Тепловая машина, реализующая цикл рейлиса

Изобретение относится к двигателестроению. Тепловая машина реализует цикл Рейлиса и состоит из двух камер разных объёмов, внутри которых расположены вытеснители двухстороннего действия. Вытеснители присоединены через механизм преобразования возвратно-поступательного движения во вращательное к рабочему валу с маховиком. Объём камеры с низкой температурой присоединён через охлаждающий рекуперативный теплообменник к регенеративному теплообменнику. Объём камеры с высокой температурой присоединён через греющий рекуперативный теплообменник к регенеративному теплообменнику. Объёмы камер со сторон промежуточной температуры и регенеративные теплообменники подсоединены к четырёхходовому газораспределительному клапану. Клапан присоединён через механизм, преобразующий равномерное вращательное движение в прерывистое вращательное движение, и кинематически соединён с рабочим валом. В результате обеспечивается изохорное перетекание газа с одной стороны вытеснителя через рекуперативный, регенеративный теплообменники на другую сторону вытеснителя. Также обеспечивается изобарное перетекание газа из объёма одной камеры со стороны промежуточной температуры через газораспределительный клапан, регенеративный и рекуперативный теплообменники в объём другой камеры в процессе сжатия или расширения. Техническим результатом является повышение КПД тепловой машины. 2 ил.

 

Изобретение относится к отрасли энергомашиностроения, а конкретно к двигателестроению, и может быть использовано для разработки высокоэкономичных, экологически чистых двигателей.

Предложенное изобретение может быть использовано в тепловых электростанциях, автомобилях, холодильных машинах, тепловых насосах и т.д.

Известен двигатель, работающий по циклу Стирлинга (Уокер Г. Двигатели Стирлинга. - М.: Машиностроение, 1985).

Термодинамический цикл Стирлинга является частным случаем регенеративного цикла Рейлиса, в связи с чем в цикле Стирлинга регенерация тепла внутри цикла частичная и меньше по сравнению с циклом Рейлиса, что уменьшает возможную максимальную достижимую границу термического КПД тепловой машины.

Недостатком термодинамического цикла Стирлинга по сравнению с циклом Рейлиса является частичная регенерация тепла в термодинамическом цикле, чем, в частности, ограничивается максимальный предел термического КПД тепловой машины.

Наиболее близким аналогом является изобретение (US 3751904 опубл. 14.08.1973) тепловая машина, работающая по циклу Стирлинга (частный случай цикла Рейлиса), состоящая из двух камер разных объёмов. Внутри камер расположены вытеснители двухстороннего действия, присоединённые через механизм преобразования возвратно-поступательного движения во вращательное к рабочему валу с маховиком.

Существенным недостатком этого изобретения является низкая эффективность процесса преобразования тепла в работу и обратно, которое происходит из-за отсутствия разделения изохорного и изобарного процессов в ходе отвода и подвода тепла к рабочему телу (газу).

Технической задачей изобретения является повышение КПД путём полноценной регенерации тепла в течение всего рабочего термодинамического цикла, а также более эффективного теплообмена за счёт разделения изохорного и изобарного процессов в ходе отвода и подвода тепла к рабочему телу.

Технический результат достигается тем, что тепловая машина, реализующая цикл Рейлиса, состоящая из двух камер разных объёмов, внутри которых расположены вытеснители двухстороннего действия, присоединённые через механизм преобразования возвратно-поступательного движения во вращательное к рабочему валу с маховиком, имеет то, что объём камеры с низкой температурой присоединён через охлаждающий рекуперативный теплообменник к регенеративному теплообменнику, объём камеры с высокой температурой присоединён через греющий рекуперативный теплообменник к регенеративному теплообменнику, а объёмы камер со стороны промежуточной температуры и регенеративные теплообменники подсоединены к четырёхходовому газораспределительному клапану. Клапан присоединён через механизм, преобразующий равномерное вращательное движение в прерывистое вращательное движение, и кинематически соединён с рабочим валом, что обеспечивает изохорное перетекание газа с одной стороны вытеснителя через рекуперативный, регенеративный теплообменники на другую сторону вытеснителя, а также обеспечивается изобарное перетекание газа из объёма одной камеры со стороны промежуточной температуры через газораспределительный клапан, регенеративный и рекуперативный теплообменники в объём другой камеры в процессе сжатия или расширения.

Изобретение поясняется следующими чертежами.

На фиг. 1 изображена кинематическая схема тепловой машины, реализующей цикл Рейлиса.

Тепловая машина, работающая по циклу Рейлиса, состоит из двух камер разных объемов, камеры меньшего объема 1 и большего объема 2, рабочего вала 3, газораспределительного клапана 4 и вытеснителей 5 и 6, рекуперативного теплообменника охлаждения 7, регенеративного теплообменника 8 с отдачей тепла, рекуперативного теплообменника нагрева 9, регенеративного теплообменника 10 с отдачей тепла, маховика 11, механизма преобразования возвратно-поступательного движения во вращательное 12, механизма преобразования равномерно-вращательного движения в прерывистое 13 и кинематической связи с рабочим валом 14.

Изобретение предназначено для преобразования тепловой энергии в механическую и обратно. Тепловая машина работает по циклу Рейлиса и состоит из камеры 1 меньшего объёма и камеры 2 большего объёма. Внутри камер расположены вытеснители 5 и 6 двухстороннего действия, двигающиеся в одинаковых фазах и присоединённые через механизм преобразования возвратно-поступательного движения во вращательное 12 к рабочему валу 3 с маховиком 11. Объём камеры 1 с низкой температурой присоединён через охлаждающий рекуперативный теплообменник 7 к регенеративному теплообменнику 8. Объём камеры 2 с высокой температурой присоединён через греющий рекуперативный теплообменник 9 к регенеративному теплообменнику 10. Объём камер 1 и 2 со стороны промежуточной температуры и регенеративные теплообменники подсоединены к четырёхходовому вращающемуся газораспределительному клапану 4. При этом обеспечивается изохорное перетекание газа с одной стороны вытеснителей 5 и 6 через рекуперативный и регенеративный теплообменники на другую сторону вытеснителя, а также обеспечивается изобарное перетекание газа из объёма одной камеры со стороны промежуточной температуры через газораспределительный клапан 4, регенеративный и рекуперативный теплообменники в объём другой камеры. Газораспределительный клапан 4 соединен через кинематическую связь 14 и механизм преобразования равномерно-вращательного движения в прерывистое 13 с рабочим валом 3.

На фиг.2 изображена диаграмма термодинамического цикла Рейлиса в Р-V координатах, где:

Q1 - подвод тепла в рекуперативный теплообменник 9;

Qrl - тепло, регенерируемое в регенеративном теплообменнике 10;

Qr2 - тепло, регенерируемое в регенеративном теплообменнике 8;

Q2 - отвод тепла из рекуперативного теплообменника 7.

Для осуществления вышеуказанного цикла должно выполняться следующее соотношение:

V2/V1=Р2/Р1=(ТЗ-Т2)/(Т2-Т1),

где:

VI - Объем камеры 1;

V2 - Объем камеры 2;

Р1 - Давление в процессе сжатия рабочего тела;

Р2 - Давление в процессе расширении рабочего тела;

Т1 - Температура рабочего тела в холодильнике;

Т2 - Промежуточная температура;

ТЗ - Температура рабочего тела в нагревателе.

Изобретение направлено на повышение КПД тепловых машин.

Тепловая машина, реализующая цикл Рейлиса, состоящая из двух камер разных объёмов, внутри которых расположены вытеснители двухстороннего действия, присоединённые через механизм преобразования возвратно-поступательного движения во вращательное к рабочему валу с маховиком, отличающаяся тем, что объём камеры с низкой температурой присоединён через охлаждающий рекуперативный теплообменник к регенеративному теплообменнику, объём камеры с высокой температурой присоединён через греющий рекуперативный теплообменник к регенеративному теплообменнику, а объёмы камер со сторон промежуточной температуры и регенеративные теплообменники подсоединены к четырёхходовому газораспределительному клапану, который присоединён через механизм, преобразующий равномерное вращательное движение в прерывистое вращательное движение, и кинематически соединён с рабочим валом, что обеспечивает изохорное перетекание газа с одной стороны вытеснителя через рекуперативный, регенеративный теплообменники на другую сторону вытеснителя, а также обеспечивается изобарное перетекание газа из объёма одной камеры со стороны промежуточной температуры через газораспределительный клапан, регенеративный и рекуперативный теплообменники в объём другой камеры в процессе сжатия или расширения.



 

Похожие патенты:

Изобретение относится к тепловой энергетике. Тепловая машина с внешним подводом тепла содержит четыре сильфона на горячей стороне машины, соединенные с нагревателями, и четыре сильфона на холодной стороне машины, соединенные с охладителями.

Изобретение относится к энергетике. Двигатель с подводом теплоты содержит цилиндр с головкой и поршнем, средство подвода теплоты - нагреватель, средство отвода теплоты - холодильник и распределительный механизм с цилиндрическими золотниками.

Изобретение относится к энергетике. Энергетическая установка подводного аппарата содержит тепловой двигатель, систему автоматического управления, впускную систему, образованную ресивером-смесителем и регенератором тепла отработанных газов, последовательно соединенные с ним охладитель отработанных газов, фильтр-влагоотделитель, клапан регулирования рециркуляции.

Изобретение относится к двигателестроению. Двигатель внешнего нагрева содержит систему управления с блоком управления, систему нагрева и охлаждения, цилиндр с торцовой и боковой стенками.

Изобретение относится к роторно-поршневой машине, включающей корпус, два рабочих вала, центральное неподвижное зубчатое колесо и выходной вал с эксцентриком. Рабочие валы оснащены лопастными поршнями и рычагами.

Изобретение относится к энергетике. Генерирующая установка содержит двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга.

Изобретение относится к способу преобразования теплоты в работу в тепловом двигателе. Способ включает выполнение рабочего тела теплового двигателя в виде смеси веществ, между которыми протекает обратимая химическая реакция.

Изобретение относится к машиностроению. .

Изобретение относится к тепловым машинам роторного типа. .

Изобретение относится к энергетическим установкам, функционирующим без связи с атмосферой и предназначенным для глубоководных аппаратов и подводных лодок. Энергетическая установка содержит в качестве рабочего тела для парового контура органическую жидкость, паровой контур снабжен установленным между паровой турбиной и конденсатором пара теплообменником-рекуператором и теплообменником-испарителем, через который проходит магистраль для отвода отработанных газов из камеры сгорания, при этом магистраль для отвода отработанных газов снабжена байпасной линией с регулирующим клапаном, соединенной через эжектор с магистралью отработанных газов перед теплообменником-испарителем и отходящей от магистрали для отвода отработанных газов после теплообменника-испарителя. Изобретение позволяет повысить надежность и эффективность работы энергетической установки при небольшой мощности паровой турбины, а также снизить стоимость и массогабаритные характеристики энергетической установки в целом. 1 ил.

Изобретение относится к двигателям внешнего сгорания. Техническим результатом изобретения является увеличение мощности на единицу массы двигателя и, как следствие, повышение экономической эффективности. Сущность изобретения заключается в том, что двигатель включает нагреватель, рабочий цилиндр с поршнем, штоком и шатуном; цилиндр компрессора с поршнем, штоком и шатуном; коленчатый вал, регенератор надпоршневого пространства, регенератор подпоршневого пространства, охладитель, впускной клапан надпоршневого пространства, впускной клапан подпоршневого пространства, выпускной перекидной клапан надпоршневого пространства, выпускной перекидной клапан подпоршневого пространства. Рабочий цилиндр может иметь также нагрев, а цилиндр компрессора - охлаждение. Диаметр рабочего цилиндра больше диаметра цилиндра компрессора. Заявляемый двигатель - двойного действия с замкнутым тепловым циклом, подобным циклу классического двигателя Эриксона с теоретическим коэффициентом полезного действия до 70%. Замкнутый тепловой цикл позволяет использовать в качестве рабочего тела азот, диоксид углерода, инертные газы, их смеси и другие газы. Нагрев рабочего тела производится в общем котле-нагревателе и рабочем цилиндре, а охлаждение в общем охладителе и цилиндре компрессора по замкнутому тепловому циклу с начальным давлением рабочего тела, газа выше атмосферного. 1 ил.

Изобретение относится к энергетическим установкам, функционирующим без связи с атмосферой и предназначенным для глубоководных аппаратов и подводных лодок. Паровая энергетическая установка снабжена промежуточным контуром с диатермическим маслом и насосом для его циркуляции, при этом в качестве рабочего тела для парового контура использована органическая жидкость, камера сгорания выполнена в виде масляного котла, паровой контур снабжен теплообменником-рекуператором, теплообменником-испарителем и насосом, а промежуточный контур с диатермическим маслом расположен между масляным котлом и паровым контуром и проходит через топочное пространство масляного котла и теплообменник-испаритель парового контура, причем магистраль для отвода отработанных газов снабжена байпасной линией с регулирующим клапаном для подачи части отработанных газов в топочное пространство масляного котла и дожимным компрессором для подачи части отработанных газов непосредственно в емкость для растворения отработанных газов в забортной воде, а магистраль забортной воды последовательно проходит через конденсатор пара парового контура и емкость для растворения отработанных газов в забортной воде. Изобретение позволяет повысить эффективность работы энергетической установки при небольшой мощности паровой турбины, надежность и долговременность работы энергетической установки в целом, а также снизить видимость следа при движении подводного технического средства. 1 ил.

Изобретение относится к энергетике. Техническим результатом является повышение эффективности. Сущность изобретения заключается в том, что тепловой двигатель содержит цилиндр с головкой и поршнем, нагреватель, холодильник, вытеснительную полость и газораспределительный механизм. Головка и поршень образуют рабочую камеру, связанную с вытеснительной полостью газоходным каналом-соплом. Газоходный канал-сопло при входе в рабочую камеру образует завихритель газа. Нагреватель выполнен в виде внутренней рубашки цилиндра, конструктивно объединенной с головкой цилиндра. Холодильник выполнен в виде внешней рубашки цилиндра. Вытеснительная полость расположена в теле обечайки цилиндра между внутренней и коаксиально посаженной на нее внешней рубашками цилиндра. Газораспределительный механизм выполнен в виде завихрителя рабочего газа, образованного тангенциальной направленностью газоходного канала-сопла при входе в вытеснительную полость. Тепловой двигатель с бесклапанным газораспределением дополнительно содержит активатор - средство подвода плазмообразующей энергии активации рабочего газа в рабочей камере, который позволяет осуществлять замкнутый внутренний цикл «активной» регенерации теплоты сжатия. 2 н. и 18 з.п. ф-лы, 2 ил.

Изобретение относится к роторным двигателям с внешним подводом теплоты. Роторный двигатель содержит цилиндрический корпус, холодильный аппарат и внешний теплообменный нагреватель. Корпус выполнен неподвижным, разделенным на две камеры с впускными и выпускными окнами, с двумя валами, посаженными на подшипники. В каждой камере размещены два ротора. В корпусе компрессора и двигателя расположены по два ротора, параллельные друг другу и синхронизированные при помощи шестеренчатой передачи. Двигатель выполнен с отдельными камерами сжатия и расширения. Роторы расположены на двух валах, ведущем и ведомом, которые синхронизированы зубчатым зацеплением в отдельной герметичной камере. Подшипниковые узлы установлены на валах с натягом. Узлы межкамерных и торцевых уплотнений выполнены в лабиринтном исполнении. Горение топливно-воздушной смеси происходит при атмосферном давлении. Техническим результатом является повышение эффективности и экологичности двигателя. 2 ил.

Изобретение относится к двигателестроению. Двухтактный двигатель внутреннего нагревания содержит картер, коленчатый вал, шатуны, поршни, крышку цилиндров, блок прерывания тока электронный, системы смазки и охлаждения, а также аккумуляторы. К картеру крепятся круглые имеющие сквозное окно пустотелые цилиндры. На крышке цилиндров установлены втулки. Снаружи втулок через электроизоляционный и герметичный корпус проходят проводники тока, соединяясь в объеме цилиндров с электрическим нагревателем. Блок прерывания тока соединен проводами с аккумулятором, проводниками тока и датчиком положения коленчатого вала. Двигатель снабжен закрепленными к блоку цилиндров одинаковыми двухпоточными теплообменниками. Каждый теплообменник одной открытой стороной объема трубного пространства соединен фланцевым соединением с окном, сделанным на расчетном расстоянии от нижнего торца цилиндра. Вторая открытая сторона объема трубного пространства у каждого теплообменника соединена фланцевым соединением с двухступенчатым цилиндром. В объем двухступенчатого цилиндра вставлены соответствующие диаметрам ступеней цилиндра два поршня. Рабочий объем цилиндра меньшего диаметра является частью объема компенсирующего контура. Техническим результатом является повышение мощности, безопасности и эффективности двигателя. 3 ил.

Изобретение относится к области энергетики и электротехники и может быть использовано в устройствах для преобразования термодинамической энергии в электрическую, используемых в качестве источника электрической энергии в системах электропитания автономных электроэнергетических комплексов. Техническим результатом является повышение динамической точности и устойчивости широко-импульсного регулятора общего блока балластной нагрузки с одновременным обеспечением стабильности напряжения на шине постоянного тока в переходных и установившихся режимах работы автономной системы электроснабжения. Способ управления общей балластной нагрузкой в автономной многомодульной электроэнергетической установке генерирования на основе двигателей Стирлинга, содержащей m модулей генерации, каждый из которых включает свободно поршневой двигатель Стирлинга с интегрированным линейным генератором и выпрямитель, выходы которых включены в параллель и образуют шину постоянного тока, к которой подключаются аккумуляторная батарея, полезная нагрузка и общий блок балластной нагрузки заключается в следующем: измеряют величины напряжений и токов каждого линейного генератора и полезной нагрузки, далее на основе измеренных величин напряжений и токов каждого линейного генератора производят расчет активных мощностей с последующим их суммированием; рассчитывают текущее значение мощности полезной нагрузки, формируют сигнал отношения вычисленной мощности полезной нагрузки к суммарной мощности линейных генераторов, сравнивают измеренную величину выходного напряжения полезной нагрузки с опорным напряжением, обрабатывают результирующий сигнал с помощью блока корректирующего устройства на основе пропорционально-интегрирующего регулятора; суммируют выходной сигнал пропорционально-интегрирующего регулятора с сигналом отношения вычисленной мощности нагрузки к суммарной мощности генераторов, формируя сигнал ошибки, поступающий на один из входов компаратора, а на другой вход компаратора поступает ступенчато-пилообразное напряжение, сформированное менеджером событий DSP контроллера. На выходе компаратора формируется широко-импульсный модулированный сигнал, который поступает на драйвер управления транзистором блока балластной нагрузки. 2 з.п. ф-лы, 5 ил.

Изобретение относится к судостроению, а именно к воздухонезависимым судовым энергетическим установкам подводных аппаратов, работающих без доступа атмосферного воздуха. Устройство для удаления углекислого газа, выполненное с возможностью работы при рабочем давлении газа 1,6-2,0 МПа, включает последовательно установленные компрессор для создания указанного давления с входом для подвода отработанных газов, охладитель отработанных газов повышенного давления с входом и выходом забортной воды, влагоотделитель-адсорбер, блок конденсации углекислого газа и сепарации жидкого СО2 с двумя охлаждающими камерами, устройство понижения давления, соединенное со смесителем холодных потоков, а также емкости хранения жидкого СО2 и теплоизолированные трубопроводы с арматурой, включающей управляемые клапаны. Первая охлаждающая камера блока конденсации и сепарации, выполненная с входом для подвода жидкого кислорода, соединена своим выходом со вторым входом смесителя холодных потоков, выход которого соединен с входом во вторую охлаждающую камеру блока конденсации и сепарации, выполненной с выходом для отвода газовой смеси из устройства. Блок конденсации и сепарации выполнен в виде трехкамерного конденсатора-сепаратора, охлаждаемая камера которого выполнена с возможностью сепарации жидкого СО2 и снабжена выходом для отвода жидкого СО2, соединенным с емкостями хранения жидкого СО2, при этом своим входом охлаждаемая камера соединена с влагоотделителем-адсорбером, а выходом газообразной фазы через устройство понижения давления, выполненное в виде турбодетандера, она соединена с первым входом смесителя холодных потоков. Техническим результатом является повышение надежности, уменьшение массогабаритных характеристик и увеличение кпд. 7 з.п. ф-лы, 2 ил.

Изобретение относится к судостроению, а именно к воздухонезависимым судовым энергетическим установкам подводных аппаратов, работающих без доступа атмосферного воздуха. Устройство для удаления углекислого газа включает последовательно установленные компрессор для создания рабочего давления с подводом отработанных газов, охладитель отработанных газов повышенного давления с входом и выходом забортной воды, влагоотделитель - адсорбер, блок конденсации углекислого газа и сепарации жидкого СО2 с двумя охлаждающими камерами, устройство понижения давления, соединенное со смесителем холодных потоков, а также емкости хранения жидкого СО2 и теплоизолированные трубопроводы с арматурой, включающей автоматические клапаны, при этом первая охлаждающая камера блока конденсации и сепарации, выполненная с входом для подвода жидкого кислорода, соединена своим выходом со вторым входом смесителя холодных потоков, выход которого соединен со второй охлаждающей камерой блока конденсации и сепарации, выполненной с выходом для отвода газовой смеси из устройства, отличается тем, что устройство выполнено с возможностью работы при рабочем давлении газа 1,2-1,6 МПа и снабжено теплообменником-испарителем, который выполнен с входом для подвода криогенно-жидкого горючего из емкости его хранения и выходом для отвода газообразного горючего из устройства и установлен перед блоком конденсации и сепарации, который выполнен в виде трехкамерного конденсатора-сепаратора, охлаждаемая камера которого выполнена с возможностью сепарации жидкого СО2 и снабжена выходом для отвода жидкого СО2, соединенным с емкостью хранения жидкого CO2, при этом своим входом охлаждаемая камера соединена с теплообменником-испарителем, а выходом газообразной фазы через устройство понижения давления, выполненное в виде турбодетандера, она соединена с первым входом смесителя холодных потоков. Техническим результатом является уменьшение затрат полезной мощности и повышение кпд. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области специальных фортификационных сооружений и энергетических систем объектов, функционирующих без связи с атмосферой, например специальных фортификационных сооружений. Достигаемый технический результат - увеличение сроков функционирования специального фортификационного сооружения, поддержание холодильного потенциала технической воды, используемой для систем охлаждения автономной электростанции и холодильной машины в режиме полной изоляции (без связи с атмосферным воздухом) за счет охлаждения при газификации сжиженного природного газа, снижение концентрации вредных компонентов в отработанных газах за счет перевода автономной электростанции в режим работы газодизеля, а также увеличение бездренажного хранения сжиженного природного газа за счет размещения емкости в помещении с теплоизолирующим слоем. В режиме полной изоляции энергоснабжение специального фортификационного сооружения 1 обеспечивается работой газодизеля (автономной электростанцией) 2. Термостатирование обеспечивается работой холодильной машины 3 и связанной с ней через контур теплоносителя 5 с насосом 6 системой кондиционирования воздуха 4. После охлаждения газодизеля 2 и холодильной машины 3 техническая вода нагревается и сливается в резервуар технической воды 9, что приводит к постепенному повышению всей массы технической воды в резервуаре 9. Для газификации сжиженного природного газа, поступающего из емкости 12 в теплообменник-испаритель 13, в теплообменник-испаритель 13 по магистрали 19 насосом 20 обеспечивается подача технической воды из резервуара технической воды 9. Теплая техническая вода из резервуара технической воды 9, проходя через теплообменник-испаритель 13, отдает свое тепло (через теплообменную поверхность) сжиженному природному газу, в результате чего теплая техническая вода охлаждается и холодной поступает в резервуар технической воды 9. В результате этого процесса в резервуаре технической воды 9 в значительной мере снижается температура технической воды, которая была получена за счет охлаждения газодизеля 2 и холодильной машины 3, что обеспечивает поддержание холодильного потенциала технической воды в резервуаре 9. 1 ил.
Наверх