Инверсно-сопряженная кодовая шкала



Инверсно-сопряженная кодовая шкала
Инверсно-сопряженная кодовая шкала
Инверсно-сопряженная кодовая шкала
Инверсно-сопряженная кодовая шкала

 

H03M1/24 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2553079:

Открытое акционерное общество "Авангард" (RU)

Изобретение относится к области аналого-цифрового преобразования с использованием кодовых шкал преобразователей угла поворота вала в код. Техническим результатом является повышение технологичности кодовой шкалы на основе нелинейных двоичных последовательностей. Кодовая шкала содержит информационную кодовую дорожку, выполненную в соответствии с символами нелинейной двоичной последовательности длиной N=2 n , посредством которой обеспечивается величина кванта шкалы δ=360°/N, и n считывающих элементов, определяющих выходную разрядность кодовой шкалы и размещенных вдоль информационной кодовой дорожки с возможностью получения с них N различных n разрядных кодовых комбинаций, где информационная кодовая дорожка выполнена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности, а n считывающих элементов размещены вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ. 4 ил., 4 табл.

 

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угловых перемещений в код.

В настоящее время и в перспективе одной из актуальных и технически сложных задач является цифровое измерение угловых перемещений подвижных органов многочисленных систем автоматического управления различными объектами. Эту функцию выполняют преобразователи угловых перемещений.

Развитие преобразователей угловых перемещений - поставщиков первичной информации в значительной степени обусловлено повсеместным использованием управляющих микроЭВМ и различных вычислительных устройств на основе микропроцессорных и других больших и сверхбольших интегральных схем.

В целом к преобразователям угловых перемещений, отличающихся большим разнообразием, предъявляется совокупность самых различных и, как правило, высоких технических требований.

Анализ литературных источников позволяет отметить у преобразователей с непосредственным преобразованием перемещения в код, основанных на считывании с использованием пространственного кодирования, следующие достоинства: возможность использования различных физических методов считывания информации, высокое быстродействие, для преобразователей углового перемещения высокая скорость вращения кодируемого вала (100…150 об/мин), высокая разрешающая способность (до 20 дв. раз.), устойчивость к воздействию внешних дестабилизирующих факторов, возможность удовлетворения различным условиям применения, возможность функционального преобразования перемещения в код и др. Основным элементом таких преобразователей, определяющим их наиболее важные характеристики, является кодовая шкала.

Элементарный участок (квант) кодовой дорожки шкалы представляется, как правило, одним двоичным символом, где единичным символам соответствуют активные участки шкалы, а нулевым - пассивные.

Учитывая, что преобразователи угловых перемещений, построенные по методу считывания (абсолютного отсчета), могут быть реализованы на различных физических способах считывания информации, под активными и пассивными элементарными участками кодовой дорожки шкалы понимают соответственно токопроводящие и нетокопроводящие участки шкалы при контактном методе съема информации, прозрачные и непрозрачные участки шкалы при фотоэлектрическом методе съема информации, наличие металлической обкладки и изоляции на участках шкалы при емкостном методе съема информации, наличие и отсутствие магнитного материала на участках шкалы при электромагнитном методе съема информации и т.д.

Известны кодовые шкалы преобразователей угловых перемещений: Фотоэлектрические преобразователи информации / Л.Н. Преснухин, С.А. Майоров, И.В. Меськин, В.Ф. Шаньгин. Под ред. Л.Н. Преснухина. - М.: Машиностроение, 1974. - 375 с. - [1], и Домрачев В.Г., Мейко Б.С. Цифровые преобразователи угла: принципы построения, теория точности, методы контроля. - М.: Энергоатомиздат, 1984. - 328 с. - [2], кодовая маска которых выполнена в обыкновенном двоичном коде или в коде Грея. Трудоемкость изготовления таких кодовых шкал зависит, в основном, от сложности их кодовых масок, которая, в свою очередь, определяется числом наносимых границ смены кодового рисунка и с увеличением разрядности шкал возрастает. При этом, как следствие, ухудшается технологичность таких шкал.

Для шкал, кодовая маска которых выполнена в обыкновенном двоичном коде (ОДК), число наносимых границ смены рисунка кодовой маски определяется как TОДК=2n+1-2, а для шкал, кодовая маска которых выполнена в коде Грея (Гр) - как TГр=2n, где n - разрядность шкалы, число кодовых дорожек и число считывающих элементов.

Разрешающая способность таких шкал δ=360°/2n.

Производить сравнение кодовых шкал по числу наносимых границ смены кодовой маски шкалы предложено в работе [2]. Это связано с тем, что преобразователи перемещения, построенные по методу абсолютного отсчета, могут быть реализованы при различных физических принципах съема информации в широком диапазоне информационной емкости.

Наиболее близким по техническому решению и выбранному авторами за прототип, является рекурсивная кодовая шкала для преобразователей угловых перемещений, построенная на основе нелинейных двоичных последовательностей: Азов А.К, Ожиганов А.А., Тарасюк М.В. Рекурсивные кодовые шкалы // Издательство "Машиностроение" Информационные технологии, 1998, №6. С.39-43. - [3].

Рекурсивные кодовые шкалы (РКШ) на основе нелинейных двоичных последовательностей имеют всего одну информационную кодовую дорожку с расположенными вдоль нее n считывающими элементами с шагом, равным одному кванту шкалы, и обеспечивают разрешающую способность δ=360°/2n. Такие шкалы могут быть реализованы с использованием большинства известных методов считывания информации.

Число наносимых границ смены рисунка кодовой маски рекурсивных кодовых шкал на основе нелинейных двоичных последовательностей определяется как TРКШ=2n-1, где n - разрядность шкалы и число считывающих элементов (СЭ).

Недостатки прототипа:

Низкая технологичность рекурсивной кодовой шкалы, объясняется большой трудоемкостью ее изготовления, которая зависит от числа наносимых границ смены кодового рисунка, а также размещением вдоль кодовой дорожки шкалы считывающих элементов с шагом в один квант. Поскольку реальные считывающие элементы имеют конечные размеры, то при их размещении с шагом в один квант, они вносят ограничения на габариты рекурсивной кодовой шкалы при заданной разрешающей способности.

В предлагаемом изобретении решается задача повышения технологичности кодовой шкалы на основе инверсно-сопряженных нелинейных двоичных последовательностей в плане уменьшения трудоемкости ее изготовления за счет меньшего числа наносимых границ смены рисунка кодовой маски, а также размещения считывающих элементов вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ.

Для достижения технического результата кодовая шкала, содержит информационную кодовую дорожку, выполненную в соответствии с символами нелинейной двоичной последовательности длиной N=2′′, посредством которой обеспечивается величина кванта шкалы δ=360°/N, и n считывающих элементов, определяющих выходную разрядность кодовой шкалы и размещенных вдоль информационной кодовой дорожки с возможностью получения с них N различных n разрядных кодовых комбинаций, где информационная кодовая дорожка выполнена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности, а n считывающих элементов, размещены вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ.

Новым в предлагаемом изобретении является:

- выполнение информационной кодовой дорожки шкалы в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности, где единичным символам последовательности соответствуют активные участки шкалы, а нулевым - пассивные;

- размещении n считывающих элементов вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ.

Совокупность существенных признаков в предлагаемом изобретении позволила:

- повысить технологичность кодовой шкалы за счет выполнения информационной кодовой дорожки шкалы в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности, а также размещении n считывающих элементов вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ.

В результате этого можно сделать вывод о том, что предлагаемое изобретение позволяет получить технический результат, а именно повышение технологичности кодовой шкалы на основе нелинейных двоичных последовательностей.

Изобретение является новым, так как из уровня техники по доступным источникам информации не выявлено аналогов с подобной совокупностью признаков.

Изобретение является промышленно применимым, так как может быть использовано во всех областях, где требуется высокоточное позиционное определение углового положения объекта с использованием преобразователей угловых перемещений на основе заявляемых кодовых шкал.

Предлагаемое изобретение поясняется чертежами, где показаны примеры кодовых шкал на основе инверсно-сопряженных нелинейных двоичных последовательностей.

Раскроем термин «инверсно-сопряженная нелинейная двоичная последовательность».

1. Используемые в предлагаемом изобретении последовательности состоят из двух равных частей, вторая из которых является абсолютной инверсией первой половины.

2. Вторая часть последовательностей сопряжена (неразрывно связана) с первой половиной и совместно образуют полную последовательность.

3. Нелинейность последовательностей определяется по отношению к оператору суммирования по модулю 2, т.е. сумма по модулю 2 инверсно-сопряженной нелинейной двоичной последовательности со своей циклически сдвинутой копией, не дает эту-же циклически сдвинутую инверсно-сопряженную нелинейную двоичную последовательность.

Для пояснения сути изобретения проведем сравнение заявляемой и рекурсивной кодовых шкал по числу наносимых границ смены кодовой маски [2]. Данное сравнение можно осуществить прямо по используемым для построения информационной кодовой дорожки последовательностям. При этом число наносимых границ смены кодовой маски шкал будет равно суммарному числу переходов в последовательностях из 0 в 1 и наоборот.

На фиг.1 представлен вариант построения четырехразрядной кодовой шкалы.

На фиг.2 - вариант построения пятиразрядной кодовой шкалы.

На фиг.3 - вариант построения шестиразрядной кодовой шкалы.

На фиг.4 - вариант построения семиразрядной кодовой шкалы.

Заявляемая кодовая шкала содержит информационную кодовую дорожку и считывающие элементы.

Поясним вариант построения четырехразрядной кодовой шкалы, приведенной на фигуре 1.

В рассматриваемом примере информационная кодовая дорожка 1 шкалы построена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности 0010000011011111 длиной 16. Приведенная последовательность состоит из двух равных частей, вторая из которых является абсолютной инверсией первой половины. Последовательность должна быть нанесена на шкалу в виде пассивных (нули последовательности - светлые участки шкалы) и активных (единицы последовательности - темные участки шкалы) участков (квантов) информационной кодовой дорожки 1, например, по ходу часовой стрелки. Последовательность с длиной 16 определяет число квантов информационной кодовой дорожки 1 шкалы, которое в данном примере равно 16. Отсюда величина кванта δ=360°/16=22,5°. В примере размещение СЭ 2, 3, 4 и 5 вдоль информационной кодовой дорожки 1 осуществляется с шагом равным величине двух квантов информационной кодовой дорожки δ по ходу часовой стрелки.

Фиксируя считывающими элементами 2…5 последовательно кодовую комбинацию, при перемещении кодовой шкалы циклически на один

элементарный участок (квант) δ информационной кодовой дорожки 1, например, против хода часовой стрелки, получаем 16 различных четырехразрядных кодовых комбинаций, которые соответствуют 16 угловым положениям шкалы. Эти кодовые комбинации приведены в таблице 1.

Таблица 1
№ пол. КШ СЭ1 СЭ2 СЭ3 СЭ4 ОДК
0 0 1 0 0 4
1 0 0 0 0 0
2 1 0 0 1 9
3 0 0 0 1 1
4 0 0 1 2
5 0 0 1 1 3
6 0 1 1 5
7 0 1 1 1 7
8 1 0 1 1 11
9 1 1 1 1 15
10 0 1 1 0 6
11 1 1 1 0 14
12 1 1 0 1 13
13 1 1 0 0 12
14 1 0 1 0 10
15 1 0 0 0 8

Проведем сравнение четырехразрядных заявляемой и рекурсивной кодовых шкал по числу наносимых границ смены кодовой маски.

Нелинейная двоичная последовательность, используемая для построения четырехразрядной рекурсивной кодовой шкалы (прототипа), имеет вид 0000100110101111. Для нее, число наносимых границ смены кодовой маски, TРКШ=2n-1=24-123=8.

Инверсно-сопряженная нелинейная двоичная последовательность, используемая для построения четырехразрядной заявляемой кодовой шкалы, имеет вид 0010000011011111. Для нее, число наносимых границ смены кодовой маски, TКШ=6 (см. также фиг.1).

Таким образом, трудоемкость изготовления четырехразрядной кодовой шкалы на основе инверсно-сопряженной нелинейной двоичной последовательности, по сравнению с трудоемкостью изготовления четырехразрядной рекурсивной кодовой шкалы уменьшается на 25%.

Поясним вариант построения пятиразрядной кодовой шкалы, приведенной на фигуре 2.

В рассматриваемом примере информационная кодовая дорожка 1 шкалы построена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности 00000110001000001111100111011111 длиной 32. Приведенная последовательность состоит из двух равных частей, вторая из которых является абсолютной инверсией первой половины. Последовательность должна быть нанесена на шкалу в виде пассивных (нули последовательности - светлые участки шкалы) и активных (единицы последовательности - темные участки шкалы) участков (квантов) информационной кодовой дорожки 1, например, по ходу часовой стрелки. Последовательность с длиной 32 определяет число квантов информационной кодовой дорожки 1 шкалы, которое в данном примере равно 32. Отсюда величина кванта δ=360°/32=11,25°. В примере размещение СЭ 2, 3, 4, 5 и 6 вдоль информационной кодовой дорожки 1 осуществляется с шагом равным величине двух квантов информационной кодовой дорожки δ по ходу часовой стрелки.

Фиксируя считывающими элементами 2…6 последовательно кодовую комбинацию, при перемещении кодовой шкалы циклически на один элементарный участок (квант) δ информационной кодовой дорожки 1, например, против хода часовой стрелки, получаем 32 различных пятиразрядных кодовых комбинаций, которые соответствуют 32 угловым положениям шкалы. Эти кодовые комбинации приведены в таблице 2.

Таблица 2
№ пол. КШ СЭ1 СЭ2 СЭ3 СЭ4 СЭ5 ОДК
0 0 0 0 1 0 2
1 0 0 1 0 0 4
2 0 0 1 0 1 5
3 0 1 0 0 0 8
4 0 1 0 1 0 10
5 1 0 0 0 0 16
6 1 0 1 0 0 20
7 0 0 0 0 0 0
8 0 1 0 0 1 9
9 0 0 0 0 1 1
10 1 0 0 1 1 19
11 0 0 0 1 1 3
12 0 0 1 1 1 7
13 0 0 1 1 0 6
14 0 1 1 1 0 14
15 0 1 1 0 1 13
16 1 1 1 0 1 29
17 1 1 0 1 1 27
18 1 1 0 1 0 26
19 1 0 1 1 1 23
20 1 0 1 0 1 21
21 0 1 1 1 1 15
22 0 1 0 1 1 11
23 1 1 1 1 1 31
24 1 0 1 1 0 22
25 1 1 1 1 0 30
26 0 1 1 0 0 12
27 1 1 1 0 0 28
28 1 1 0 0 0 24
29 1 1 0 0 1 25
30 1 0 0 0 1 17
31 1 0 0 1 0 18

Проведем сравнение пятиразрядных заявляемой и рекурсивной кодовых шкал по числу наносимых границ смены кодовой маски.

Нелинейная двоичная последовательность, используемая для построения пятиразрядной рекурсивной кодовой шкалы (прототипа), имеет вид 00000100101100111110001101110101. Для нее, число наносимых границ смены кодовой маски, TРКШ=2n-1=25-1=24=16.

Инверсно-сопряженная нелинейная двоичная последовательность, используемая для построения пятирядной заявляемой кодовой шкалы, имеет вид 00000110001000001111100111011111. Для нее, число наносимых границ смены кодовой маски, TКШ=10 (см. также фиг.2).

Таким образом, трудоемкость изготовления пятирядной кодовой шкалы на основе инверсно-сопряженной нелинейной двоичной последовательности, по сравнению с трудоемкостью изготовления пятирядной рекурсивной кодовой шкалы уменьшается на 37,5%.

Поясним вариант построения шестиразрядной кодовой шкалы, приведенной на фигуре 3.

В рассматриваемом примере информационная кодовая дорожка 1 шкалы построена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности 000110000000000011100100001100001110011111 1111110001101111001111 длиной 64. Приведенная последовательность состоит из двух равных частей, вторая из которых является абсолютной инверсией первой половины. Последовательность должна быть нанесена на шкалу в виде пассивных (нули последовательности - светлые участки шкалы) и активных (единицы последовательности - темные участки шкалы) участков (квантов) информационной кодовой дорожки 1, например, по ходу часовой стрелки. Последовательность с длиной 64 определяет число квантов информационной кодовой дорожки 1 шкалы, которое в данном примере равно 64. Отсюда величина кванта δ=360°/64=5,625°. В примере размещение СЭ 2, 3, 4, 5, 6 и 7 вдоль информационной кодовой дорожки 1 осуществляется с шагом равным величине десяти квантов информационной кодовой дорожки δ по ходу часовой стрелки.

Фиксируя считывающими элементами 2…7 последовательно кодовую комбинацию, при перемещении кодовой шкалы циклически на один элементарный участок (квант) δ информационной кодовой дорожки 1, например, против хода часовой стрелки, получаем 64 различных шестиразрядных кодовых комбинаций, которые соответствуют 64 угловым положениям шкалы. Эти кодовые комбинации приведены в таблице 3.

Таблица 3
№ пол. КШ СЭ1 СЭ2 СЭ3 СЭ4 СЭ5 СЭ6 ОДК
0 0 0 0 0 1 0 2
1 0 0 1 0 1 1 11
2 0 0 0 1 1 1 7
3 1 0 0 1 1 0 38
4 1 0 0 1 1 1 39
5 0 0 0 0 1 1 3
6 0 1 1 0 1 1 27
7 0 1 1 1 1 1 31
8 0 1 0 1 0 0 20
9 0 0 0 1 0 0 4
10 0 0 0 1 0 1 5
11 0 1 0 1 1 1 23
12 0 0 1 1 1 1 15
13 0 0 1 1 0 1 13
14 0 0 1 1 1 0 14
15 0 0 0 1 1 0 6
16 1 1 0 1 1 0 54
17 1 1 1 1 1 1 63
18 1 0 1 0 0 1 41
19 0 0 1 0 0 0 8
20 0 0 1 0 1 0 10
21 1 0 1 1 1 0 46
22 0 1 1 1 1 0 30
23 0 1 1 0 1 0 26
24 0 1 1 1 0 0 28
25 0 0 1 1 0 0 12
26 1 0 1 1 0 0 44
27 1 1 1 1 1 0 62
28 0 1 0 0 1 0 18
29 0 1 0 0 0 0 16
30 0 1 0 1 0 1 21
31 0 1 1 1 0 1 29
32 1 1 1 1 0 1 61
33 1 1 0 1 0 0 52
34 1 1 1 0 0 0 56
35 0 1 1 0 0 1 25
36 0 1 1 0 0 0 24
37 1 1 1 1 0 0 60
38 1 0 0 1 0 0 36
39 1 0 0 0 0 0 32
40 1 0 1 0 1 1 43
41 1 1 1 0 1 1 59
42 1 1 1 0 1 0 58
43 1 0 1 0 0 0 40
44 1 1 0 0 0 0 48
45 1 1 0 0 1 0 50
46 1 1 0 0 0 1 49
47 1 1 1 0 0 1 57
48 0 0 1 0 0 1 9
49 0 0 0 0 0 0 0
50 0 1 0 1 1 0 22
51 1 1 0 1 1 1 55
52 1 1 0 1 0 1 53
53 0 1 0 0 0 1 17
54 1 0 0 0 0 1 33
55 1 0 0 1 0 1 37
56 1 0 0 0 1 1 35
57 1 1 0 0 1 1 51
58 0 1 0 0 1 1 19
59 0 0 0 0 0 1 1
60 1 0 1 1 0 1 45
61 1 0 1 1 1 1 47
62 1 0 1 0 1 0 42
63 1 0 0 0 1 0 34

Проведем сравнение шестиразрядных заявляемой и рекурсивной кодовых шкал по числу наносимых границ смены кодовой маски.

Нелинейная двоичная последовательность, используемая для построения шестиразрядной рекурсивной кодовой шкалы (прототипа), имеет вид 0000001000011000101001111010001110010010110111011001101010111111. Для нее, число наносимых границ смены кодовой маски, TРКШ=2n-1=26-1=25=32.

Инверсно-сопряженная нелинейная двоичная последовательность, используемая для построения шестиразрядной заявляемой кодовой шкалы, имеет вид 0001100000000000111001000011000011100111111111110001101111001111. Для нее, число наносимых границ смены кодовой маски, TКШ=18 (см. также фиг.3).

Таким образом, трудоемкость изготовления шестирядной кодовой шкалы на основе инверсно-сопряженной нелинейной двоичной последовательности, по сравнению с трудоемкостью изготовления шестирядной рекурсивной кодовой шкалы уменьшается на 43,75%.

Поясним вариант построения семиразрядной кодовой шкалы, приведенной на фигуре 4.

В рассматриваемом примере информационная кодовая дорожка 1 шкалы построена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности 00000000110001100010001101110100111001100000000000011000000000001111111100111001110111001000101100011001111111111110011111111111 длиной 128. Приведенная последовательность состоит из двух равных частей, вторая из которых является абсолютной инверсией первой половины. Последовательность должна быть нанесена на шкалу в виде пассивных (нули последовательности - светлые участки шкалы) и активных (единицы последовательности - темные участки шкалы) участков (квантов) информационной кодовой дорожки 1, например, по ходу часовой стрелки. Последовательность с длиной 128 определяет число квантов информационной кодовой дорожки 1 шкалы, которое в данном примере равно 128. Отсюда величина кванта δ=360°/128=2,8125°. В примере размещение СЭ 2, 3, 4, 5, 6, 7 и 8 вдоль информационной кодовой дорожки 1 осуществляется с шагом равным величине шести квантов информационной кодовой дорожки δ по ходу часовой стрелки.

Фиксируя считывающими элементами 2…8 последовательно кодовую комбинацию, при перемещении кодовой шкалы циклически на один элементарный участок (квант) δ информационной кодовой дорожки 1, например, против хода часовой стрелки, получаем 128 различных шестиразрядных кодовых комбинаций, которые соответствуют 128 угловым положениям шкалы. Эти кодовые комбинации приведены в таблице 4.

Таблица 4
№ пол. КШ СЭ1 СЭ2 СЭ3 СЭ4 СЭ5 СЭ6 СЭ7 ОДК
0 0 0 0 1 0 0 0 8
1 0 0 1 0 1 0 1 84
2 0 1 1 0 1 1 1 118
3 0 1 0 0 1 1 0 50
4 0 0 0 1 0 1 0 40
5 0 0 0 1 1 0 0 24
6 0 0 1 0 0 0 0 4
7 0 1 0 1 0 1 0 42
8 1 1 0 1 1 1 0 59
9 1 0 0 1 1 0 0 25
10 0 0 1 0 1 0 0 20
11 0 0 1 1 0 0 0 12
12 0 1 0 0 0 0 0 2
13 1 0 1 0 1 0 0 21
14 1 0 1 1 1 0 0 29
15 0 0 1 1 0 0 1 76
16 0 1 0 1 0 0 1 74
17 0 1 1 0 0 0 0 6
18 1 0 0 0 0 0 0 1
19 0 1 0 1 0 0 0 10
20 0 1 1 1 0 0 0 14
21 0 1 1 0 0 1 0 38
22 1 0 1 0 0 1 0 37
23 1 1 0 0 0 0 0 3
24 0 0 0 0 0 0 0 0
25 1 0 1 0 0 0 0 5
26 1 1 1 0 0 0 0 7
27 1 1 0 0 1 0 0 19
28 0 1 0 0 1 0 1 82
29 1 0 0 0 0 0 1 65
30 0 0 0 0 0 0 1 64
31 0 1 0 0 0 0 1 66
32 1 1 0 0 0 0 1 67
33 1 0 0 1 0 0 1 73
34 1 0 0 1 0 1 1 105
35 0 0 0 0 0 1 1 96
36 0 0 0 0 0 1 0 32
37 1 0 0 0 0 1 0 33
38 1 0 0 0 0 1 1 97
39 0 0 1 0 0 1 1 100
40 0 0 1 0 1 1 1 116
41 0 0 0 0 1 1 0 48
42 0 0 0 0 1 0 0 16
43 0 0 0 0 1 0 1 80
44 0 0 0 0 1 1 1 112
45 0 1 0 0 1 1 1 114
46 0 1 0 1 1 1 0 58
47 0 0 0 1 1 0 1 88
48 0 0 0 1 0 0 1 72
49 0 0 0 1 0 1 1 104
50 0 0 0 1 1 1 0 56
51 1 0 0 1 1 1 0 57
52 1 0 1 1 1 0 1 93
53 0 0 1 1 0 1 0 44
54 0 0 1 0 0 1 0 36
55 0 0 1 0 1 1 0 52
56 0 0 1 1 1 0 1 92
57 0 0 1 1 1 0 0 28
58 0 1 1 1 0 1 1 110
59 0 1 1 0 1 0 1 86
60 0 1 0 0 1 0 0 18
61 0 1 0 1 1 0 0 26
62 0 1 1 1 0 1 0 46
63 0 1 1 1 0 0 1 78
64 1 1 1 0 1 1 1 119
65 1 1 0 1 0 1 0 43
66 1 0 0 1 0 0 0 9
67 1 0 1 1 0 0 1 77
68 1 1 1 0 1 0 1 87
69 1 1 1 0 0 1 1 103
70 1 1 0 1 1 1 1 123
71 1 0 1 0 1 0 1 85
72 0 0 1 0 0 0 1 68
73 0 1 1 0 0 1 1 102
74 1 1 0 1 0 1 1 107
75 1 1 0 0 1 1 1 115
76 1 0 1 1 1 1 1 125
77 0 1 0 1 0 1 1 106
78 0 1 0 0 0 1 1 98
79 1 1 0 0 1 1 0 51
80 1 0 1 0 1 1 0 53
81 1 0 0 1 1 1 1 121
82 0 1 1 1 1 1 1 126
83 1 0 1 0 1 1 1 117
84 1 0 0 0 1 1 1 ИЗ
85 1 0 0 1 1 0 1 89
86 0 1 0 1 1 0 1 90
87 0 0 1 1 1 1 1 124
88 1 1 1 1 1 1 1 127
89 0 1 0 1 1 1 1 122
90 0 0 0 1 1 1 1 120
91 0 0 1 1 0 1 1 108
92 1 0 1 1 0 1 0 45
93 0 1 1 1 1 1 0 62
94 1 1 1 1 1 1 0 63
95 1 0 1 1 1 1 0 61
96 0 0 1 1 1 1 0 60
97 0 1 1 0 1 1 0 54
98 0 1 1 0 1 0 0 22
99 1 1 1 1 1 0 0 31
100 1 1 1 1 1 0 1 95
101 0 1 1 1 1 0 1 94
102 0 1 1 1 1 0 0 30
103 1 1 0 1 1 0 0 27
104 1 1 0 1 0 0 0 11
105 1 1 1 1 0 0 1 79
106 1 1 1 1 0 1 1 111
107 1 1 1 1 0 1 0 47
108 1 1 1 1 0 0 0 15
109 1 0 1 1 0 0 0 13
110 1 0 1 0 0 0 1 69
111 1 1 1 0 0 1 0 39
112 1 1 1 0 1 1 0 55
113 1 1 1 0 1 0 0 23
114 1 1 1 0 0 0 1 71
115 0 1 1 0 0 0 1 70
116 0 1 0 0 0 1 0 34
117 1 1 0 0 1 0 1 83
118 1 1 0 1 1 0 1 91
119 1 1 0 1 0 0 1 75
120 1 1 0 0 0 1 0 35
121 1 1 0 0 0 1 1 99
122 1 0 0 0 1 0 0 17
123 1 0 0 1 0 1 0 41
124 1 0 1 1 0 1 1 109
125 1 0 1 0 0 1 1 101
126 1 0 0 0 1 0 1 81
127 1 0 0 0 1 1 0 49

Проведем сравнение семиразрядных заявляемой и рекурсивной кодовых шкал по числу наносимых границ смены кодовой маски.

Нелинейная двоичная последовательность, используемая для построения семиразрядной рекурсивной кодовой шкалы (прототипа), имеет вид 00000001000001100001010001111001000101100111010100111110100001110001 001001101101011011110110001101001011101110011001010101111111. Для нее, число наносимых границ смены кодовой маски, TРКШ=2n-1=27-1=26=64.

Инверсно-сопряженная нелинейная двоичная последовательность, используемая для построения семиразрядной заявляемой кодовой шкалы, имеет вид 00000000110001100010001101110100111001100000000000011000000000001 111111100111001110111001000101100011001111111111110011111111111. Для нее, число наносимых границ смены кодовой маски, TКШ=38 (см. также фиг.4).

Таким образом, трудоемкость изготовления семиразрядной кодовой шкалы на основе инверсно-сопряженной нелинейной двоичной последовательности, по сравнению с трудоемкостью изготовления семиразрядной рекурсивной кодовой шкалы уменьшается на 40,625%.

Таким образом, предлагаемое изобретение позволяет повысить технологичность кодовых шкал на основе инверсно-сопряженных нелинейных двоичных последовательностей в плане уменьшения трудоемкости их изготовления за счет меньшего числа наносимых границ смены рисунка кодовой маски, а также размещения считывающих элементов вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом д.

Наибольшее повышение технологичности предлагаемых кодовых шкал может быть достигнуто при контактном, емкостном или электромагнитном методе съема информации.

Литература

1. Фотоэлектрические преобразователи информации / Л.Н. Преснухин, С.А. Майоров, И.В. Меськин, В.Ф. Шаньгин. Под ред. Л.Н. Преснухина. - М.: Машиностроение, 1974. - 375 с.

2. Домрачев В.Г., Мейко Б.С. Цифровые преобразователи угла: принципы построения, теория точности, методы контроля. - М.: Энергоатомиздат, 1984. - 328 с.

3. Азов А.К, Ожиганов А.А., Тарасюк М.В. Рекурсивные кодовые шкалы // Издательство "Машиностроение" Информационные технологии, 1998, №6. С.39-43. - прототип.

Инверсно-сопряженная кодовая шкала, содержащая информационную кодовую дорожку, выполненную в соответствии с символами нелинейной двоичной последовательности длиной N=2n, посредством которой обеспечивается величина кванта шкалы δ=360°/N, и n считывающих элементов, определяющих выходную разрядность кодовой шкалы и размещенных вдоль информационной кодовой дорожки с возможностью получения с них N различных n разрядных кодовых комбинаций, отличающаяся тем, что информационная кодовая дорожка выполнена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности, а n считывающих элементов размещены вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ.



 

Похожие патенты:
Устройство относится к области вычислительной техники и может использоваться в системах управления технологическими процессами, в частности в автоматизированном электроприводе.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системе контроля энергонасыщенных объектов. Техническим результатом является повышение точности преобразования.

Изобретение относится к области вывода линейно изменяющихся сигналов, аналого-цифрового преобразования этого сигнала и формирования изображений. Достигаемый технический результат - возможность выводить линейно изменяющиеся сигналы, имеющие потенциал, варьирующийся в зависимости от времени.

Изобретение относится к технике первичного измерительного преобразования физических величин в электрические сигналы и касается способа формирования функционально-интегрированных/дифференцированных (ФИД) квадратурных опорных сигналов (КОС).

Изобретение относится к электроизмерительной и вычислительной технике и может быть использовано в системах управления электроприводами для преобразования аналогового напряжения в код.

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в системе остаточных классов (СОК).

Изобретение относится к области телекоммуникаций и может быть использовано для преобразования цифровых сигналов в аналоговые сигналы. Техническим результатом является повышение технологичности конструкции преобразователя.

Изобретение относится к технике прецизионного измерения однократных интервалов времени. Технический результат заключается в повышении точности цифрового преобразования интервала времени в цифровой код.

Изобретение относится к радиотехнике, предназначено для обнаружения маломощного излучения в СВЧ диапазоне радиоволн и определения источника излучения. Технический результат - расширение полосы рабочих частот, повышение чувствительности и обеспечение низкой погрешности измерения направления на источник излучения.

Группа изобретений относится к области радиоэлектроники и может быть использовано при создании высокоскоростных модуляторов/демодуляторов радиотехнических систем проводной и беспроводной цифровой передачи данных.

Изобретение относится к области автоматики и робототехники и может быть использовано в высокоточных следящих приводах с цифровыми датчиками угла (ЦДУ), в которых точность ЦДУ должна лежать в пределах нескольких угловых секунд. Техническим результатом является повышение точности. Устройство содержит двухотсчетный индукционный датчик угла типа СКВТ, состоящий из СКВТ точного отсчета и СКВТ грубого отсчета, аналого-цифровой преобразователь следящего типа, микропроцессорный контроллер с контроллером внешней системной шины с поддержкой микросхем памяти NAND Flash и с контроллером последовательного интерфейса для ввода кода угла эталонного ЦДУ, системную шину, энергонезависимую память NAND Flash, схему формирования сигнала считывания кода с АЦП в МПК по прерыванию. 2 ил.

Изобретение относится к средствам канального кодирования на основе комплексного преобразования с частотным кодированием с расширенной полосой. Технический результат заключается в улучшении качества многоканального звука. Принимают закодированные данные многоканального звука в битовом потоке, причем закодированные данные многоканального звука содержат данные кодирования с канальным расширением и данные кодирования с частотным расширением, причем данные кодирования с канальным расширением содержат комбинированный канал для множества звуковых каналов и множество параметров для представления отдельных каналов этого множества звуковых каналов в качестве модифицированных версий комбинированного канала. Определяют на основе информации в битовом потоке, содержит ли упомянутое множество параметров набор параметров, содержащий нормированную корреляционную матрицу, или набор параметров, содержащий комплексный параметр, представляющий отношение, содержащее мнимый компонент и действительный компонент, для кросс-корреляции между двумя из упомянутого множества звуковых каналов. На основе данного определения декодируют упомянутое множество параметров. Восстанавливают множество звуковых каналов с использованием данных кодирования с канальным расширением и данных кодирования с частотным расширением. 4 н. и 16 з.п. ф-лы, 42 ил., 1 табл.

Изобретение относится к прямому цифровому приемнику. Техническим результатом является упрощение схемы прямого цифрового приемника. Приемник содержит: аналого-цифровой преобразователь (214) для преобразования аналогового сигнала, принятого от радиочастотной катушки (11, 12, 13, 200), в цифровой дискретный входной сигнал, аналого-цифровой преобразователь (214) управляется локальным тактовым сигналом, локальный тактовый генератор (400), приспособленный для предоставления локального тактового сигнала во временной основе локального тактового сигнала аналого-цифровому преобразователю (214), временная основа локального тактового сигнала независима от временной основы системного тактового сигнала, фазовый детектор (402), приспособленный для определения разности (512) фаз между системным тактовым сигналом (222) и локальным тактовым сигналом, блок (224) повторной дискретизации, приспособленный для повторной дискретизации цифрового дискретного входного сигнала в цифровой дискретный выходной сигнал с помощью разности (512) фаз. 4 н. и 4 з.п. ф-лы, 9 ил.

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является устранение неоднозначности считывания со шкалы кодовых комбинаций. Кодовая шкала содержит m информационных кодовых дорожек, выполненных в соответствии с символами двоичной последовательности 0011 длиной 4, причем i-я информационная кодовая дорожка (i=1÷m) выполнена в соответствии с символами N=4(i-1) периодов двоичной последовательности, считывающие элементы, m двухвходовых сумматоров по модулю два, (m-1) ПЗУ на пять входов и два выхода. 5 ил., 5 табл.

Изобретение относится к обработке внутри вычислительной среды, в частности к преобразованию данных из одного формата в другой формат. Технический результат заключается в упрощении компилируемого кода и улучшении производительности, в частности производительности операций память-память. Технический результат достигается за счет машинных команд, которые считывают данные из памяти, преобразуют их в соответствующий десятичный формат с плавающей точкой и записывают их в целевой регистр с плавающей точкой или пару регистров с плавающей точкой. Также предоставляются машинные команды, которые преобразуют десятичный операнд с плавающей точкой в исходном регистре с плавающей точкой или паре регистров с плавающей точкой в данные и сохраняют его в целевой ячейке памяти. 3 н. и 17 з.п. ф-лы, 8 табл., 18 ил.

Изобретение относится к области регулирования уровня громкости. Технический результат - обеспечение повышения быстродействия и точности преобразования. Способ регулирования уровня громкости характеризуется использованием ЦАП, содержащего n разрядный регистр, дополнительный n разрядный регистр, к входам регистров подключены соответствующие выходы блока управления, а к выходам регистров подключены n разрядные резисторные R-2R матрицы; исходный параллельный цифровой код подают на блок переменных резисторов таким образом, что одна пара выходов резисторных R-2R матриц через резисторы подключена к заземлению, другая пара выходов матриц подключена к трансформатору, каждому биту соответствует свой резистор, причем резисторы управляются программно и синхронно по команде внешнего управляющего устройства; уровень звукового сигнала изменяют посредством изменения уровня опорного напряжения (логической "1") и измененный по уровню код направляют на повторитель, выполненный на операционных усилителях, причем каждому биту назначают свой соответствующий операционный усилитель. 3 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для различных измерений. Достигаемый технический результат - осуществление контроля работоспособного состояния дифференциально-трансформаторного преобразователя (ДТП) и стабильности его метрологических характеристик. Способ контроля стабильности коэффициента преобразования ДТП характеризуется тем, что включает формирование выходного сигнала в виде отношения разности падений напряжений на вторичных обмотках ДТП к их сумме, при этом подбирают внутреннее сопротивление стабилизированного источника питания первичной обмотки ДТП таким, при котором на определенной частоте питания во всем температурном диапазоне работы ДТП сумма падений напряжений на вторичных обмотках U1+U2 ДТП будет постоянна, при градуировке питают первичную обмотку ДТП этим источником, измеряют сумму падений напряжений U1+U2 , фиксируют это значение, сравнивают значение измеренной во время работы ДТП суммы падений напряжений U1+U2 на вторичных обмотках со значением измеренной и зафиксированной суммы падений напряжений U1+U2 на вторичных обмотках в процессе градуировки. 5 ил.

Изобретение относится к измерительной технике. Технический результат - уменьшение относительной погрешности аналого-цифрового преобразования с двухтактным интегрированием. Способ двухтактного аналого-цифрового преобразования интегрирующего типа основан на измерении искомого временного интервала с использованием конденсатора, параллельного операционному усилителю. Отличается тем, что во втором такте измерения разрядный ток конденсатора изменяют во времени согласно выражению Ic(t)=I0(kt)p при p>0. Устройство для реализации способа включает управляемый двухвходовый ключевой элемент, операционный усилитель, конденсатор, источник тока разряда, компаратор, источник уровня сравнения, блок управления, блок кодирования, выход которого является выходом аналого-цифрового преобразователя. Отличается тем, что источник тока разряда реализует функцию изменения тока разряда на входе операционного усилителя в соответствии с выражением Ic(t)=I0(kt)p, p>0, при этом источник тока разряда имеет управляющий вход, который соединен с выходом блока включения/выключения источника тока разряда, вход блока включения/выключения источника тока разряда соединен с одним из выходов блока управления. 2 н.п. ф-лы, 4 ил.

Изобретение относится к средствам проектирования объектов самонаведения, стабилизированных вращением с многими неизвестными. Технический результат заключается в моделировании в реальном времени как цифровых, так и аналоговых форм квадратурных опорных сигналов. В способе в условиях изменения источников излучения своих геометрических размеров и форм производят настройку модели как систему отсчета координат в режиме вращения. Синхронно по частоте и фазе имитируемого вращения формируют два сигнала "развертки-свертки" линий синуса и косинуса единичной тригонометрической окружности, сопоставляют по первому каналу сигнал "развертки-свертки" линии синуса, а по второму - линии косинуса, с полем переменных опорных уровней, при котором позиции поля уровней и переменный шаг квантования выбирают с учетом приближения к исходным единичным синусно-косинусным функциям метода аппроксимации, а в моменты пересечений сигналами "развертки-свертки" каждого уровня формируют квадратичные опорные сигналы в виде последовательности счетных импульсов, кодирующих синусно-косинусные функции унитарным число-импульсным кодом в виде двоичного числа, а также в виде параллельного дополнительного двоичного кода и в аналоговой форме. 6 ил.

Группа изобретений относится к области аналого-цифрового преобразования и может быть использована в системах управления и контроля. Техническим результатом является обеспечение динамически изменяемого разрешения преобразования. Передатчик переменной процесса используется для измерения переменной процесса и при этом динамически изменяет разрешение АЦ преобразователя на основании измеренного значения аналогового входного сигнала. Это может быть выполнено посредством автоматической конфигурируемой регулировки усиления разрешения на основании значения измеряемого аналогового сигнала, с помощью нормализации измеряемого входного сигнала таким образом, что он центрируется в оптимальном окне разрешения АЦ преобразователя, или посредством регулировки опорного напряжения, обеспеченного АЦ преобразователю. 3 н. и 17 з.п. ф-лы, 8 ил.
Наверх