Устройство формирования систем двукратных производных нелинейных рекуррентных последовательностей

Изобретение относится к обработке цифровых данных, а именно к технике формирования псевдослучайных последовательностей дискретных шумоподобных сигналов. Технический результат заключается в расширении функциональных возможностей и сокращении аппаратных затрат по формированию систем двукратных производных нелинейных рекуррентных последовательностей (СДК ПНЛРП) разных длин, видов и подвидов (кодовых форм). Устройство формирования систем двукратных производных нелинейных рекуррентных последовательностей содержит системный блок управления и обеспечения возможности программного управления процессом смены длин и кодовых форм, видов и подвидов. В устройство введены устройство формирования кодовых слов нелинейных рекуррентных последовательностей, двухвходовый сумматор по модулю два, выход которого является выходом устройства, а также системный блок управления, состоящий из дешифраторов одного и другого вида, счетчики. Это позволяет генерировать систему двукратных производных различных длительностей, видов и подвидов в программно-управляемом режиме, что позволяет формировать системы псевдослучайных последовательностей, повышающих имитостойкость, скрытность, а также арсенал сменных параметров. 1 табл., 10 ил.

 

Изобретение относится к обработке цифровых данных, а именно к технике формирования псевдослучайных последовательностей дискретных шумоподобных сигналов (ШПС), используемых в широкополосных системах связи, радионавигации и радиолокации.

В специальных системах со сложными сигналами помехозащищенность и имитостойкость сигналов достигается, во-первых, расширением их спектра путем манипуляции информативных параметров несущего колебания по закону псевдослучайных последовательностей (ПСП), а во-вторых, использованием таких ПСП, которые обладают высокой требуемой структурной скрытностью. При этом стремятся к достижению наилучших корреляционных и ансамблевых свойств ПСП, учитывая, что в общем случае помехозащищенность системы увеличивается с увеличением длительности и арсенала сменных параметров ПСП [1, 3, 4, 5, 6]. К последним относятся число элементарных символов в ПСП и ее кодовая форма из множества возможных для данного класса ПСП кодовых форм.

К широко используемым на практике в этих целях классам ПСП относятся линейные рекуррентные ПСП в виде М-последовательностей и производные от них ПСП [1, 2, 5]. Однако, как показано в [2, 3, 4, 5, 6], вследствие того, что М-последовательности обладают низкой структурной скрытностью и имитостойкостью, ограниченными объемом длительностей L и арсеналом сменных параметров VСП, постепенно место М-последовательностей для решения вышеуказанных задач занимают простые нелинейные рекуррентные последовательности (НЛРП) на основе характеристических кодов и кодов квадратичных вычетов, существующих для длительностей L={p, p-1, pn, pn-1}={4t, 4t+1, 4t+2, 4t+3}, где p - простое число, n=2, 3, 4…, t=2, 3, 4,…, и обладающих абсолютной линейной сложностью раскрытия структуры (ЛСРС), равной L (ЛСРС=L). В то же время, как показано в [3, 4, 6], по скрытности, имитостойкости, длительности и арсеналу сменных параметров неоспоримыми преимуществами перед простыми НЛРП (характеристическими кодами и кодами квадратичных вычетов [3, 4]) обладают формируемые из них прежде всего производные НЛРП (ПНЛРП). Правила формирования ПНЛРП принципиально известны [3]. Так, в частности, согласно [3], двукратные (ДК) ПНЛРП вида W2 называются такие ПСП, которые образуются из 2-х простых НЛРП вида Vj, j=1, 2, по правилу:

где l1, l2 - длительности простых НЛРП Vj, j=1,2, j - номер производящего элемента - простой НЛРП, k - наибольший общий делитель (НОД) для длительностей l1, l2: k=НОД (l1, l2).

Замечание: Знак перемножения П j = 1 2 в правиле (1) характерен для случая, если простые НЛРП представляют собой бинарные последовательности, т.е. состоящие из символов (-1, 1) [2]. Если же представлять простые НЛРП Vj как дискретные (двоичные) последовательности, т.е. состоящие из символов (1, 0), когда «-1» заменяется на «0», то в правиле (1) необходимо знак произведения П j = 1 2 для W i 2 заменить на знак суммы Σ j = 1 2 по модулю 2 (⊕). Тогда для дискретного случая представления Vj правило (1) будет иметь вид:

С точки зрения внутренней структуры ДК ПНЛРП и структуры корреляционных функций систем ДК ПНЛРП различия правил (1) и (2) значения не имеют, т.к. различные сочетания символов «1» и «-1» в правиле (1) и символов «1» и «0» в правиле (2) для выражения W i 2 имеют идентичные отображения. Так, например, для правила (1) имеем: (1+1)=1, 1·(-1)=-1, (-1)·1=-1, (-1)·(-1)=-1, - для правила (2) имеем: 1⊕0=1, 0⊕1=1, 1⊕1=0, 0⊕0=0. То есть сочетания одинаковых символов в правиле (1) приводит к результирующему символу «0», а разных - к символу «1». При этом внутренняя структура ДК ПНЛРП, т.е. порядок взаимного расположения различающихся символов («1» и «-1» в правиле (1) и «1» и «0» в правиле (2)) изменяться не будет, следовательно, не будут меняться и структура корреляционных функций и их свойства. Мы будем в дальнейшем иметь дело с правилом (2).

При этом объем сменных параметров (СП) VСП (словаря) ПНЛРП определяется числом различных длин li используемых простых НЛРП, а также количеством их изоморфных и автоморфных преобразований в случае фиксированных изоморфизмов [2, 3].

Так согласно [2, 3] число автоморфных преобразований VA простых НЛРП в виде кодов квадратичных вычетов или характеристических кодов представляет собой число циклических сдвижек простых НЛРП и равно VA=lj. Поэтому автоморфный объем VA ансамбля простой НЛРП длительности lj равен ( V A ) l j = l j . Общее же число-объем кодового словаря НЛРП фиксированной длины lj равен V j = N и з j l j , где N и з j = ϕ ( p j , p j 1 ) - число изоморфных преобразований, где φ(·) - функция Эйлера [2], pj - простое число. Объем кодового словаря ДК ПНЛРП равен VПНЛРП=Vj·Vi, где {i,j} - различные длины простых НЛРП - производящих элементов, то есть:

Если учесть, что длительности НЛРП li,j={p=(4t+1,4t+3); p--1=(4t,4t+2)}, то, учитывая порядок вычисления функции Эйлера φ(·), легко установить, например, согласно [2], что ϕ * ( p N и з * , p 1 ) < < [ ϕ j ( p = N и з j , p 1 ) ] [ ϕ i ( p = N и з j , p 1 ) ] . To есть VПНЛРП,L>>VНЛРП,L. Если теперь сравнить, например, только автоморфные объемы VA словарей фиксированных длительностей для ПНЛРП и простой НЛРП, близких по величине LПНЛРП≈LНЛРП, то можно уже установить, что: ( V A ) П Н Л Р П , L = l 1 l 2 > ( V A ) Н Л Р П , L = l 1 l 2 k , k=НОД (l1, l2). Отсюда видно, что объем арсенала сменных параметров (при близких по значениям LПНЛРП≈LНЛРП), у ПНЛРП значительно больше, чем y НЛРП минимум в k раз, а максимум в k { [ ϕ i ( ) ] [ ϕ j ( ) ] / ϕ * } раз. Кроме того, хотя на настоящий момент простые НЛРП и обладают абсолютной ЛСРС=L, но понятно, что это свойство «абсолютным» является временно, так как регулярность и детерминированность правил построения простых НЛРП [2] предполагает в обозримом будущем разработку алгоритмов раскрытия их структуры по аналогии алгоритму Берлекемпа-Месси, обеспечивающему раскрытие структур М-последовательностей [5]. В этой связи применение ПНЛРП, которые в сравнении с НЛРП «разрушают» регулярность нелинейной структуры простых НЛРП и тем самым становятся незаменимыми с точки зрения высоких требований по скрытности и имитостойкости, и с учетом выигрыша по (VA)ПНЛРП и VСП, в специальных информационных системах, становится весьма актуальным и целесообразным.

При этом следует учесть, что если для решения задач генерирования простых НЛРП любых видов принципиально разработана уже современная соответствующая концепция и теория [7, 8, 9, 10], а также ряд технических решений, например [11, 12], то устройств (технических решений), позволяющих генерировать ПНЛРП, а тем более системы ПНЛРП различных длительностей L=var и объемов VСП=var к настоящему времени не разработано. Таким образом, задача разработки таких технических решений, и в частности, по формированию систем двукратных (СДК) ПНЛРП является актуальной. Решение этой задачи видится, прежде всего, по естественному пути, который определен правилами (1) и (2), свидетельствующие о том, что устройства формирования ДК ПНЛРП могут быть построены посредством совместного использования 2-х устройств формирования простых НЛРП различных длительностей и кодовых форм. Модель этого использования представлена на фиг. 1. При этом, если менять по соответствующей программе кодовые формы и длительности НЛРП, формируемые этими 2-мя устройствами, то можно говорить уже о формировании системы ДК (СДК) ПНЛРП.

Таким образом, требуемым результатом при формировании СДК ПНЛРП с учетом модели фиг. 1 следует считать обеспечение программно-управляемой генерации наибольшего числа кодовых форм и длин ДК ПНЛРП на основе использования программно-управляемой генерации кодовых словарей простых НЛРП 2-мя устройствами формирования НЛРП, то есть {(VA)ПНЛРП,VСП}→max при минимизации временных и аппаратных затрат.

Исходя из необходимости достижения этого результата по формированию СДК ПНЛРП наиболее близким к заявляемому является устройство формирования кодовых словарей нелинейных рекуррентных последовательностей различных длительностей L=8, 10, 11, 12, 13, 16 длин L=8, 10, 11,…30 (см. Пат. 2439657 Российская Федерация, МПК G06F 7/00. Устройство формирования кодовых словарей нелинейных рекуррентных последовательностей [Текст] / Сныткин И.И., Федосеев В.Е., Сныткин Т.И., Курляндчик Д.А. - №2009112944/08; заявл. 06.04.09; опубл. 10.01.12, Бюл. №1. - 2 с. ил.).

Оно содержит устройство формирования кодовых словарей нелинейных рекуррентных последовательностей (УФКС НЛРП), состоящее из блока формирования циклической последовательности символов (БФЦПС), блока формирования оптимальной последовательности (БФОП) и блока управления (БУ), причем БФЦПС состоит из узла дешифрации, включающего с первого по шестой элементы И, элемент задержки, сумматор по модулю два, первого мультиплексора и сдвигающего регистра, а информационные входы с первого по четвертый БФЦПС подключены соответственно к информационным входам с первого по четвертый сдвигающего регистра, с первого по четвертый прямые выходы которого подключены соответственно к прямым выходам БФЦПС, вход синхронизации которого подключен к входу синхронизации сдвигающего регистра, с первого по четвертый инверсные выходы которого подключены соответственно к инверсным выходам с первого по четвертый БФЦПС, шесть выходов (по числу длин НЛРП) шести элементов И узла дешифрации которого подключены ко входам первого мультиплексора, при этом «адрес дешифрации» поступает на другие входы первого мультиплексора, выход которого подключен ко входу элемента задержки, выход которого подключен к первому входу сумматора по модулю два, выход которого подключен к входу «режима» сдвигающего регистра, при этом БУ имеет вход «запуска» и вход «записи начального состояния», с первого по пятый входы «кода шифра словаря», с первого по четвертый входы «кода начальной фазы», причем входы «кода начальной фазы» объединены соответственно с прямыми выходами с первого по четвертый БФЦПС и подключены соответственно к входам режима с первого по четвертый второй группы БУ, при этом БУ содержит первый, второй и третий регистры, первый и второй счетчики, генератор тактовых импульсов, ключ и элемент ИЛИ, причем входы «кода шифра словаря» с первого по пятый первой группы БУ подключены соответственно к входам режима с первого по пятый первого регистра, выходы с первого по пятый которого подключены соответственно к входам с первого по пятый первого счетчика, выход переноса которого объединен с входом записи начального состояния и подключен к первым входам синхронизации первого и второго регистров, к первому информационному входу ключа, выход которого подключен к счетному входу первого счетчика, причем вход «запуска» БУ также подключен к первому входу элемента ИЛИ, к входу запуска генератора тактовых импульсов, выход которого подключен к управляющему третьему входу ключа и второму входу элемента ИЛИ, выход которого подключен к входу синхронизации первого счетчика и выходу БУ, входы режима с первого по четвертый второй группы которого подключены соответственно к входам с первого по четвертый второго регистра, выходы с первого по четвертый которого подключены соответственно к выходам с первого по четвертый БУ, входы «кода длинны НЛРП» с первого по пятый которого подключены к аналогичным входам «кода длины НЛРП» с первого по пятый третьего регистра, с первого по пятый выходы которого подключены к соответствующим входам второго счетчика, выход которого объединен с входом «запуска» и подключен ко вторым входам синхронизации первого, второго и третьего регистров, ко второму информационному входу ключа, а также к выходу «конец НЛРП» БУ, причем вход «запуска» БУ также подключен к счетному входу второго счетчика и второму входу элемента ИЛИ, выход которого подключен к входу синхронизации первого и второго счетчиков, при этом в состав БФОП входят с первого по одиннадцатый элементы ИЛИ, с седьмого по двадцать седьмой элементы И и второй мультиплексор, причем с первого по четвертый прямые и инверсные выходы БФЦПС соединены с БФОП и БУ так, что первый прямой выход БФЦПС объединен с первым входом «кода начальной фазы» и подключен к первому входу режима второго регистра БУ, к первому входу первого и второго элементов И узла дешифрации БФЦПС, к первому входу седьмого, восьмого, десятого и двадцать седьмого элементов И, третьему входу двадцать третьего элемента И и второму входу первого элемента ИЛИ БФОП, а первый инверсный выход БФЦПС подключен к первому входу третьего, четвертого, пятого, шестого, одиннадцатого и двадцать первого элементов И и к первому входу второго элемента ИЛИ БФОП, а второй прямой выход БФЦПС объединен со вторым входом «кода начальной фазы» и подключен ко второму входу режима второго регистра БУ, а также подключен к первому входу девятого, двенадцатого и семнадцатого элементов И, а также второму входу первого, третьего, пятого, седьмого и двадцать первого элементов И БФОП, а второй инверсный выход БФЦПС подключен к первым входам четырнадцатого, пятнадцатого и восемнадцатого элементов И, а также ко вторым входам четвертого и десятого элементов И, третий прямой выход объединен с третьим входом кода начальной фазы и подключен к третьему входу режима второго регистра БУ, а также подключен ко второму входу второго, двадцатого, двадцать шестого элементов И, первому входу тринадцатого элемента И, второму входу девятого элемента ИЛИ, третьему входу третьего элемента И и третьему входу сумматора по модулю два БФЦПС, третий инверсный выход которого подключен к первому входу девятнадцатого, двадцать второго и двадцать третьего элементов И, ко второму входу шестнадцатого, семнадцатого, двадцать четвертого и двадцать пятого элементов И, к третьему входу первого, второго, четвертого и шестого элементов И БФОП, а четвертый прямой выход объединен с четвертым входом «кода начальной фазы» и подключен к четвертому входу режима второго регистра БУ, а также подключен к первому входу двадцать четвертого элемента И, второму входу восьмого, одиннадцатого, тринадцатого и восемнадцатого элемента И, четвертому входу второго, третьего и четвертого элементов И БФОП и ко второму входу сумматора по модулю два БФЦПС, четвертый инверсный выход которого подключен к первому входу первого элемента ИЛИ и двадцатого элемента И, ко второму входу девятого, двенадцатого и четырнадцатого элементов И, а также к четвертому входу первого, пятого и шестого элементов И БФОП, при этом выход первого элемента ИЛИ подключен ко второму входу шестнадцатого элемента И, выход которого подключен к первому входу третьего элемента ИЛИ, выход которого подключен к первому входу второго мультиплексора, выход седьмого элемента И подключен ко второму входу пятого элемента ИЛИ, выход которого подключен к третьему входу второго мультиплексора, выход семнадцатого элемента И подключен к первому входу пятого элемента ИЛИ, выход двадцать четвертого элемента И подключен ко второму входу четвертого элемента ИЛИ, выход которого подключен ко второму входу второго мультиплексора, выход восьмого элемента И подключен к первому входу четвертого элемента ИЛИ и ко второму входу пятого элемента ИЛИ, выход второго элемента ИЛИ подключен к первому входу двадцать пятого элемента И, выход которого подключен к первому входу шестого элемента ИЛИ, выход которого подключен к четвертому входу второго мультиплексора, выход девятого элемента И подключен ко второму входу третьего и шестого элемента ИЛИ, а также ко второму входу двадцать третьего элемента И, выход восемнадцатого элемента И подключен ко второму входу второго элемента ИЛИ, выход десятого элемента ИЛИ подключен к первому входу двадцать шестого элемента И и седьмого элемента ИЛИ, выход которого подключен к пятому входу второго мультиплексора, выход одиннадцатого элемента И подключен ко второму входу седьмого элемента ИЛИ и девятнадцатого элемента И, выход которого подключен к первому входу восьмого элемента ИЛИ, выход которого подключен к шестому входу второго мультиплексора, выход двадцатого элемента И подключен ко второму входу восьмого элемента ИЛИ, выход двенадцатого элемента И подключен третьему входу восьмого элемента ИЛИ и к первому входу девятого элемента ИЛИ, выход которого подключен ко второму входу двадцать седьмого элемента И, выход двадцать первого элемента И подключен к первому входу десятого элемента ИЛИ, выход которого подключен к седьмому входу второго мультиплексора, выход тринадцатого элемента И подключен ко второму входу десятого элемента ИЛИ и пятнадцатого элемента И, выход двадцать второго элемента И подключен к третьему входу десятого элемента ИЛИ, выход четырнадцатого элемента И подключен к третьему входу девятого элемента ИЛИ и ко второму входу двадцать второго элемента И, выход двадцать третьего элемента И подключен ко второму входу одиннадцатого элемента ИЛИ, выход двадцать шестого элемента И подключен к третьему входу четвертого элемента ИЛИ, выход девятого элемента ИЛИ подключен ко второму входу двадцать седьмого элемента И, выход которого подключен к первому входу одиннадцатого элемента ИЛИ, выход пятнадцатого элемента И подключен ко второму входу одиннадцатого элемента ИЛИ, выход которого подключен к восьмому входу второго мультиплексора, на другие входы которого поступает «код вида НЛРП», а его выход подключен к «выходу НЛРП» устройства, с которого снимается генерируемая простая нелинейная ПСП.

Указанные существенные признаки данного устройства [12] являются, сходными с совокупностью существенных признаков заявляемого устройства, причем, заявляемое устройство содержит 2 данных устройства с полной совокупностью указанных признаков каждого устройства.

Однако известное устройство-прототип [12] обеспечивает формирование простых НЛРП в программно управляемых режимах длительностей L=8, 10, 11, 12, 13, 16 (всего m=6 - число различных длительностей) и всевозможных их кодовых автоморфных и изоморфных преобразований (форм), тогда как для формирования СДК ПНЛРП необходимо управляемое генерирование большого числа различных видов, подвидов и объемов СДК ПНЛРП согласно правила (2) и модели на фиг. 1. А именно:

1) «Видами» СДК ПНЛРП являются различные сочетания C m n длительностей lj в правиле (2), где n=2 (для двукратных ПНЛРП), а m=6 - число различных lj в (2) (всего число видов равно C 6 2 = 15 ): 1-й вид: (8×10); 2-й вид: (8×11); 3-й вид: (8×12); 4-й вид: (8×13); 5-й вид: (8×16); 6-й вид: (10×11); 7-й вид: (10×12); 8-й вид: (10×13); 9-й вид: (10×16); 10-й вид: (11×12); 11-й вид: (11×13); 12-й вид: (11×16); 13-й вид: (12×13); 14-й вид: (12×16); 15-й вид: (13×16), - то есть число видов ДК ПНЛРП Vв=15.

2) «Подвидами» каждого k-го вида ( k = 1,15 ¯ ) ДК ПНЛРП являются различные сочетания кодовых форм (авто- и изоморфных преобразований) простых НЛРП данного вида. Число подвидов V П В k , k = 1,15 ¯ , каждого k-го вида определяется, учитывая, что для НЛРП длительностей L=(10,12) имеется N и з 1,2 = 2 [ 2,12 ] и следуя (3), числом указанных преобразований каждой (l1 и l2) производящей НЛРП:

и тогда число подвидов для каждого вида ПНЛРП, учитывая, что устройство-прототип обеспечивает формирование 2-х неинверсно-изоморфных (НИ) преобразований для НЛРП с l=10 и l=12 есть:

Таким образом, общее (суммарное, ∑) число подвидов ДК ПНЛРП, V П В Σ , которые возможно обеспечить равно: V П В Σ = Σ i = 1 24 V П В i = 3439 , то есть в 1,7 раза больше возможных подвидов кодовых форм, чем для НЛРП близких по длительности. При этом следует учесть, что такое число кодовых форм ДК ПНЛРП обеспечивается для длительностей ДК ПНЛРП соответственно: LПНЛРП=(40, 88, 24, 104, 16, 110, 60, 130, 80, 132, 143, 176, 156, 48, 208), то есть в диапазоне длительностей L={16…208}. Формирование такого же числа длин L и в том же диапазоне и объема V П В Σ кодовых форм в виде простых НЛРП потребовало бы создания технических решений, подобных прототипу, которые по сложности их создания и объему простейших логических элементов на несколько порядков превышали бы устройство-прототип, так как число устройств, подобных прототипу, будет равно числу требуемых кодовых форм VСП и длительностей L ДК ПНЛРП. Это приведет не только к значительным аппаратным затратам, но и осложнит существенно реализацию централизованного оперативного управления процессом смены кодовых форм и длин ПНЛРП. Тогда как согласно модели на фиг. 1 для генерирования СДК ПНЛРП необходимо лишь два базовых одинаковых устройства формирования НЛРП и соответствующий системный блок управления (СБУ), как показано на фиг. 2, обеспечивающий смену кодовых форм простых НЛРП.

Технической задачей изобретения является программно-управляемое (с точки зрения выбора видов, подвидов, текущих длин, кодовых форм, объема кодового словаря) формирование СДК ПНЛРП, на основе характеристических кодов и кодов квадратичных вычетов различных длин из набора значений L={8, 10, 11, 12, 13, 16}, достигаемое применением одного функционально законченного устройства.

Технический результат, достигаемый при реализации изобретения, заключается в возможности генерирования СДК ПНЛРП (в программно-управляемом режиме) объемом кодовых форм, равным V П В Σ = 3439 , и в диапазоне длин L=(16, 24, 40, 48, 60, 80, 88, 104, 110, 130, 132, 143, 156, 176, 208), при значительном сокращении аппаратных затрат на построение устройства формирования возможно такого же объема кодовых форм разных длин в этом же диапазоне, но только в виде НЛРП, за счет интеграции в одном устройстве функциональных возможностей двух идентичных устройств формирования простых НЛРП, а также обеспечение возможности программного управления процессом смены видов и подвидов, объемов, длин и кодовых форм СДК ПНЛРП, что крайне актуально для значительного повышения скрытности, имитостойкости широкополосных систем с адаптивно изменяемой структурой и базой ШПС.

Применение изобретения обеспечивает повышение помехоустойчивости, адаптивности, скрытности и имитостойкости широкополосных систем за счет увеличения объема Vсп сменных параметров кодового словаря посредством использования в программно-управляемом режиме СДК ПНЛРП, получаемых из простых НЛРП разных форм и длин.

Сущность изобретения заключается в том, что устройство формирования СДК ПНЛРП содержит известное устройство формирования кодовых словарей НЛРП (УФКС ПНЛРП) и с целью реализации возможности формирования СДК ПНЛРП объемом кодовых форм, равным V П В Σ = 3439 , в диапазоне длин L=(16, 24, 40, 48, 60, 80, 88, 104, 110, 130, 132, 143, 156, 176, 208) введены второе идентичное УФКС НЛРП, двухвходовый элемент И, выход которого является выходом «конец ПНЛРП» устройства, двухвходовый сумматор по модулю два, выход которого является выходом ПНЛРП устройства, системный блок управления (СБУ), состоящий из системного дешифратора «вида ПНЛРП», системного дешифратора «подвида ПНЛРП» и первого и второго счетчиков, причем выход «НЛРП» первого и выход «НЛРП» второго УФКС НЛРП являются соответствующими выходами НЛРП-1 и НЛРП-2 первого и второго УФКС НЛРП и подключены соответственно к первому и второму входам двухвходового сумматора по модулю два, а вход «запуска» и вход «записи начального состояния» первого и аналогичные входы второго УФКС НЛРП соответственно объединены и подключены соответственно к входу «запуска» и входу «записи начального состояния» устройства, а входы с первого по четвертый «кода вида ПНЛРП» и входы с первого по одиннадцатый «кода подвида ПНЛРП» устройства являются соответствующими входами соответственно системного дешифратора «вида ПНЛРП» и системного дешифратора «подвида ПНЛРП» и соответствующими входами СБУ, первый и второй выходы «конец ПНЛРП» которого подключены соответственно к первому и второму входам двухвходового элемента И и соответственно к выходу переноса первого и выходу переноса второго счетчиков, счетные входы которых подключены соответственно к входам «конец НЛРП-1» и «конец НЛРП-2» СБУ и к выходам «конец НЛРП» соответственно первого и второго УФКС НЛРП, а синхронизирующие входы первого и второго счетчиков подключены соответственно к первому и второму синхронизирующим входам СБУ и подключены соответственно к синхронизирующим выходам первого и второго УФКС НЛРП и подключены соответственно к выходу элемента ИЛИ БУ первого и к выходу элемента ИЛИ БУ второго УФКС НЛРП, входы «код длины НЛРП» с первого по пятый, входы «код вида НЛРП» и входы «адреса дешифрации» которых соответственно подключены к соответствующим выходам «код длины НЛРП-1» с первого по пятый, «код длины НЛРП-2» с первого по пятый, «код вида НЛРП-1», «код вида НЛРП-2» и «адреса дешифрации НЛРП-1», «адреса дешифрации НЛРП-2» первого системного дешифратора «вида ПНЛРП», выходы «код числа НЛРП-1» с первого по четвертый и выходы «код числа НЛРП-2» с первого по четвертый которого подключены соответственно к установочным входам с первого по четвертый соответственно первого и второго счетчиков, а входы «кода начальной фазы» с первого по четвертый и входы «кода шифра словаря» с первого по пятый первого и второго УФКС НЛРП подключены соответственно к выходам «код начальной фазы НЛРП-1» с первого по четвертый, «код начальной фазы НЛРП-2» с первого по четвертый и выходам «код шифра словаря НЛРП-1» с первого по пятый, «код шифра словаря НЛРП-2» с первого по пятый второго системного дешифратора «подвида ПНЛРП».

Технический результат изобретения обеспечивается за счет наличия существенных отличительных признаков и новых связей в устройстве, а именно, за счет введения второго идентичного устройства формирования кодовых словарей нелинейных рекуррентных последовательностей (УФКС НЛРП), двухвходового элемента И, выход которого является выходом «конец ПНЛРП» устройства, двухвходового сумматора по модулю два, выход которого является выходом ПНЛРП устройства, системного блока управления (СБУ), состоящего из системного дешифратора «вида ПНЛРП», системного дешифратора «подвида ПНЛРП» и первого и второго счетчиков, а также за счет введения соответствующих новых связей между СБУ и обоими УФКС НЛРП, что и позволяет реализовать возможность генерирования СДК ПНЛРП в программно-управляемом режиме объемом кодовых форм, равным V П В Σ = 3439 , и в диапазоне длин L=(16, 24, 40, 48, 60, 80, 88, 104, 110, 130, 132, 143, 156, 176, 208).

Описание устройства

На фиг. 1 представлена модель совместного использования 2-х устройств формирования простых НЛРП для формирования двукратных ПНЛРП.

На фиг. 2 представлена модель структурной схемы устройства формирования ДК ПНЛРП посредством совместного использования 2-х устройств формирования простых НЛРП с системным блоком управления, который обеспечивает смену кодовых форм простых НЛРП.

На фиг. 3 представлена функциональная электрическая схема одного из 2-х идентичных устройств формирования кодовых словарей НЛРП (УФКС НЛРП) (длительностей {li}={8, 10, 11, 12, 13, 16}), которое содержит: блок 55 формирования циклической последовательности символов в составе: первый мультиплексор 1, элемент 2 задержки, сумматор по модулю два 3, узел 4 дешифрации, состоящий из шести элементов И 5-10 с первого по шестой соответственно, сдвигающий регистр 11; блок 12 формирования оптимальной последовательности, состоящий из двадцати одного элемента И 14-24, 26-33, 39, 43 с седьмого по двадцать седьмой соответственно, одиннадцати элементов ИЛИ 13, 25, 34-38, 40-42, 44 с первого по одиннадцатый соответственно, второй мультиплексор 45; блок 46 управления, состоящий из регистров 47, 49, 52, счетчики 53 и 54, элемент ИЛИ 48, ключ 51 и генератор 50 тактовых импульсов.

На фиг. 4 представлена функциональная электрическая схема в целом устройства формирования СДК ПНЛРП, которое содержит: первое 56 и второе 63 УФКС НЛРП, первый 57 и второй 62 счетчики, элемент 58 И, сумматор 59 по модулю два, системный дешифратор 60 «подвида» ПНЛРП, системный дешифратор 61 «вида» ПНЛРП, - с соответствующими связями.

Описание работы УФКС НЛРП

На фиг. 5, 6, 7, 8, 9, 10 - представлены таблицы истинности состояний УФКС НЛРП и другая дополнительная информация, поясняющие его работу по формированию кодовых словарей НЛРП длительностей {li}=8, 10, 10НИ, 11, 12, 12НИ, 13, 16. Как видно из значений {li}, данные НЛРП генерируются одним 4-разрядным регистром сдвига, т.к. {li}≤2n, n=4. Следуя правилу (2) построения НЛРП данных длительностей, УФКС НЛРП формирует различные автоморфизмы (циклические сдвижки) следующих, помещенных в таблице 1, неинверсно-изоморфных кодовых форм НЛРП указанных выше длительностей (смотри табл.1) в следующих 3-х режимах:

1) режим формирования одной НЛРП заданной кодовой формы и длительности;

2) режим формирования кодовых словарей из НЛРП одной фиксированной длительности;

3) режим формирования кодовых словарей из НЛРП различных форм и длительностей.

1. Режим формирования одной НЛРП заданной кодовой формы и длительности. В первый тактовый момент на информационные входы с первого по пятый третьего регистра 52 блока 46 управления подают код длины НЛРП (код длины - это исходное состояние второго счетчика 53, которое после числа счетных импульсов, равного длине l НЛРП, даст на выходе импульс переполнения, например, для длительности НЛРП l=10 (фиг. 5) это код "10101"), на информационные входы кода начальной фазы блока 46 управления подают код начальной фазы для сдвигающего регистра 11. Данные коды записываются соответственно в регистры 52 и 47 по синхроимпульсу «запись исходного состояния», подаваемому на вход установки в исходное состояние блока 46 управления и далее поступающему на первый вход синхронизации регистра 52 и регистра 47. Во второй тактовый момент на вход запуска блока 46 подают импульс «начало работы», который, проходя на вход запуска генератора 50 тактовых импульсов, запускает его, а также, проходя на вторые входы синхронизации регистров 52 и 47, обеспечивает считывание соответственно кода длины НЛРП из регистра 52 в счетчик 53, а кода начальной фазы из регистра 47 - в сдвигающий регистр 11, а проходя через элемент ИЛИ 48 на вход синхронизации счетчика 53 блока 46 и на вход синхронизации сдвигающего регистра 11, обеспечивает соответственно запись кода длины НЛРП в счетчик 53 (как его исходного состояния) и кода начальной фазы в сдвигающий регистр 11, одновременно код начальной фазы получают на прямых выходах с первого по четвертый сдвигающего регистра 11.

В тот же первый тактовый момент на входы дешифрации первого мультиплексора 1 подают код, задающий подключение на его выход сигнала с определенного выхода элемента И 5 узла 4 дешифрации, соответствующего определенной длительности l формируемой НЛРП (так, длительностям l=8, l=10, l=11, l=12, l=13, l=16 соответствуют элементы И 5, 6, 7, 8, 9, 10). Таким образом, между выходами сдвигающего регистра 11 и его входом режима V образуется цепочка линейно-нелинейной обратной связи (функции внутренней логики), состоящая из определенного элемента И 5, 6, 7, 8, 9, 10 узла 4 дешифрации, элемента 2 задержки и сумматора 3 по модулю два, которая отвечает за циклическое повторение состояний сдвигающего регистра 11 через число тактов, равное определенной длительности l НЛРП. В тот же первый тактовый момент на входы адреса второго мультиплексора 45 подают код вида НЛРП, соответствующий подключению на выход этого мультиплексора, т.е. на выход всего устройства, информации с определенного входа Хв второго мультиплексора 45 блока 12 формирования оптимальной последовательности, соответствующего определенному виду НЛРП. Вид НЛРП определяет как ее длительность l, так и неинверсно-изоморфное (НИ) преобразование НЛРП определенной длительности. Как было указано ранее, одно НИ-преобразование характерно для НЛРП длительностей l=12 и l=10.

Таким образом, между выходами сдвигового регистра 11 и выходом второго мультиплексора 45, т.е. выходом устройства, образуется цепочка внешней логики (функции внешней логики), состоящая из определенного набора элементов блока 12 формирования оптимальной последовательности и отвечающая за формирование определенного вида НЛРП (Хв) и определенной циклической последовательности состояний сдвигового регистра 11.

В последующие тактовые моменты, начиная с третьего, импульсы с генератора 50 тактовых импульсов поступают на вход сдвигового регистра 11 и обеспечивают последовательное изменение его состояний в соответствии с установленной функцией внутренней логики, соответствующей определенной длительности l НЛРП, так что начиная с (3+1)-го такта состояния разрядов регистра 11 будут повторяться. При этом формирование оптимальной НЛРП установленной длительности обеспечивается с помощью соответствующих элементов блока 12 формирования оптимальной последовательности, задающих логическую функцию внешней логики, соответствующую установленному виду НЛРП. Необходимо заметить, что функциональная схема блока 12 формирования оптимальной последовательности минимизирована с учетом повторяющихся общих для определенных видов НЛРП простейших элементов логической функции внешней логики (импликант). Поэтому работу данного блока необходимо рассматривать с учетом этого замечания.

Начиная с 3-го такта импульсы с генератора 50 тактовых импульсов, поступают на счетный вход счетчика 53, синхронизация счета при этом обеспечивается импульсами, поступающими на вход синхронизации счетчика 53 с выхода элемента ИЛИ48. После того как на вход счетчика 53 поступит l импульсов, на его выходе появится импульс переполнения, который поступит на выход «конец НЛРП» блока 46 управления, сигнализируя о том, что закончилось формирование одной НЛРП.

Данный цикл работы может повторяться, начиная с «3+l»-го тактового момента, что обеспечивается подачей «кода шифра словаря» на входы кода шифра словаря блока 46 управления.

2. Режим формирования кодовых словарей НЛРП одной фиксированной длительности. Объем словаря НЛРП определенной длительности l=const определяется числом ее авто- и изоморфных преобразований. Как указывалось ранее, для НЛРП с l=8, l=11, l=13, l=16 имеется лишь один неинверсный изоморфизм, остальные преобразования являются автоморфными и по существу представляют собой циклические сдвиги неинверсного изоморфизма (число сдвигов равно величине l). Для НЛРП с l=10 и l=12 имеется два неинверсно-изоморфных (НИ) преобразования, соответствующих изменению тонкой внутренней структуры НЛРП, а именно ХВ={l10 НИ} и ХВ={l12 НИ}, т.е. автоморфные преобразования для ХВ=l10 и XB=l10 НИ, а также для XB=l12 и XB=l12 ни будут различными. Таким образом, формирование кодового словаря НЛРП определенной длительности будет означать формирование других автоморфных преобразований для НЛРП: ХВ=l8, ХВ=l10, ХВ=l10 НИ, ХВ=l11, ХВ=l12, XB=l12 НИ XB=l13, XB=l16.

Следуя таблицам истинности (пример для l=10 приведен на фиг. 5), для формирования автоморфных НЛРП определенной длительности достаточно обеспечить начало формирования данной НЛРП не с исходной начальной фазы сдвигового регистра 11, установленной в начале работы устройства (т.е. не с фазы, соответствующей такту 2 на фиг. 5), а с такой фазы, которая соответствует какому-либо промежуточному состоянию сдвигового регистра 11 (по таблице истинности фиг. 5 это соответствует тактам с 3-го по «l+1»-й). Выбор в качестве начальной фазы любого промежуточного состояния сдвигового регистра 11 не нарушает цикличности (с периодом 1) его работы, которая не зависит от начальной фазы, выбранной из набора значений в соответствующей для l таблице истинности.

Характер же словаря НЛРП определенной длительности (l=const) будет зависеть от того, какая начальная фаза устанавливается в сдвиговом регистре 11 после формирования определенной (предыдущей) НЛРП данной длительности l. Таким образом, порядок чередования (выбора) начальных фаз будет определять вид формируемого словаря НЛРП определенной длительности. Он может состоять только из одной постоянно формируемой НЛРП, только из 2-х постоянно формируемых НЛРП, только из 3-х постоянно формируемых НЛРП и т.д. и в конце концов из "l" НЛРП. Чем сложнее порядок чередования начальных фаз, тем выше имитостойкость и криптоустойчивость словаря НЛРП. Оптимальным в этом смысле будет словарь, построенный по принципу псевдослучайного чередования НЛРП. Однако в любом конкретном случае должна иметься возможность изменять этот порядок посредством оператора либо внешнего программного устройства управления. Данная возможность реализована в заявляемом устройстве с помощью блока 46 управления, в котором заложен принцип запоминания в регистре 47 промежуточного состояния сдвигового регистра 11 в соответствии с кодом шифра словаря. Так, например, в 1-й тактовый момент через вход кода шифра словаря блока 46 управления в регистр 49 записывают код цифры 5 («00101»). Это означает, что в регистре 47 после начала формирования первой НЛРП будет запомнено «l-5»-е промежуточное состояние сдвигового регистра 11 (так, по таблице истинности на фиг. 5 для l=10 это будет состояние «0011»). Затем после окончания формирования первой НЛРП это запомненное промежуточное состояние будет считано из регистра 47 опять в сдвиговый регистр 11, но уже в качестве его начальной фазы. Затем начнется процесс формирования другой НЛРП данной длительности, и если к этому моменту не был изменен код шифра словаря, то в последующем опять будет запоминаться в регистре 47 каждое «l-5»-е промежуточное состояние сдвигового регистра 11 и затем считываться в него в качестве начальной фазы. Понятно, что спустя l циклов данный порядок чередования по принципу «каждая «l-5»-я фаза» переберет все возможные начальные фазы, так же как и любой другой порядок типа «каждая n-я фаза», где n=1, 2…, l. Таким образом, числом n в законе «каждая n-я фаза» закладывается порядок чередования начальных фаз, т.е. порядок чередования НЛРП в словаре.

В данном режиме устройство работает следующим образом. В 1-й тактовый момент на вход записи начального состояния блока 46 управления подают сигнал, который поступает на первый вход синхронизации регистра 49 и разрешает запись в этот регистр кода шифра словаря в виде двоичного кода ключевой цифры (например «5»-«00101»). Этот же сигнал, поступая на первый вход ключа 51, закрывает его. Во 2-й тактовый момент на вход запуска блока 46 подают синхроимпульс «начало работы», который поступает на второй вход ключа 51 и открывает его, а также поступает на второй вход синхронизации регистра 49 и через элемент ИЛИ 48 на вход синхронизации счетчика 54, при этом обеспечивая считывание из регистра 49 в счетчик 54 кода цифры «5» (00101). Так же, как было описано ранее для режима формирования одной НЛРП, в данном режиме в 1-й и 2-й тактовый момент параллельно готовятся первый мультиплексор 1 и второй мультиплексор 45, регистр 52 и счетчик 53. В 3-й тактовый момент вместе с началом формирования первой НЛРП тактовые импульсы с генератора 50 тактовых импульсов поступают на счетный вход счетчика 53, через открытый ключ 51 на счетный вход счетчика 54, а через элемент ИЛИ 48 - на вход синхронизации счетчика 54 и счетчика 53. Так как в счетчике 54 было записано состояние «5» (00101), то через (l-5) тактов на его выходе появится импульс переполнения, который поступит на первый вход ключа 51 и закроет его, а поступит на первый вход синхронизации регистра 49 и в случае изменения кода шифра словаря обеспечит запись в регистр 49 кода другой цифры, а поступив на первый вход синхронизации регистра 47, обеспечит запись (l-5)-го промежуточного состояния сдвигового регистра 11. При этом поступление импульса переполнения на первый вход синхронизации регистра 52 не изменит его состояния, так как на входы кода длины НЛРП блока 46 новая информация не поступала. Если код шифра словаря не изменялся, то состояние регистра 49 в этот тактовый момент не изменится. Через l тактовых импульсов, поступающих с генератора 50 тактовых импульсов, в (l+2)-й тактовый момент на выходе счетчика 53 появится импульс переполнения, который поступит на второй вход ключа 51 и откроет его, а также поступит на второй вход синхронизации регистра 49 и обеспечит поступление кода шифра словаря (в данном случае - цифры 5) с выходов регистра 49 на входы счетчика 54, а также поступит на второй вход синхронизации регистра 47 и обеспечит поступление с выходов регистра 47 кода начальной фазы на входы сдвигового регистра 11. Таким образом, в (l+2)-й тактовый момент заканчивается формирование первой НЛРП и все устройство подготавливается для формирования последующей НЛРП из данного словаря.

С (3+l)-го тактового момента начинается формирование НЛРП, определяемой той начальной фазой, которая в (l-5+2)-й тактовый момент была промежуточным состоянием сдвигового регистра 11 (как показывалось ранее на фиг. 5). Так, для ХВ={l10} это будет НЛРП µ=1001001110. То есть эти НЛРП будут представлять (l-5)-символьный сдвиг влево исходных НЛРП (неинверсного изоморфизма), показанных в столбце (Xn) на фиг. 5.

Таким образом, процесс формирования НЛРП будет продолжаться по ранее описанному принципу так, что через каждые l тактов будет формироваться новая НЛРП, сдвинутая от предыдущей НЛРП влево на (l-5) символов.

По усмотрению оператора или по команде программных средств устройства в целом в любой момент на входы кода шифра словаря и далее в регистр 49 подают новый код шифра словаря (например, любая цифра K<l), который после окончания формирования текущей НЛРП обеспечит формирование такого словаря НЛРП, в котором каждая следующая последовательность будет отличаться от предыдущей сдвигом влево на (l-k) тактов. Процесс формирования НЛРП будет таким же, какой был описан ранее, за исключением того, что импульс переполнения с выхода счетчика 54 будет появляться спустя (l-k) тактовых импульсов, а соответственно, запоминаться в регистре 47 будет (l-k)-e промежуточное состояние сдвигового регистра 11 после начала формирования НЛРП.

Характер формируемых словарей НЛРП фиксированной длительности l=const может определяться в процессе работы оператором (или программными средствами устройства в целом) посредством смены кода шифра словаря (кода цифр k<1), подаваемого на входы кода шифра словаря блока 46 управления.

3. Режим формирования кодовых словарей НЛРП различных форм и длительностей. Данный режим отличается от предыдущего тем, что оператор или программные средства устройства в целом по некоторому заданному закону в период формирования какой-либо НЛРП на входы кода длины НЛРП регистра 52 блока 46 управления подают коды новых длин НЛРП, отличные от длины формируемой последовательности. Синхронизация записи при этом может осуществляться принудительно посредством подачи импульса на вход установки исходного состояния блока 46 управления, который далее поступает на первый вход синхронизации регистра 52. Однако в этом случае в регистре 47 будет запоминаться произвольная фаза состояния сдвигового регистра 11, т.е. будет нарушаться закон «каждая n-я фаза», и для его восстановления или изменения необходимо записать код шифра словаря. Синхронизация записи в регистр 52 нового кода длины НЛРП также может осуществляться посредством импульса переполнения с выхода счетчика 54. Считывание нового кода из регистра 52 и его запись в счетчик 53 синхронизируется импульсом переполнения счетчика 53, появляющегося на его выходе по окончании формирования предыдущей НЛРП. Этим же импульсом переполнения, который появляется также на выходе «конец НЛРП» блока 46 управления, синхронизируется подача внешними управляющими программными средствами новых кодов вида НЛРП на входы второго мультиплексора 45 и адреса дешифрации на входы первого мультиплексора 1. В соответствии с новой длительностью l формируемой НЛРП данные коды изменяют структуру цепочки линейно-нелинейной обратной связи сдвигового регистра 11 и блока 12 формирования оптимальной последовательности (как было описано для режима 1). Таким образом, в следующий тактовый момент начинается формирование НЛРП другой длительности и обеспечивается непрерывное формирование НЛРП различных длин l, то есть формирование словаря из НЛРП различных длительностей.

Описание работы устройства в целом

Устройство в целом может работать в 3-х режимах, которые по своей сущности обеспечиваются реализацией соответствующих режимов работы УФКС НЛРП:

1) Режим формирования одного и того же подвида ДК ПНЛРП (обеспечивается 1-м режимом работы обоих УФКС НЛРП - режимом формирования одной НЛРП, НЛРП-1 и НЛРП-2 заданных кодовой формы и длительности, соответствующих 1-му и 2-му УФКС НЛРП);

2) Режим формирования различных подвидов одного и того же вида ПНЛРП (обеспечивается вторым режимом работы обоих УФКС НЛРП - режимом формирования, соответствующих 1-му и 2-му УФКС НЛРП, кодовых словарей НЛРП-1 и НЛРП-2 одной фиксированной соответственно li и lj длительностей);

3) Режим формирования различных подвидов и видов ДК ПНЛРП (обеспечивается 3-м режимом работы обоих УФКС НЛРП - режимом формирования, соответствующих 1-му и 2-му УФКС НЛРП, кодовых словарей НЛРП-1 и НЛРП-2 различных форм и длительностей).

Режим формирования одного и того же подвида ДК ПНЛРП.

В этом режиме 1-е и 2-е УФКС НЛРП работают в своем 1-м режиме - формирования одной НЛРП заданной кодовой формы и длительности, описанном выше.

Начинается работа устройства в целом с подачи на его соответствующие входы «кода вида ПНЛРП» (число этих входов определяется числом возможных видов ДК ПНЛРП - VB=15, отсюда число этих выходов равно 4, так как 24=16>15) и «кода подвида ПНЛРП» (число этих входов определяется числом возможных подвидов ПНЛРП V П В Σ = 3439 , отсюда число этих входов равно 12, так как 212=4096>3439).

На основании этих поданных кодов:

1) системный дешифратор 60 подвида ПНЛРП формирует на своих соответствующих выходах «код начальной фазы НЛРП-1», «код шифра словаря НЛРП-1» - для 1-го УФКС НЛРП и «код начальной фазы НЛРП-2», «код шифра словаря НЛРП-2» - для 2-го УФКС НЛРП, и подает эти коды на соответствующие входы 1-го и 2-го УФКС НЛРП.

2) системный дешифратор 61 вида ПНЛРП формирует:

на своих соответствующих выходах «адрес дешифрации», «код длины НЛРП-1», «код вида НЛРП-1» - для 1-го УФКС НЛРП и «адрес дешифрации», «код длины НЛРП-2», «код вида НЛРП-2» - для 2-го УФКС НЛРП, и подает эти коды на соответствующие входы 1-го и 2-го УФКС НЛРП;

на своих выходах «код числа НЛРП-1» и «код числа НЛРП-2», которые поступают на входы записи исходного состояния (p1, р2,.р3, p4) соответственно первого 57 и второго 62 счетчиков. Так как число «укладывающихся» НЛРП-1 и НЛРП-2 в длине L ДК ПНЛРП определяется видом ПНЛРП, то максимальным это число будет для ДК ПНЛРП вида №15, длительности L=13×16=208, равным 16, отсюда число установочных входов для счетчиков 57 и 62 и равно 4, так как 24=16.

После этого на вход «записи исходного состояния» устройства поступает соответствующий импульс, который проходит на аналогичные входы 1-го и 2-го УФКС НЛРП.

На основании поступивших (выше указанных) кодов и импульса на 1-е и 2-е УФКС НЛРП в последних осуществляются подготовительные операции, описанные выше (при описании работы УФКС НЛРП).

В следующий момент на вход «запуска» устройства поступает импульс запуска, который проходит на аналогичные входы «запуска» 1-го и 2-го УФКС НЛРП, обеспечивая начало работы последних по генерированию соответственно НЛРП-1 и НЛРП-2 согласно выше приведенному описанию, и (пройдя элементы 48 ИЛИ обоих УФКС НЛРП) поступает на синхровыходы 1-го и 2-го УФКС НЛРП и соответственно - на синхровходы (с) счетчиков 57, 62, обеспечивая в этом момент запись в эти счетчики соответственно «кода числа НЛРП-1» и «кода числа НЛРП-2». С этого момента и начинается процесс генерирования ПНЛРП соответствующих вида и подвида, а именно:

с выхода НЛРП-1 1-го УФКС НЛРП и выхода НЛРП-2 2-го УФКС НЛРП поступают синхронно (что обеспечивается генераторами 50 обоих устройств вместе с синхроимпульсами на синхровходы (с) счетчиков 57, 62) кодовые последовательности НЛРП-1 и НЛРП-2, которые поступают соответственно на первый и второй входы сумматора 59 по модулю два, с выхода которого (как выхода ПНЛРП устройства) выходит ПНЛРП;

в соответствующие моменты окончания генерирования первой НЛРП-1 длительности li и генерирования первой НЛРП-2 длительности lj (вместе с последним символом этих последовательностей) на выходах «конец НЛРП» 1-го и 2-го УФКС НЛРП появляется импульс, который поступает на счетные входы (+1) соответственно счетчиков 57 и 62; со следующих, соответствующих li и lj, моментов начинается генерирование вторых НЛРП-1 и НЛПР-2; и т.д. - до момента окончания формирования (генерирования) ПНЛРП;

момент окончания генерирования ПНЛРП фиксируется (совпадает) с моментом появления одновременно импульсов переполнения (переноса) с выходов счетчиков 57 и 62, эти импульсы поступают на первый и второй входы элемента 58 И и далее на выход «конец ПНЛП» устройства. На этом заканчивается один цикл формирования ПНЛРП. Данный режим в следующем цикле может повторятся с (3+L) тактового момента при подаче оператором или внешним программным устройством одних и тех же «кодов вида ПНЛРП» и «кодов подвида ПНЛРП» на соответствующие входы устройства и соответствующих дешифраторов 61, 60.

Режим формирования различных подвидов и одного и того же вида ПНЛРП.

В этом режиме 1-е и 2-е УФКС НЛРП работают в своем 2-м режиме - формирования кодовых словарей НЛРП одной фиксированной длительности, описанной выше. Работа устройства в целом в этом режиме отличается от работы устройства в предыдущем режиме только тем, что с каждым новым циклом формирования ПНЛРП на входы системного дешифратора 60 подвида ПНЛРП оператором или внешним программным устройством подается другой «код подвида ПНЛРП» при сохранении подачи одного и того же «кода вида ПНЛРП» на входы системного дешифратора 61 вида ПНЛРП.

Режим формирования различных подвидов и видов ПНЛРП.

В этом режиме 1-е и 2-е УФКС НЛРП работают в своем 3-м режиме - формирования кодовых словарей НЛРП различных форм и длительностей, описанном выше. Работа устройства в целом в этом режиме отличается от работы устройства в предыдущем режиме только тем, что с каждым новым циклом формирования ПНЛРП оператором или внешним программным устройством подаются (отличные от предыдущего цикла) другие «код подвида ПНЛРП» и «код вида ПНЛРП» на входы системных дешифраторов соответственно 60 и 61.

Системные дешифраторы 60 и 61 (и их принципиальные схемы) строятся, как и любые другие дешифраторы, как комбинационные схемы (на основе составления таблиц переключений или булевых функций истинности), имеющие (Х01,…, Xn) входящих и (У01,…, Уm) выходных переменных n≠m. Техническая реализация дешифраторов осуществляется на или простейших логических элементах И, ИЛИ, НЕ как импульсные параллельные многоступенчатые (или 2-х ступенчатые) прямоугольные схемы, или на основе использования постоянных запоминающих устройств (ПЗУ), или на основе использования одной интегральной схемы, применяя программируемую логическую матрицу (ПЛМ) [13, 14]. Системные дешифраторы 60 и 61 являются преобразователями кодов, осуществляющими преобразование двоичного (двоично-десятичного) кода, формируемого на входных шинах (X0,X1,…, Xn) в двоичный код на выходных шинах (У01,…, Уm), n≠m, и схемотехническое построение их можно осуществить по методике, излагаемой, например, в [13, 14] на стр. 318…324 ([13]) или на стр. 403…407 ([14]).

Так, для системного дешифратора 60 подвида ПНЛРП в качестве шин (Х01,…, Xn) входного кода выступают 11 входов (X0,X1,…, Х10) «кода подвида ПНЛРП», которые отражают двоичные коды десятичных чисел от 1 до 211, что позволяет кодировать V=3439 различных подвидов ПНЛРП. А в качестве выходных шин (У01,…, Уm) выступают две системы выходных шин (одна система - для 1-го УФКС НЛРП, другая - для 2-го УФКС НЛРП), каждая из этих систем шин состоит из 2-х групп шин, первая из которых (У0,.., У3), (У9,.., У12) имеет по 4 шины (выхода) и позволяет формировать соответственно 16 различных кодов начальной фазы НЛРП-1 и 16 различных кодов начальной фазы НЛРП-2 (эти коды берутся из таблиц истинности генераторов НЛРП, приведенных на фиг. 5…10), а вторые из которых (У4,…, У8), (У13,…,У17) имеют по 5 шин (выходов), числом тем самым соответствующим 25=32-м возможным видам, каждый вид отражается своим кодом словарей соответственно НЛРП-1, НЛРП-2. На основе этих данных и синтезируется принципиальная схема системного дешифратора 60.

Системный дешифратор 61 вида ПНЛРП имеет в качестве входных шин (входов) 4 входа (Х0, Х1, Х2, Х3), что позволяет в двоичном коде представлять 16 десятичных чисел, соответствующих 16-ти видам ПНЛРП. В качестве выходных шин (выходов) выступают 2 системы шин (выходов) для соответственно 1-го и 2-го УФКС НЛРП, каждая из которых состоит из 4-х групп выходных шин (выходов): первая группа состоит из 4-х выходов (У0,.., У3) и 4-х выходов (У22,.., У25), отражающих по 16 возможных кодов числа НЛРП-1 и НЛРП-2 в составе ПНЛРП; вторая группа состоит из 2-х выходов (У4, У5) и 2-х выходов (У20, У21), позволяющих формировать 4 (по числу различных длин НЛРП) кода вида НЛРП-1 и 4 кода вида НЛРП-2; третья группа состоит из 5 выходов (У6,…, У10) и 5 выходов (У14,…, У19), позволяющих формировать 32 кода длины соответственно НЛРП-1 и НЛРП-2; четвертая группа состоит из 2-х выходов (У11, У12) и 2-х выходов (У13, У14), позволяющих формировать 4 возможных адреса дешифрации для 1-го и 2-го УФКС НЛРП. На основе этих данных и синтезируется принципиальная схема дешифратора 61.

Источники информации

1. Варакин Л.Е. Системы связи с шумоподобными сигналами [Текст] - М.: Радио и связь, 1985. - 384 с.

2. Свердлик М.Б. Оптимальные дискретные сигналы [Текст] / М.Б. Свердлик - М.: Сов. радио, 1975. - 200 с.

3. Сныткин И.И. Теория и практическое применение сложных сигналов нелинейной структуры. Часть 2. [Текст] / И.И. Сныткин. - МО: 1989. - 148 с.

4. Сныткин И.И. Теория и практическое применение сложных сигналов нелинейной структуры. Часть 3. [Текст] / И.И. Сныткин. - МО: 1989. - 148 с.

5. Диксон Р.К. Широкополосные системы. Пер. с англ. / Под ред. В.И. Журавлева. - М.: Связь, 1979. 302 с.

6. Сныткин И.И. Модель сетевых помех и ошибок на первом (физическом) уровне пакетных радиосетей при использовании широкополосных шумоподобных сигналов в виде фазоманипулированных псевдослучайных последовательностей [Текст] / И.И. Сныткин, А.В. Спирин, Т.И. Сныткин. - М.: 2013. - Международный научно-технический и теоретический журнал «Нелинейный мир», №3, т. 11. - с. 186-191.

7. Сныткин И.И. Теоретическая концепция генерирования нелинейных рекуррентных последовательностей на основе регистров сдвига [Текст] / И.И. Сныткин, А.В. Спирин, Т.И. Сныткин. - М.: 2013. - Международный научно-технический и теоретический журнал «Нелинейный мир», №8, т. 11. - с. 531-539.

8. Сныткин И.И. Синтез автономных автоматов генерирования нелинейных рекуррентных последовательностей в виде дискретных циклических последовательностей [Текст] / И.И. Сныткин, Т.И. Сныткин. - М.: 2013. - Международный научно-технический и теоретический журнал «Нелинейный мир», №10, т. 11. - с. 702-708.

9. Сныткин И.И. Синтез автономных автоматов генерирования оптимальных нелинейных рекуррентных последовательностей заданных длительностей [Текст] / И.И. Сныткин, Т.И. Сныткин. - М.: 2013. - Международный научно-технический и теоретический журнал «Нелинейный мир», №11, т. 11. - с. 776-785.

10. Сныткин И.И. Методы и синтез аппаратных средств генерирования кодовых словарей нелинейных рекуррентных последовательностей фиксированной длительности [Текст] / И.И. Сныткин,, Т.И. Сныткин. - М.: 2013. - Международный научно-технический и теоретический журнал «Нелинейный мир», №12, т. 12. - с. 836-851.

11. Пат. 2024053 Российская Федерация, МПК5 G06F 15/20. Устройство для формирования словарей нелинейных рекуррентных последовательностей [Текст] / И.И. Сныткин, О.Х. Шаяхметов, В.И. Дмитриев, И.Д. Горбенко, П.Т. Литвиненко, В.В. Фомин.; заявитель и патентообладатель Ставропольское высшее военное инженерное училище связи им. 60-летия Великого Октября. - №4751253/24; заявл. 11.09.1989; опубл. 30.11.94. Бюл. №22. - 2 с. ил.

12. Пат. 2439657 Российская Федерация, МПК G06F 7/00. Устройство формирования кодовых словарей нелинейных рекуррентных последовательностей [Текст] / Сныткин И.И., Федосеев В.Е., Сныткин Т.И., Курляндчик Д.А. - №2009112944/08; заявл. 06.04.09; опубл. 10.01.12, Бюл. №1. - 2 с. ил.

13. Титце У., Шенк К. Полупроводниковая схемотехника. Справочное руководство. Пер. с нем. - М.: Мир, 1983. - 512 с.

14. Справочник по радиоэлектронным устройствам в 2-х томах. Т.1. Под редакцией Д.П. Линде. - М.: Энергия, 1978. - 440 с.

Устройство формирования систем двукратных производных нелинейных рекуррентных последовательностей (СДК ПНЛРП), содержащее первое устройство формирования кодовых словарей нелинейных рекуррентных последовательностей (УФКС НЛРП), состоящее из блока формирования циклической последовательности символов (БФЦПС), блока формирования оптимальной последовательности (БФОП) и блока управления (БУ), причем БФЦПС состоит из узла дешифрации, включающего с первого по шестой элементы И, элемент задержки, сумматор по модулю два, первого мультиплексора и сдвигающего регистра, а информационные входы с первого по четвертый БФЦПС подключены соответственно к информационным входам с первого по четвертый сдвигающего регистра, с первого по четвертый прямые выходы которого подключены соответственно к прямым выходам БФЦПС, вход синхронизации которого подключен к входу синхронизации сдвигающего регистра, с первого по четвертый инверсные выходы которого подключены соответственно к инверсным выходам с первого по четвертый БФЦПС, шесть выходов по числу длин НЛРП шести элементов И узла дешифрации которого подключены ко входам первого мультиплексора, при этом «адрес дешифрации» поступает на другие входы первого мультиплексора, выход которого подключен ко входу элемента задержки, выход которого подключен к первому входу сумматора по модулю два, выход которого подключен к входу «режима» сдвигающего регистра, при этом БУ имеет вход «запуска» и вход «записи начального состояния», с первого по пятый входы «кода шифра словаря», с первого по четвертый входы «кода начальной фазы», причем входы «кода начальной фазы» объединены соответственно с прямыми выходами с первого по четвертый БФЦПС и подключены соответственно к входам режима с первого по четвертый второй группы БУ, при этом БУ содержит первый, второй и третий регистры, первый и второй счетчики, генератор тактовых импульсов, ключ и элемент ИЛИ, причем входы «кода шифра словаря» с первого по пятый первой группы БУ подключены соответственно к входам режима с первого по пятый первого регистра, выходы с первого по пятый которого подключены соответственно к входам с первого по пятый первого счетчика, выход переноса которого объединен с входом записи начального состояния и подключен к первым входам синхронизации первого и второго регистров, к первому информационному входу ключа, выход которого подключен к счетному входу первого счетчика, причем вход «запуска» БУ также подключен к первому входу элемента ИЛИ, к входу запуска генератора тактовых импульсов, выход которого подключен к управляющему третьему входу ключа и второму входу элемента ИЛИ, выход которого подключен к входу синхронизации первого счетчика и выходу БУ, входы режима с первого по четвертый второй группы которого подключены соответственно к входам с первого по четвертый второго регистра, выходы с первого по четвертый которого подключены соответственно к выходам с первого по четвертый БУ, входы «кода длины НЛРП» с первого по пятый которого подключены к аналогичным входам «кода длины НЛРП» с первого по пятый третьего регистра, с первого по пятый выходы которого подключены к соответствующим входам второго счетчика, выход которого объединен с входом «запуска» и подключен ко вторым входам синхронизации первого, второго и третьего регистров, ко второму информационному входу ключа, а также к выходу «конец НЛРП» БУ, причем вход «запуска» БУ также подключен к счетному входу второго счетчика и второму входу элемента ИЛИ, выход которого подключен к входу синхронизации первого и второго счетчиков, при этом в состав БФОП входят с первого по одиннадцатый элементы ИЛИ, с седьмого по двадцать седьмой элементы И и второй мультиплексор, причем с первого по четвертый прямые и инверсные выходы БФЦПС соединены с БФОП и БУ так, что первый прямой выход БФЦПС объединен с первым входом «кода начальной фазы» и подключен к первому входу режима второго регистра БУ, к первому входу первого и второго элементов И узла дешифрации БФЦПС, к первому входу седьмого, восьмого, десятого и двадцать седьмого элементов И, третьему входу двадцать третьего элемента И и второму входу первого элемента ИЛИ БФОП, а первый инверсный выход БФЦПС подключен к первому входу третьего, четвертого, пятого, шестого, одиннадцатого и двадцать первого элементов И и к первому входу второго элемента ИЛИ БФОП, а второй прямой выход БФЦПС объединен со вторым входом «кода начальной фазы» и подключен ко второму входу режима второго регистра БУ, а также подключен к первому входу девятого, двенадцатого и семнадцатого элементов И, а также второму входу первого, третьего, пятого, седьмого и двадцать первого элементов И БФОП, а второй инверсный выход БФЦПС подключен к первым входам четырнадцатого, пятнадцатого и восемнадцатого элементов И, а также ко вторым входам четвертого и десятого элементов И, третий прямой выход объединен с третьим входом кода начальной фазы и подключен к третьему входу режима второго регистра БУ, а также подключен ко второму входу второго, двадцатого, двадцать шестого элементов И, первому входу тринадцатого элемента И, второму входу девятого элемента ИЛИ, третьему входу третьего элемента И и третьему входу сумматора по модулю два БФЦПС, третий инверсный выход которого подключен к первому входу девятнадцатого, двадцать второго и двадцать третьего элементов И, ко второму входу шестнадцатого, семнадцатого, двадцать четвертого и двадцать пятого элементов И, к третьему входу первого, второго, четвертого и шестого элементов И БФОП, а четвертый прямой выход объединен с четвертым входом «кода начальной фазы» и подключен к четвертому входу режима второго регистра БУ, а также подключен к первому входу двадцать четвертого элемента И, второму входу восьмого, одиннадцатого, тринадцатого и восемнадцатого элемента И, четвертому входу второго, третьего и четвертого элементов И БФОП и ко второму входу сумматора по модулю два БФЦПС, четвертый инверсный выход которого подключен к первому входу первого элемента ИЛИ и двадцатого элемента И, ко второму входу девятого, двенадцатого и четырнадцатого элементов И, а также к четвертому входу первого, пятого и шестого элементов И БФОП, при этом выход первого элемента ИЛИ подключен ко второму входу шестнадцатого элемента И, выход которого подключен к первому входу третьего элемента ИЛИ, выход которого подключен к первому входу второго мультиплексора, выход седьмого элемента И подключен ко второму входу пятого элемента ИЛИ, выход которого подключен к третьему входу второго мультиплексора, выход семнадцатого элемента И подключен к первому входу пятого элемента ИЛИ, выход двадцать четвертого элемента И подключен ко второму входу четвертого элемента ИЛИ, выход которого подключен ко второму входу второго мультиплексора, выход восьмого элемента И подключен к первому входу четвертого элемента ИЛИ и ко второму входу пятого элемента ИЛИ, выход второго элемента ИЛИ подключен к первому входу двадцать пятого элемента И, выход которого подключен к первому входу шестого элемента ИЛИ, выход которого подключен к четвертому входу второго мультиплексора, выход девятого элемента И подключен ко второму входу третьего и шестого элементов ИЛИ, а также ко второму входу двадцать третьего элемента И, выход восемнадцатого элемента И подключен ко второму входу второго элемента ИЛИ, выход десятого элемента ИЛИ подключен к первому входу двадцать шестого элемента И и седьмого элемента ИЛИ, выход которого подключен к пятому входу второго мультиплексора, выход одиннадцатого элемента И подключен ко второму входу седьмого элемента ИЛИ и девятнадцатого элемента И, выход которого подключен к первому входу восьмого элемента ИЛИ, выход которого подключен к шестому входу второго мультиплексора, выход двадцатого элемента И подключен ко второму входу восьмого элемента ИЛИ, выход двенадцатого элемента И подключен к третьему входу восьмого элемента ИЛИ и к первому входу девятого элемента ИЛИ, выход которого подключен ко второму входу двадцать седьмого элемента И, выход двадцать первого элемента И подключен к первому входу десятого элемента ИЛИ, выход которого подключен к седьмому входу второго мультиплексора, выход тринадцатого элемента И подключен ко второму входу десятого элемента ИЛИ и пятнадцатого элемента И, выход двадцать второго элемента И подключен к третьему входу десятого элемента ИЛИ, выход четырнадцатого элемента И подключен к третьему входу девятого элемента ИЛИ и ко второму входу двадцать второго элемента И, выход двадцать третьего элемента И подключен ко второму входу одиннадцатого элемента ИЛИ, выход двадцать шестого элемента И подключен к третьему входу четвертого элемента ИЛИ, выход девятого элемента ИЛИ подключен ко второму входу двадцать седьмого элемента И, выход которого подключен к первому входу одиннадцатого элемента ИЛИ, выход пятнадцатого элемента И подключен ко второму входу одиннадцатого элемента ИЛИ, выход которого подключен к восьмому входу второго мультиплексора, на другие входы которого поступает «код вида НЛРП», а его выход подключен к «выходу НЛРП» устройства, с которого снимается генерируемая простая нелинейная ПСП, отличающееся тем, что введены второе идентичное УФКС НЛРП, двухвходовый элемент И, выход которого является выходом «конец ПНЛРП» устройства, двухвходовый сумматор по модулю два, выход которого является выходом ПНЛРП устройства, системный блок управлении (СБУ), состоящий из системного дешифратора «вида ПНЛРП», системного дешифратора «подвида ПНЛРП» и первого и второго счетчиков, причем выход «НЛРП» первого и выход «НЛРП» второго УФКС НЛРП являются соответствующими выходами НЛРП-1 и НЛРП-2 первого и второго УФКС НЛРП и подключены соответственно к первому и второму входам двухвходового сумматора по модулю два, а вход «запуска» и вход «записи начального состояния» первого и аналогичные входы второго УФКС НЛРП соответственно объединены и подключены соответственно к входу «запуска» и входу «записи начального состояния» устройства, а входы с первого по четвертый «кода вида ПНЛРП» и входы с первого по одиннадцатый «кода подвида ПНЛРП» устройства являются соответствующими входами соответственно системного дешифратора «вида ПНЛРП» и системного дешифратора «подвида ПНЛРП» и соответствующими входами СБУ, первый и второй выходы «конец ПНЛРП» которого подключены соответственно к первому и второму входам двухвходового элемента И и соответственно к выходу переноса первого и выходу переноса второго счетчиков, счетные входы которых подключены соответственно к входам «конец НЛРП-1» и «конец НЛРП-2» СБУ и к выходам «конец НЛРП» соответственно первого и второго УФКС НЛРП, а синхронизирующие входы первого и второго счетчиков подключены соответственно к первому и второму синхронизирующим входам СБУ и подключены соответственно к синхронизирующим выходам первого и второго УФКС НЛРП, и подключены соответственно к выходу элемента ИЛИ БУ первого и к выходу элемента ИЛИ БУ второго УФКС НЛРП, входы «код длины НЛРП» с первого по пятый, входы «код вида НЛРП» и входы «адреса дешифрации» которых соответственно подключены к соответствующим выходам «код длины НЛРП-1» с первого по пятый, «код длины НЛРП-2» с первого по пятый, «код вида НЛРП-1», «код вида НЛРП-2» и «адреса дешифрации НЛРП-1», «адреса дешифрации НЛРП-2» первого системного дешифратора «вида ПНЛРП», выходы «код числа НЛРП-1» с первого по четвертый и выходы «код числа НЛРП-2» с первого по четвертый которого подключены соответственно к установочным входам с первого по четвертый соответственно первого и второго счетчиков, а входы «кода начальной фазы» с первого по четвертый и входы «кода шифра словаря» с первого по пятый первого и второго УФКС НЛРП подключены соответственно к выходам «код начальной фазы НЛРП-1» с первого по четвертый, «код начальной фазы НЛРП-2» с первого по четвертый и выходам «код шифра словаря НЛРП-1» с первого по пятый, «код шифра словаря НЛРП-2» с первого по пятый второго системного дешифратора «подвида ПНЛРП».



 

Похожие патенты:

Изобретение относится к способам, устройству и машиночитаемому носителю для проведения соревнования в режиме реального времени. Техническим результатом является повышение надежности проведения соревнований в режиме реального времени между пользователями компьютерных устройств.

Изобретение относится к области вычислительной техники. Технический результат - повышение быстродействия и обеспечение унификации цифровой вычислительной машины (ЦВМ).

Изобретение относится к области управления техническими средствами (ТС) и может быть использована для управления средствами различного назначения, например средствами охраны, связи, испытательной техники, защиты информации и др.

Изобретение относится к средствам создания градуировочных моделей измерительных приборов. Техническим результатом является повышение точности определения анализируемых свойств образца.

Изобретение относится к вычислительной технике и может быть использовано при создании вычислительных систем повышенной надежности. Техническим результатом является повышение надежности работы системы и сохранение работоспособности центрального модуля при возникновении отказов.

Изобретение относится к способу и системе определения нежелательных электронных сообщений. Технический результат заключается в повышении защищенности от нежелательных сообщений.

Изобретение относится к области распределения задач сервером вычислительной системы. Техническим результатом является повышение эффективности динамического распределения заданий сервером по обработчикам вычислительной системы.

Изобретение относится к системе и способу слежения за положением головы. Техническим результатом является повышение эффективности формирования звуковых образов.

Изобретение относится к средствам автоматизированного моделирования объектов для решения задач по классификации деталей по группам обрабатываемости и предварительного подбора режущего инструмента для их обработки.

Изобретение относится к способу распространения рекламных и информационных сообщений в сети Интернет. Технический результат заключается в повышении надежности определения факта реакции посетителя веб-сайта на рекламное сообщение.

Изобретение относится к технике автоматизированного управления войсками и может быть использовано в автоматизированных системах управления (АСУ) Войск воздушно-космической обороны (ВКО). Технический результат заключается в повышении точности нахождения цели. Технический результат достигается за счет устройства, которое содержит блок задания исходных данных, восемь умножителей, четыре сумматора, два делителя, два вычислителя квадратного корня и вычитатель, введены новые блоки: восемь умножителей, два делителя, два вычитателя, два вычислителя квадратного корня, два вычислителя синуса, а также два дополнительных выхода блока задания исходных данных, связи между указанными блоками и другими элементами устройства. 3 ил.

Изобретение относится к вычислительной технике и может быть использовано при создании вычислительных систем повышенной надежности. Техническим результатом является повышение надежности работы системы. Магистрально-модульная вычислительная система дополнительно содержит задающий каждый цикл работы системы таймер, подключенный к системной магистрали, а к ее управляющим шинам подключены установочными входами перестраиваемый формирователь синхроимпульсов и управляемый источник вторичного электропитания, содержащий модуль постоянного питания с подключаемым исправным конвертором к блоку выравнивания, модуль импульсного питания и формирователь синхроимпульсов, выходы которых являются соответственно синхронизирующими входами и выходами постоянного и импульсного питания, подключенными к соответствующим входам модулей системы, при этом вычислительные модули дополнительно подключены к одноканальной магистрали запоминающих устройств. 17 з.п. ф-лы, 22 ил.

Изобретение относится к современным пилотажно-навигационным комплексам (ПНК) летательных аппаратов (ЛА) и их бортовой аппаратуре и предназначается в основном для формирования сигналов управления резервированными с помощью мажоритарных элементов системами радиоавтоматики и системами автоматического управления ЛА. Техническим результатом является повышение надежности работы системы. Устройство управления резервированной с помощью мажоритарных элементов системой содержит рабочий элемент (РЭ), два элемента сравнения (ЭС), три вычитающих устройства (ВУ), три компаратора (К), три электронных ключа (ЭК), а также содержит три канала обнаружения отказавшего элемента (ООЭ), каждый содержащий последовательно соединенные линию задержки (ЛЗ), ВУ, дифференцирующее звено (ДЗ) и триггер (Тр), причем вход каждой ЛЗ подсоединен ко вторым входам соответствующих ВУ, при этом вход первой ЛЗ подключен к выходу РЭ, вход второй ЛЗ - к выходу первого ЭС, вход третьей ЛЗ - к выходу второго ЭС, а выходы Тр подсоединены соответственно к четвертому, пятому и шестому входам БУ. 4 ил.

Изобретение относится к средствам для осуществления транзакции. Техническим результатом является повышение быстродействия при проведении международных транзакций для клиентов банка. Устройство содержит блок создания сеанса транзакции для создания сеанса связи с устройством цедента; первый модуль выбора, второй модуль выбора, при помощи которого цедент может произвести выбор бенефициара, который будет цессионарием; третий модуль выбора, при помощи которого цедент может произвести выбор своего счета, с которого должны быть переведены деньги, и модуль назначения суммы, модуль формирования идентификатора ваучера, блок передачи, предназначенный для передачи идентификатора на устройство цедента, и модуль дебетования счета. Вариант устройства содержит модуль приема идентификатора ваучера, блок связи, предназначенный для связи с исходящим финансовым учреждением, которое выдало идентификатор, четвертый модуль выбора, при помощи которого цессионарий может выбрать свой счет выплаты, если произведена аутентификация идентификатора исходящим финансовым учреждением, и модуль кредитования счета. Способы описывают работу устройств. 4 н. и 15 з.п. ф-лы, 2 ил.

Изобретение относится к системам обмена информацией. Технический результат - высокая автономность работы устройства. Маршрутизирующий коммутатор, содержащий коммутационную матрицу (КМ) с двунаправленными портами, к которой подключены управляющий автомат и внутренний порт конфигурации, дополнительно снабжен энергонезависимой памятью, при этом внутренний порт конфигурации содержит нулевой порт, одним входом/выходом подключенный к КМ, а другим к обработчику пакетов, который через общую шину соединен с мостом, контроллером управления таблицей маршрутизации (ТМ) и контроллером общей шины, мост по внутренней шине соединен с входом/выходом модуля регистровой памяти, один из выходов которого соединен с контроллером управления ТМ, а другой с управляющим автоматом, а энергонезависимая память входом/выходом подключена к контроллеру управления ТМ. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области обработки картографических данных. Способ обработки картографических данных, включающий: отображение маршрута, содержащего последовательность транспортных сегментов, которая располагается между начальной и конечной точками на карте, анализ потенциальных мест отображения графических представлений, относящихся к индивидуальным транспортным сегментам в пределах последовательности для каждого уровня приближения карты, отображение объединенного графического представления соседних индивидуальных транспортных сегментов вместо обычных графических представлений индивидуальных транспортных сегментов при пересечении потенциальных мест для отображения графических представлений соседних индивидуальных транспортных сегментов и отображение объединенного графического представления на фрагменте упомянутой карты на упомянутом уровне приближения. Изобретение предоставляет возможность чёткого и удобного планирования маршрута. 15 з.п. ф-лы, 5 ил.

Группа изобретений относится к системе и способу определения режима работы светофоров на основе информации, получаемой с навигационных устройств. Техническим результатом является обеспечение возможности определения режима работы светофора на основе информации о характеристиках передвижения навигационного устройства. Способ включает: получение сведений о множестве автомобильных дорог, причем сведения о множестве автомобильных дорог включают в себя сведения о местоположении по меньшей мере одного светофора из множества светофоров; анализ множества логов по меньшей мере одного навигационного устройства, содержащих информацию о характеристиках передвижения по меньшей мере одного навигационного устройства в по меньшей мере одной зоне по меньшей мере одного светофора, и основываясь на информации о характеристиках передвижения по меньшей мере одного навигационного устройства в по меньшей мере одной зоне по меньшей мере одного светофора, определение по меньшей мере одного режима работы по меньшей мере одного светофора. 2 н. и 19 з.п. ф-лы, 2 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в цифровых системах и устройствах для сглаживания стационарных и медленно меняющихся случайных процессов. Техническим результатом является существенное упрощение устройства и повышение эффективности сглаживания. Устройство содержит сумматор, блок приращений из реверсивного счетчика и двух элементов И, блок управления режимом работы и блок формирования серий отклонений одного знака подряд. 2 ил.

Изобретение относится к области автоматизированных рабочих мест операторов мобильных и стационарных пунктов управления автоматизированных систем управления различными объектами. Технический результат заключается в обеспечении минимального времени включения автоматизированного рабочего места АСУ, в том числе в неотапливаемых помещениях и отсеках, в условиях крайнего севера или арктической зоны при температуре окружающей среды от минус 65°C до минус 40°C. Устройство отображения информации содержит в корпусе процессор и устройство оперативной памяти, по меньшей мере, один дисплей с длительным временем включения с подключенным к нему блоком питания, приемник системы спутниковой навигации с антенной, клавиатуру, электроразъемы, также содержит процессорный модуль, в состав которого входят процессор и устройство оперативной памяти, содержит кросс-плату, к которой через электроразъемы подключены процессорный модуль, блок питания, приемник системы спутниковой навигации с антенной, клавиатура, модуль видеоконтроллера и модуль ввода-вывода, а также подключены электроразъемы через блок фильтров, а также содержит, по меньшей мере, один дисплей с коротким временем включения с подключенным к нему блоком питания; внутри дисплея с коротким временем включения и дисплея с длительным временем включения установлены датчики температуры, выходы которых подключены к кросс-плате, на лицевой поверхности дисплеев выполнены кнопочные обрамления, выходы которых связаны с модулем ввода-вывода. 4 з.п. ф-лы, 2 ил.

Изобретение относится к системам с архитектурой типа "клиент-сервер" для графических приложений, то есть для отображения данных в форме модулей программного обеспечения, называемых "виджетами", на экранах дисплеев, называемых "устройствами отображения". Техническим результатом является обеспечение надежности системы. Система предназначена для того, чтобы управлять функционированием машины, при этом машина включает в себя человеко-машинный интерфейс, обеспечивающий возможность взаимодействия с виджетами, причем упомянутая система управляет критическими данными или функциями. Компьютерная система в соответствии с изобретением включает в себя подсистему защиты, управляющую целостностью отображения критических виджетов, отправкой команд, которые выполняются посредством человеко-машинного интерфейса, вводом и отображением критических данных. Основные функциональные возможности этой подсистемы защиты представляют собой использование "сигнатур" компьютера, предоставление схем "обратной связи" и использование механизмов защиты или специализированных диалоговых окон подтверждения. 6 з.п. ф-лы, 1 табл., 8 ил.

Изобретение относится к обработке цифровых данных, а именно к технике формирования псевдослучайных последовательностей дискретных шумоподобных сигналов. Технический результат заключается в расширении функциональных возможностей и сокращении аппаратных затрат по формированию систем двукратных производных нелинейных рекуррентных последовательностей разных длин, видов и подвидов. Устройство формирования систем двукратных производных нелинейных рекуррентных последовательностей содержит системный блок управления и обеспечения возможности программного управления процессом смены длин и кодовых форм, видов и подвидов. В устройство введены устройство формирования кодовых слов нелинейных рекуррентных последовательностей, двухвходовый сумматор по модулю два, выход которого является выходом устройства, а также системный блок управления, состоящий из дешифраторов одного и другого вида, счетчики. Это позволяет генерировать систему двукратных производных различных длительностей, видов и подвидов в программно-управляемом режиме, что позволяет формировать системы псевдослучайных последовательностей, повышающих имитостойкость, скрытность, а также арсенал сменных параметров. 1 табл., 10 ил.

Наверх