода и последовательно соединенные процессор, блок оптронной развязки и компьютер, оно дополнительно содержит еще два электрода, конвертер питания, коммутатор (блок компенсации потенциала смещения между электродами) и аналого-цифровой преобразователь (АЦП), выход которого соединен с первым входом процессора, второй вход которого соединен со вторым выходом блока оптронной развязки. Выходы блока питания через конвертер питания подключены к питающим входам коммутатора, блока компенсации потенциала смещения между электродами, АЦП, процессора, блока оптронной развязки и компьютера, выход которого через блок оптронной развязки соединен со вторым входом процессора, третий выход которого соединен с третьим входом блока компенсации потенциала смещения между электродами, а четвертый выход соединен с пятым входом коммутатора, первый, второй, третий и четвертый входы которого соединены с одним из четырех электродов, а каждый выход соединен с соответствующим входом блока компенсации потенциала смещения между электродами.

В качестве электродов в данном устройстве использованы серийно изготавливаемые стеклянные электроды, например ЭВЛ-1МЗ. Наиболее эффективно настоящее изобретение может быть использовано для проведения обследования (скрининга) населения с целью выявления патологии внутренних органов на ранних стадиях заболевания.

Диапазон измерения величины снимаемого биопотенциала, обеспечиваемый устройством, находится в пределах от 0,1 мВ до 200 мВ.

Недостатками данного устройства является низкая разрешающая способность (0,1 мВ), в устройстве применяются стеклянные образцовые электроды сравнения ЭВЛ-1М3, которые не приспособлены для крепления на теле человека и являются неударопрочными, наличие программных фильтров на процессоре, которые приводят к искажению регистрируемого биопотенциала, то есть искажают его тонкую структуру.

Задачей предлагаемого изобретения является повышение разрешающей способности электрокардиографа высокого разрешения для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени без применения как аналоговых, так и программных фильтров, без накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью ранней диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности (ВСС).

Поставленная задача решена за счет того, что устройство, так же как в прототипе, содержит блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь, блок компенсации постоянной составляющей.

Согласно изобретению устройство имеет многоканальную структуру и содержит несколько идентичных каналов, в устройстве в качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки, выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей.

Медицинские наноэлектроды благодаря высоким метрологическим параметрам и особому строению внутренней структуры позволяют регистрировать не инвазивно микропотенциалы на электрокардиограмме в реальном масштабе времени без применения стандартных как аналоговых, так и программных фильтров, накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности (ВСС).

Предлагаемая структура устройства обеспечивает высокое качество передачи биопотенциалов с наноэлектродов в компьютер:

1. В структуре устройства отсутствует коммутатор, который вносит коммутационные помехи в известном устройстве.

2. В устройстве используются высокоразрядные АЦП и ЦАП.

3. В качестве АЦП применяется малошумящий сигма-дельта-АЦП (не менее 24 разряда).

4. Микроконтроллер организует обмен с компьютером и управляет ЦАПом для компенсации постоянной составляющей на входе.

5. Устройство изоляции сигнала обеспечивает защиту от поражения электрическим током.

6. Зарегистрированные электрокардиограммы в компьютере запоминаются, вычисляются амплитудно-временные параметры зубцов ЭКГ и пиков на зубцах, автоматически выдается рекомендация по состоянию сердечно-сосудистой системы для врача, который устанавливает окончательный диагноз.

7. Питание устройства осуществляется от аккумуляторных батарей.

Данное устройство позволило зарегистрировать не инвазивно низкоамплитудные зубцы электрокардиографического сигнала и пики на них уровнем 1 мкВ, единицы и десятки микровольт без применения традиционных как аналоговых, так и программных фильтров, которые вносят амплитудные и фазовые искажения, то есть зарегистрировать не инвазивно истинную биоэлектрическую активность сердца без искажения формы низкоамплитудных зубцов.

На фиг. 1 представлена структура устройства.

На фиг. 2 представлены фрагменты ЭКГ, зарегистрированные одновременно: а, в - в диапазоне частот 0-1000 Гц; б, г - в диапазоне частот 0-150 Гц; а, б - район зубцов P,Q; в, г - R-зубец.

На фиг. 3 представлены фрагменты ЭКГ, зарегистрированные одновременно: а,в - в диапазоне частот 0-1000 Гц; б, г - в диапазоне частот 0-150 Гц; а, б - зубец Р; в, г - зубцы P, Q, S, T, U.

На фиг. 4 представлен фрагмент ЭКГ пациента 44, 2 - отведение по Холтеру.

На фиг. 5 представлен фрагмент ЭКГ пациента 45, 3 - отведение по Холтеру.

На фиг. 6 представлен фрагмент ЭКГ пациента 47, 2 - отведение по Холтеру.

На фиг. 7 представлен фрагмент ЭКГ пациента 48, 2 - отведение по Холтеру.

На фиг. 8 представлены фрагменты ЭКГ по Холтеру пациента 50: а - 1 отведение; б, в - 3 отведение; г - общий вид, 1 отведение.

На фиг. 9 представлен фрагмент ЭКГ пациента 51, 2 отведение по Холтеру.

На фиг. 10 представлены фрагменты ЭКГ по Холтеру пациента 52: а - 1 отведение; 6-2 отведение.

На фиг. 11 представлены фрагменты ЭКГ по Холтеру пациента 53: а - 1 отведение; 6-2 отведение; в - 3 отведение.

На фиг.12 представлены фрагменты ЭКГ по Холтеру пациента 54: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.13 представлены фрагменты ЭКГ по Холтеру пациента 55: а - 1 отведение; б - 2 отведение.

На фиг.14 представлен фрагмент ЭКГ пациента 56, 1 отведение.

На фиг.15 представлены фрагменты ЭКГ по Холтеру пациента 57: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.16 представлены фрагменты ЭКГ по Холтеру пациента 58: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.17 представлен фрагмент ЭКГ пациента 59, 1 отведение по Холтеру.

На фиг.18 представлен фрагмент ЭКГ пациента 60, 1 отведение по Холтеру.

На фиг.19 представлены фрагменты ЭКГ по Холтеру пациента 61: а - 1 отведение; б - 2 отведение; в - 3 отведение.

На фиг.20 представлены фрагменты ЭКГ по Холтеру пациента 62: а - 1 отведение; б - 2 отведение.

Электрокардиограф высокого разрешения для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени (фиг.1) содержит медицинские наноэлектроды 11i и 12i, измерительные усилители 2i, операционные усилители 3i, аналого-цифровые преобразователи 4i, микроконтроллер 5, цифроаналоговый преобразователь 6i, изолятор 7, персональный компьютер 8.

Принцип действия устройства заключается в следующем.

Медицинские наноэлектроды 11i и 12i устанавливают на грудной клетке пациента. Электрокардиографические сигналы с наноэлектродов поступают на инвертирующий и неинвертирующий входы измерительных усилителей 2i, с выхода измерительных усилителей сигналы поступают на неинвертирущий вход операционного усилителя 3i, сигналы с выхода операционных усилителей поступают на вход аналого-цифрового преобразователя 4i и после оцифровки поступают на вход микроконтроллера 5, который оценивает входной сигнал и при наличии постоянной составляющей выдает сигнал на ЦАП 6i для устранения постоянного сигнала на входе путем подачи компенсирующего напряжения на инвертирующий вход операционных усилителей 3i. Изолятор 7 изолирует пациента от компьютера 8. Сигналы на вход компьютера поступают через порт USB.

Были проведены клинические исследования электрокардиографа высокого разрешения для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени.

Результаты клинических исследований получены в Томском НИИ кардиологии. Зарегистрированы одновременно электрокардиограммы пациента П1 в области частот от 0 до 1000 Гц, фиг. 2 а, в, и в области частот от 0 до 150 Гц, фиг. 2 б, г, а, б - район зубцов P, Q; в, г - R-зубец. В устройствах для регистрации отсутствуют фильтры, съем осуществляется с грудной клетки по Холтеру. Устройства не были синхронизированы и поэтому наблюдается небольшая временная задержка. Устройство с полосой пропускания от 0 до 150 Гц сглаживает пики в отличие от высокочастотного устройства.

Электрокардиограммы пациента 2, зарегистрированные одновременно теми же устройствами, представлены на фиг. 3 а, б, в, г., а, в - диапазон частот 0-1000 Гц; б, г - диапазон частот 0-150 Гц; а, б - зубец Р; в, г - зубцы P, Q, S, T, U.

На электрокардиограммах, фиг. 2 а, в и фиг. 3 а, в, зарегистрированных в полосе частот от 0 до 1000 Гц, пики микровольтового уровня на стандартных зубцах и их положение на временной оси ЭКГ более отчетливо фиксируются.

Для оценки возможности регистрации микропотенциалов на электрокардиограмме уровнем 1 мкВ, единицы и десятки микровольт с помощью аппаратуры на наноэлектродах в диапазоне частот от 0 до 150 Гц без аналоговых и программных фильтров и накопления кардиоимпульсов представлены результаты клинических исследований, фиг. 4 - 20. Все пациенты перенесли инфаркт миокарда и наблюдались в отделении неотложной кардиологии Томского НИИ кардиологии.

На фиг. 4 у пациента 44 во 2 отведении по Холтеру амплитуда Р-зубца 60 мкВ, пиков - от 3 мкВ до 30 мкВ.

На фиг. 5 у пациента 45 в 3 отведении по Холтеру амплитуда Р-зубца 30 мкВ, пиков - от 5 мкВ до 20 мкВ.

На фиг. 6 у пациента 47 во 2 отведении по Холтеру амплитуда Р-зубца 50 мкВ, пиков - от 10 мкВ до 70 мкВ.

На фиг. 7 у пациента 48, 2 отведение, амплитуда Р-зубца 25 мкВ, пиков - от 8 мкВ до 15 мкВ.

На фиг. 8 у пациента 50 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 25 мкВ, пиков - от 4 до 5 мкВ, фиг. 8а; в 3 отведении амплитуда Р-зубца от 7 мкВ до 15 мкВ, пиков - от 7 мкВ до 15 мкВ, фиг. 8б, в; общий вид ЭКГ в 1 отведении представлен на фиг. 8 г.

На фиг. 9 у пациента 51 во 2 отведении по Холтеру амплитуда Р-зубца 55 мкВ, пиков - от 3 мкВ до 33 мкВ.

На фиг. 10 у пациента 52 при исследовании по Холтеру в 1 отведении наблюдается изменение полярности Р-зубца перед экстрасистолой, зубец двухполярный, амплитуда Р-зубца 20 мкВ, пиков - от 5 мкВ до 10 мкВ; во 2 отведении амплитуда Р-зубца 15 мкВ, зубец двухполярный, пики - от 5 мкВ до 10 мкВ.

На фиг. 11 у пациента 53 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 35 мкВ, пиков - от 3 до 10 мкВ; во 2 отведении амплитуда Р-зубца 45 мкВ, пиков - от 3 до 5 мкВ; в 3 отведении амплитуда Р-зубца 15 мкВ, пиков - от 2 до 7 мкВ.

На фиг. 12 у пациента 54 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 5 мкВ, пиков - от 5 до 10 мкВ; во 2 отведении амплитуда Р-зубца 8 мкВ, пиков - ±4 мкВ; в 3 отведении амплитуда Р-зубца 7-8 мкВ, пиков - от 2,5 до 5 мкВ.

На фиг. 13 у пациента 55 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 100 мкВ, пиков - от 8 до 70 мкВ; во 2 отведении амплитуда Р-зубца 40 мкВ, зубец двухполярный, амплитуды пиков - от 20 мкВ до ±40 мкВ.

На фиг. 14 у пациента 56 в 1 отведении по Холтеру амплитуда Р-зубца 180 мкВ, пика - 80 мкВ.

На фиг. 15 у пациента 57 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 100 мкВ, пиков - от 8 мкВ до 60 мкВ; во 2 отведении амплитуда Р-зубца 70 мкВ, амплитуды пиков - от 10 мкВ до 25 мкВ; в 3 отведении амплитуда Р-зубца 50 мкВ, пиков - от 10 мкВ до 15 мкВ.

На фиг. 16 у пациента 58 при исследовании сердца по Холтеру в 1 отведении амплитуда Р-зубца 170 мкВ, пиков - от 10 мкВ до 25 мкВ; во 2 отведении амплитуда Р-зубца 110 мкВ, амплитуды пиков - от 10 мкВ до 20 мкВ; в 3 отведении амплитуда Р-зубца 80 мкВ, пиков - от 10 мкВ до 25 мкВ.

На фиг. 17 у пациента 59 в 1 отведении по Холтеру, амплитуда Р-зубца 120 мкВ, пиков - от 6 мкВ до 40 мкВ.

На фиг. 18 у пациента 60 в 1 отведении по Холтеру амплитуда Р-зубца 175 мкВ, пиков - от 6 мкВ до 75 мкВ.

На фиг. 19 у пациента 61 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 150 мкВ, пиков - от 10 мкВ до 20 мкВ; во 2 отведении амплитуда Р-зубца 75 мкВ, амплитуды пиков - от 5 мкВ до 45 мкВ; в 3 отведении амплитуда Р-зубца 45 мкВ, пиков - от 7 мкВ до 35 мкВ.

На фиг.20 у пациента 62 при исследовании по Холтеру в 1 отведении амплитуда Р-зубца 175 мкВ, пиков - от 5 мкВ до 50 мкВ; во 2 отведении амплитуда Р-зубца 100 мкВ, амплитуды пиков - от 5 мкВ до 50 мкВ.

На основании проведенных исследований можно сделать следующие выводы:

1. Разработанная аппаратура позволяет измерить амплитуду и момент появления на обычной ЭКГ низкоамплитудных зубцов и пиков на них.

2. Амплитуды зубцов и пиков варьируют от единиц до сотен микровольт.

3. С расширением полосы частот аппаратуры до 1000 Гц улучшается качество регистрации сигналов, составляющих единицы и десятки микровольт.

Низкоамплитудные биопотенциалы сердца микровольтового уровня зарегистрированы в реальном времени без искажений с грудной клетки пациентов со стандартных отведений по Холтеру без фильтров как аналоговых, так и программных.

Данный подход позволит дополнить существующую ЭКГ-диагностику, применяемую широко в поликлиниках, диагностическими параметрами, которые применяются для постановки точного диагноза при использовании электрокардиографов высокого разрешения, например, по методу Симсона. Метод Симсона основан на накоплении 100-300 кардиокомплексов, с дальнейшей фильтрацией суммарного импульса.

На суммарном кардиоимпульсе при определенных патологиях обнаруживают поздние потенциалы предсердий (ППП) уровнем менее 5 мкВ, которые возникают в конце P-зубца или поздние потенциалы желудочков (ППЖ) уровнем менее 20 мкВ, которые возникают после S-зубца в начале S-T-комплекса. Обнаружение на кардиоимпульсе ППП и ППЖ является предвестником внезапной сердечной смерти по данным клинических исследований методом Симсона.

Недостатками метода Симсона является невозможность анализа сигнала ЭКГ в реальном масштабе времени и включение в решающее правило параметров, имеющих отдаленное отношение к природе исследуемых низкоамплитудных составляющих ЭКГ.

Наши клинические исследования на предлагаемом устройстве показали, что устройство способно измерять низкоамплитудные флуктуации на кардиоимпульсе уровнем 1 мкВ, единицы микровольт, десятки микровольт в реальном масштабе времени без применения фильтров, которые приводят к амплитудным и фазовым искажениям ЭКГ-сигнала. На графиках хорошо просматривается нестабильность работы сердца. Доказательством отсутствия электромиографической помехи является тот факт, что низкоамплитудные флуктуации, наблюдаемые на горизонтальных участках ЭКГ, то есть во время отдыха сердца, в момент возбуждения на P-зубцах отсутствуют, что свидетельствует об изменении физиологического состояния мышечного волокна сердца в переходе от фазы покоя к фазе возбуждения.

Данное устройство открывает новые перспективы для более точной и ранней диагностики заболеваний сердца при массовых исследованиях в поликлинических условиях с целью исключения внезапной сердечной смертности (ВСС).

Электрокардиограф для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени, содержащий блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь, отличающийся тем, что имеет многоканальную структуру и содержит несколько идентичных каналов, в качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки, выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей.



 

Похожие патенты:

Изобретение относится к медицине, а именно к кардиологии. Осуществляют непрерывное мониторирование и запись ЭКГ.
Изобретение относится к медицине, а именно к кардиологии и гинекологии, и может быть использовано при проведении дифференциальной диагностики кардиогенной ишемии миокарда и генитально-кардиального тормозного рефлекса на фоне болевого синдрома, обусловленного гинекологической патологией.
Изобретение относится к медицине, а именно к акушерству и гинекологии. Анализируя анамнез, выявляют наличие фетоплацентарной недостаточности компенсированной формы, маловодие.

Изобретение относится к области медицины, а именно кардиологии. Пациентам с верифицированным диагнозом рак молочной железы, которым рекомендовано проведение курса химиотерапии, за неделю до лечения проводится измерение ЧСС по данным электрокардиографического исследования, выполненного после пятиминутного отдыха.

Изобретение относится к медицине, а именно к неврологии и кардиологии. Больному на 21 сутки ишемического инсульта проводят суточное холтеровское мониторирование с регистрацией суммарной вегетативной активности и оценкой вариабельности сердечного ритма.
Изобретение относится к медицине, а именно к неврологии и кардиологии. Больному проводят суточное непрерывное холтеровское мониторирование на 21 сутки от развития острого ишемического инсульта с регистрацией желудочковых экстрасистол.

Изобретение относится к медицине, а именно к неврологии и кардиологии. Оценку вариабильности сердечного ритма осуществляют методом суточного холтеровского мониторирования на 21 сутки от момента развития ишемического инсульта.
Изобретение относится к медицине, к области кардиологии, гастроэнтерологии и хирургии. Производят запись ЭКГ.
Изобретение относится к области медицины, в частности к неврологии и кардиологии. Проводят оценку вариабельности сердечного ритма.

Изобретение относится к медицинской технике. Устройство для регистрации электрокардиосигналов в условиях свободной двигательной активности содержит усилитель (1), аналого-цифровой преобразователь с мультиплексором (2) и последовательно соединенные блок декомпозиции (3), второе арифметико-логическое устройство (4), арифметическое устройство (5), анализатор кодов приращения (6), блок переключения (7) и цифровой модем (8), а также блок управления (9), первый (12) и второй (10) блоки памяти, счетчик номера кода приращения (11).
Изобретение относится к медицине, а именно к кардиологии и восстановительной медицине. Проводят стресс-тест путем выполнения физической нагрузки с одновременной регистрацией параметров сердечной деятельности с последующим выполнением тренировочной нагрузки. Перед тренировочной нагрузкой дополнительно проводят повторный стресс-тест через 30-60 минут после первого. При этом в качестве параметра сердечной деятельности регистрируют изменение смещения сегмента ST и рассчитывают индекс ST. Проводят сравнение индексов ST по результатам первого и второго стресс-тестов. При уменьшении второго значения индекса по отношению к первому не менее чем на 10% проводят тренировочную нагрузку. После чего через 30-60 минут проводят третий стресс-тест с оценкой третьего индекса ST. Тренировочную нагрузку осуществляют в интервале 24-48 часов после окончания второго стресс-теста. В качестве тренировочной нагрузки выполняют поочередное пережатие и восстановление кровотока в периферических сосудах. При этом пережатий и восстановлений кровотока в периферических сосудах выполняют не менее 4-х раз за цикл. Кроме того, каждое пережатие и восстановление в цикле тренировочной нагрузки осуществляют поочередно в течение 3-5 минут. Способ позволяет сократить срок реабилитации больных ИБС и снизить риск развития осложнений за счет создания щадящего режима нагрузок. 1 з.п. ф-лы.

Изобретение относится к области медицины, а именно к исследованиям в области кардиологии. Осуществляют запись электрокардиограммы пациента в состоянии покоя. Снимают электрокардиограмму после физической нагрузки на пациента. После чего сравнивают длительности интервалов, входящих в интервал R-R. При этом на обеих электрокардиограммах измеряют длительность интервалов Q-P и T-Q. Кроме того, на полученных кардиоинтервалограммах определяют количество ритмических волн, имеющих амплитуду от 0,05 до 0,1 секунд, определяются количество сердечных циклов, составляющих каждую такую ритмическую волну. На кардиоинтервалограмме после перенесенной физической нагрузки определяется момент, в который начинается первая ритмическая волна, имеющая амплитуду от 0,05 до 0,1 секунды, и на основе регистрации этого момента производится оценка функционального состояния предсердия и желудочка. Способ позволяет оценить функциональное состояние предсердий и желудочков сердца раздельно, за счет проведения раздельного анализа длительности электрической систолы и диастолы, как в состоянии покоя, так и после перенесенной пациентом физической нагрузки. 2 з.п. ф-лы, 12 ил., 3 пр.

Изобретение относится к медицине, в частности к неврологии. Выполняют запись кардиоритма с последующей обработкой методом быстрого преобразования Фурье и выделением волн в частотных диапазонах: VLF в диапазоне 0.004-0.08 Гц, амплитуда волны в норме 30-150 мc2/Гц, LF в диапазоне 0.09-0.16 Гц, амплитуда волны в норме 15-25 мc2/Гц, HF в диапазоне 0.17-0.5 Гц, амплитуда волны в норме 15-35 мc2/Гц. При этом исследование вариабельности сердечного ритма (ВРС) проводят во время выполнения больным активной ортостатической пробы. При этом больной находится в исходном горизонтальном положении, затем переходит в вертикальное положение и далее снова в горизонтальное положение. При снижении амплитуды LF и HF после перехода в вертикальное положение более чем на 50% от показателей в исходном горизонтальном положении диагностируют вегетативную недостаточность. При снижении амплитуды LF и HF после перехода в вертикальное положение более чем на 50% от показателей в исходном горизонтальном положении и снижении амплитуды VLF после перехода в вертикальное положение более чем на 50% от показателей в исходном горизонтальном положении диагностируют вегетативную недостаточность со снижением компенсаторных возможностей регуляции гемодинамики. Способ позволяет выделить конкретные патофизиологические механизмы нарушений вегетативной и нейрогуморальной регуляции сердечной деятельности путем оценки спектральных показателей при выполнении ортостатической пробы. 2 пр., 2 табл.
Изобретение относится к медицине, а именно к кардиологии. Пациенту проводят учащающую чреспищеводную предсердную электростимуляцию с одновременным снятием электрокардиограммы. Определяют длительность интервала PQ на фоне синусового ритма и максимальную и минимальную длительности интервала St-R во время учащающей чреспищеводной стимуляции. При длительности интервала PQ не менее 110 мс, длительности интервала St-R min более 108 мс и длительности интервала St-R max более 127 мс прогнозируют нормализацию интервала PQ. При длительности интервала PQ менее 110 мс, длительности интервала St-R min менее 108 мс и длительности интервала St-R max менее 127 мс - сохранение короткого интервала PQ. Способ позволяет прогнозировать естественное течение феномена короткого интервала PQ у детей и подростков, используя неинвазивную ЭКГ-диагностику параметров атриовентрикулярного проведения. 2 пр.

Изобретение относится к медицине, а именно кардиологии. Выполняют регистрацию электрокардиосигнала. Осуществляют загрузку электрокардиосигнала в мобильное вычислительное устройство. После чего проводят предварительную обработку электрокардиосигнала путем разложения его на набор частотных составляющих и остаток. Выполняют нелинейную пороговую обработку частотных составляющих, суммируют остаток и частотные составляющие, прошедшие процедуру нелинейной пороговой обработки. На основании чего осуществляют экспресс-оценку электрической стабильности сердца. И в случае определения опасной для жизни патологии осуществляют вызов скорой помощи к местонахождению пациента с сообщением пациенту «Ожидайте скорую помощь». Способ позволяет определить электрическую стабильность сердца в условиях свободной двигательной активности пациента и в случае необходимости оказать квалифицированную медицинскую помощь. 9 ил.
Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, и может быть использовано для профилактики рецидивов фибрилляции предсердий после кардиохирургических операций. Для этого на дооперационном этапе вводят амиодарон в дозе 0,6-1,2 г/сут под контролем показателей ЭКГ и ЧСС до достижения суммарной дозы 9,6-10,2 г. При величине интервала QT не более 500 мсек, отсутствии нарушений проводимости сердца, явлений брадикардии вводят максимальную дозу препарата. В случае наличия нарушений проводимости сердца, явлений брадикардии после первоначальной суточной дозы дозировку уменьшают ежесуточно на 0,2 г/сут, но не менее 0,6 г/сут, до достижения показателей ЭКГ, соответствующих норме. Одновременно с основным этапом операции выполняют радиочастотную абляцию устьев легочных вен и предсердий. Кроме того, интраоперационно подшивают по два электрода к правому предсердию и правому желудочку и подсоединяют к наружному электрокардиостимулятору. Начиная с интраоперационного периода и далее осуществляют биполярную двухкамерную электрокардиостимуляцию с ЧСС на 10 уд./мин больше собственного ритма под контролем собственного ритма в течение 7-10 дней. После проведения операции продолжают вводить амиодарон внутривенно в дозе 0,4 г/сут в день операции, в дозе 0,2-0,4 г/сут во 2-й день после операции. Далее амиодарон вводят в таблетированной форме перорально в дозе 0,2 г/сут в течение 6 месяцев под контролем ЭКГ. Препарат отменяют при сохранном синусовом ритме и отсутствии пароксизмов фибрилляции предсердий. Способ обеспечивает повышение эффективности профилактики рецидива фибрилляции предсердий за счёт оптимизации сочетанной антиаритмической медикаментозной и электростимулирующей терапии. 2 пр.

Изобретение относится к медицине, в частности к кардиологии, и может быть использовано для адаптивного подавления помех в электрокардиосигнале (ЭКС). При осуществлении способа адаптивной фильтрации электрокардиосигнала в каждом кардиоцикле из аддитивной смеси ЭКС и помехи осуществляют выделение участка, соответствующего TP-сегменту ЭКС, выделение помехи на этом участке ЭКС и формирование ЭКС без помех. После выделения участка, соответствующего TP-сегменту ЭКС, осуществляют выделение участка, соответствующего PQRST-комплексу ЭКС. После выделения помехи на участке, соответствующем TP-сегменту ЭКС, осуществляют определение типа помехи на этом участке, выбор фильтра и фильтрацию выделенных участков ЭКС в соответствии с типом выделенных помех. Применение изобретения позволит увеличить количество типов подавляемых помех в ЭКС. 5 ил.

Изобретение относится к медицине, кардиологии. Электроды для регистрации ЭКГ устанавливают на кожу левой пекторальной области пациента в определенных точках. Точка 1 - электрод, который при стандартной записи ЭКГ прикрепляется к правой руке, устанавливают во II межреберье по левой парастернальной линии. Точка 2 - электрод, который при стандартной записи ЭКГ прикрепляется к левой руке, устанавливают на середине левой дельтовидно-пекторальной борозды. Локализацию точки 3 определяют с помощи оригинальной математической формулы, учитывающей анатомические параметры грудной клетки пациента. В точку 3 устанавливают электрод, который при стандартной записи ЭКГ прикрепляется к левой ноге. При этом регистрируют 6 аппроксимированных отведений ЭКГ: Ia - биполярная запись от точки 1 к точке 2, IIa - биполярная запись от точки 2 к точке 3, IIIa - биполярная запись от точки 3 к точке 1, aVRa - униполярная усиленная запись от точки 1, aVLa - униполярная усиленная запись от точки 2, aVFa - униполярная усиленная запись от точки 3. Способ позволяет повысить информативность и качество записи ЭКГ, осуществлять диагностику нарушений ритма, мониторинг ишемических изменений в разных сегментах миокарда. 5 ил., 3 пр.

Изобретение относится к медицине, а именно способу диагностики сердечнососудистой системы. Выполняют непрерывную регистрацию электрокардиосигнала и центральной реограммы при проведении функциональной нагрузочной пробы. Осуществляют выделение из сигнала ЭКГ длительностей кардиоциклов, а из реограммы - величин ударного объема и общего периферического сопротивления. Причем в качестве тестирующей нагрузки используют активную ортоклиностатическую пробу. Так, в каждой фазе теста регистрируют от двухсот до четырехсот кардиоциклов, анализу подвергают, кроме исходных временных последовательностей длительностей кардиоциклов, величин ударного объема и общего периферического сопротивления в каждом кардиоцикле, нормированные временные последовательности. Последовательности состоят из логарифмов относительных изменений исходных величин, получаемых логарифмированием отношений текущего значения каждого из регистрируемых параметров к предыдущему. После чего статистические параметры исходных и нормированных временных рядов используют для автоматизированного отнесения обследованного пациента к одной из известных групп. Способ позволяет повысить информативность метода анализа нарушений регуляции гемодинамики, а также осуществить дифференциальную диагностику сердечнососудистых патологий. 8 з.п. ф-лы, 4 ил., 11 табл.

Изобретение относится к области медицины, а именно к кардиологии. Для получения амплитуды электрического вектора ЭКГ выполняют пропускание каждого из сигналов uI, uII, uIII по отведениям I, II, III через квадратичные преобразователи. Затем суммируют сигналы, получаемые на выходах квадратичных преобразователей, и используют полученную сумму в качестве выходного сигнала. Способ позволяет повысить точность каждого кардиоцикла, повысить достоверность выделения R-зубца ЭКГ, стабильности и помехоустойчивости ЭКГ. 4 ил.

Изобретение относится к медицинской технике, а именно к устройствам для измерения биоэлектрических потенциалов сердца. Электрокардиограф содержит блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь. Электрокардиограф имеет многоканальную структуру и содержит несколько идентичных каналов. В качестве электродов используют медицинские наноэлектроды для съема ЭКГ с грудной клетки. Выходы наноэлектродов подключены к входам измерительных усилителей, выходы измерительных усилителей подключены к первым входам операционных усилителей, выходы которых соединены с входами АЦП, выходы АЦП подсоединены к входам микроконтроллера, выходы которого соединены с компьютером и через ЦАП со вторыми входами операционных усилителей. Изобретение направлено на повышение разрешающей способности электрокардиографической аппаратуры для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени без применения как аналоговых, так и программных фильтров, накопления кардиоимпульсов, которые приводят к искажениям истинной биоэлектрической активности сердца, с целью ранней диагностики заболеваний сердца и исключения случаев внезапной сердечной смертности. 20 ил.

Наверх