Композиционный сплав на основе железа для тормозной колодки железнодорожного вагона



Композиционный сплав на основе железа для тормозной колодки железнодорожного вагона
Композиционный сплав на основе железа для тормозной колодки железнодорожного вагона
Композиционный сплав на основе железа для тормозной колодки железнодорожного вагона

 


Владельцы патента RU 2553138:

Общество с ограниченной ответственностью "Научно-Технический Центр Информационные Технологии" (RU)

Изобретение относится к порошковой металлургии, в частности к порошковым фрикционным сплавам на основе железа, и может быть использовано в узлах трения тормозной колодки и железнодорожного колеса. Композиционный сплав на основе железа для тормозной колодки железнодорожного вагона содержит, мас.%: медь 5-20, хром 0,1-5,0, углерод 3-20, окись алюминия 1-10, оксид кремния 0,5-5, железо - остальное. Сплав состоит из железной матрицы и фрикционного наполнителя, пропитан кремнийорганическим гидрофобизатором. Основа железной матрицы имеет мелкозернистую структуру с размером зерна 15-70 мкм, состоящую из мелкопластинчатого перлита с межпластинчатым расстоянием 0,3-2,0 мкм, по границам которых распределены включения цементита, карбида хрома и свободного графита. Увеличивается износостойкость фрикционной пары «тормозная колодка-колесо», повышается стабильность и величина коэффициента трения, снижается износ вагонного колеса в процессе торможения. 2 з.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к порошковой металлургии, в частности к порошковым фрикционным сплавам на основе железа, и может быть использовано в узлах трения тормозной колодки и железнодорожного колеса.

Известно техническое решение по материалу, применяемому для изготовления фрикционных элементов (Патент №127023 «Тормозная шина вагонных замедлителей устанавливаемых на тормозных позициях сортировочных горок»). В данном техническом решении фрикционный элемент изготавливался из фрикционного спеченного сплава марки МК-5 методом порошковой металлургии с коэффициентом трения 0,17-0,18 по стали и СМК-80 с коэффициентом 0,28-0,30 Химический состав представлен в издании «Производство порошковых изделий». Учебник для техникумов. - 2-издание, Г.А. Либенсон. - М. Металлургия, 1990 г., с.64-65.

Недостаток использования фрикционного материалов МК-5 и СМК-80, для изготовления тормозных колодок заключается в том данный материал имеет не достаточно высокий коэффициент трения, в период торможения происходит значительный износ как тормозной колодки, так и колеса железнодорожного вагона.

Наиболее близким к предлагаемому сплаву является порошковый фрикционный сплав на основе железа для вставок, запрессованных в отверстия чугунной колодки (Патент RU №133490, по заявке 2013127622 от 18.06.2013. «Колодка вагонная тормозная композиционная на основе железа») фрикционные элемент колодки выполнены из материала на основе железа, содержащего по массе %: медь 9-16, углерод 0,5-3,0, окись алюминия 2-4, хром 0,5-1,5, молибден 0,1-0,2, фосфор 0,01-3,0, имеющего твердость по Бринелю (80-120) 5/125/10, микротвердость основы (230-250) HV 50, состоящей из пластинчатого перлита с медными прослойками по границам зерен, и микротвердость включений (700-900) HV 50, состоящих из карбидных соединений молибдена и хрома, и абразивную стойкость, превышающую абразивную стойкость колеса.

Недостатками данного материала являются низкая стабильность коэффициента в паре трения «колесо-тормозная колодка», большой износ колеса в процессе трения, значения коэффициента трения не достаточны.

Задачей заявляемого технического решения является повышения эффективности торможения железнодорожных вагонов.

Технический результат, достигаемый в процессе решения поставленной задачи, заключается в увеличении износостойкости фрикционной пары «тормозная колодка-колесо», в повышении стабильности и величины коэффициента трения, снижения износа вагонного колеса в процессе торможения.

Технический результат достигается композиционным сплавом на основе железа для тормозной колодки железнодорожного вагона, содержащим медь, хром, углерод, окись алюминия, железо - остальное, имеющий структуру пластинчатого перлита с медными прослойками по границам зерен, при этом он дополнительно содержит оксид кремния в следующем соотношении компонентов, мас.%:

медь 5-20
хром 0,1-5,0
углерод 3-20
окись алюминия 1-10;
оксид кремния 0,5-5

имеет структуру, состоящую из железной матрицы и фрикционного наполнителя, основа железной матрицы имеет мелкозернистую структуру с размером зерна 15-70 мкм, состоящую из мелкопластинчатого перлита с межпластинчатым расстоянием 0,3-2,0 мкм, по границам зерен имеются включения цементита, карбидов хрома, свободного графита, микротвердость зерен перлита 250-350 HV, микротвердость цементита и карбидов хрома 1350-1500 HV, фрикционный наполнитель в сплаве находится в виде отдельных включений оксидов алюминия Al2O3 и кремния SiO2· пропитан кремнийорганическим гидрофобизатором.

Кроме этого, размеры включений фрикционного наполнителя составляют 5-160 мкм, соотношение оксидов алюминия и кремния составляет 2:1-1:1.

В режиме трения тормозной колодки и вагонного колеса, компоненты фрикционного сплава выполняют следующие функции.

Железо составляет основу фрикционного материала. Вводится в виде порошка ABC100.30 серебристо-серого цвета с содержанием железа свыше 99%. Порошок обладает отличной формуемостью и прессуемостью, имеет размер частиц 45-150 мкм. Благодаря высокой чистоте и отличным технологическим свойствам порошок обеспечивает высокое качество фрикционного материала. Железо является основным связующим компонентом и обеспечивает общую прочность фрикционного сплава.

Медь введена в виде порошка медного электролитического ПМС-1 (массовая доля меди ≈99,5%) ГОСТ 4960 с номинальной величиной частиц 100 мкм. Часть меди при спекании растворяется в феррите, тем самым упрочняя его и повышая сопротивление атмосферной коррозии. Основная часть меди содержится в материале в виде включений свободной меди по границам зерен основной структуры, улучшая фрикционные свойства композита. Медь в составе фрикционного сплава на основе железа повышает теплопроводность и коэффициента трения, увеличивается адгезионную составляющую коэффициента трения. При содержании менее 5% интесифицируется схватывание ферритной основы колодки со сталью колеса, что приводит к усилению износа, но не повышает коэффициент трения выше 0,35. При содержании свыше 20% интенсифицируется адгезионное взаимодействие медной основы колодки со сталью колеса, что увеличивает коэффициент трения до 0,6, но также ведет к катастрофическому износу фрикционного материала.

Графит карандашный - порошок черного цвета марок ГК-1, ГК-3 по ГОСТ 4404-78. Графит в процессе трения служит твердой смазкой, препятствуя молекулярному схватыванию трущихся поверхностей. Содержание в составе металлокерамического материала графита менее 3 мас.% приводит при некотором увеличении износостойкости к значительному снижению стабильности коэффициента трения. При увеличении количества графита более 20 мас.% с ростом коэффициента трения значительно снижается износостойкость за счет расслоения материала при прессовании, снижении его прочностных характеристик.

Хром вводится в виде порошка ПХ1м ТУ 1479-022-4355-6328-2010 серого цвета, имеющего размер частиц менее 125 мкм, обладающего отличной формуемостью и уплотняемостью, без применения пластификаторов, имеющего низкое содержание вредных примесей - азота и углерода. Порошок ПХ1м получают восстановлением из оксида хрома. Хром является легирующим карбидообразующим элементом, повышающим прочность, твердость и, благодаря этому, износостойкость железоуглеродной матрицы сплава. Оптимальное содержание хрома составляет 0,1-5%, т.к. при меньшем содержании влияние хрома на износостойкость нивелируется, а при большем содержании в матрице материала образуются крупные включения карбидов хрома, которые приводят к разупрочнению сплава.

Фрикционные компоненты представляют собой смесь оксида алюминия в виде электрокорунда белого 25А ГОСТ 3647-80 и оксида кремния в виде кварца пылевидного марки Б ГОСТ 9077-82, добавлены для обеспечения заданного значения коэффициента трения, его стабилизации, а также некоторого повышения износостойкости. Оба фрикционных компонента в железной матрице спеченного фрикционного материала находятся в виде микровключений, размер которых равен или меньше размера частиц в исходных порошках. Оксид алюминия обладает высокой микротвердостью (свыше 1200 HV), обеспечивая упрочнение фрикционного материала и несколько увеличивая деформационную составляющую коэффициента трения, а оксид кремния, имея меньшую микротвердость (700-1000 HV), в основном, обеспечивает деформационную составляющую коэффициента трения. Суммарное содержание фрикционных компонентов составляет не более 12%. При меньшем содержании не обеспечивается необходимый коэффициент трения, при большем - увеличивается износ материала за счет ослабления структуры матрицы крупными включениями фрикционных компонентов. Оптимальное соотношение оксидов алюминия и кремния составляет 2:1-1:1. При большем содержании оксида алюминия снижаются коэффициент трения и его стабильность, при большем содержании оксида кремния падает износостойкость фрикционного материала.

Фрикционный материал вагонной тормозной колодки получен методом порошковой металлургии. Структура фрикционного материала состоит из матрицы и фрикционного наполнителя. Матрица представляет собой перлитную мелкозернистую основу с включениями цементита, карбидов хрома и меди по границам зерен. Перлит с микротвердостью 250-350 HV обладает высокой износостойкостью за счет своей мелкопластинчатой структуры (4-6 балла по ГОСТ 8233-56, преимущественно мелкопластинчатый 5 балла) и обеспечивает деформационную составляющую коэффициента трения. Положительный эффект на износостойкость оказывает мелкозернистость основы со размером зерна порядка 15-70 мкм. Участки цементита и карбидов хрома с микротвердостью до 1500 HV дополнительно упрочняют матрицу, повышая общую износостойкость материала. Медные включения в железной основе повышают теплопроводность материала. Выходя на поверхность трения по мере износа материала, медь обеспечивает схватывание со сталью вагонного колеса, повышая общий коэффициент трения за счет адгезионной составляющей. Фрикционный наполнитель представляет собой смесь оксидов алюминия и кремния. Выходя на поверхность фрикционного материала в процессе трения, наполнитель обеспечивает повышение коэффициента трения за счет деформационной составляющей. При этом, будучи достаточно мелкими (средний диаметр 6-15 мкм), частицы фрикционного наполнителя упрочняют матрицу фрикционного материала, повышая износостойкость. Также в состав матрицы фрикционного материала входит свободный графит. Выходя из пор материала в процессе трения, графит создает в зоне трения защитную пленку, препятствующую чрезмерному износу контртела, кроме того, пленка вносит дополнительный вклад в стабилизацию коэффициента трения, снижает износ колеса. Сплав пропитан кремнийорганическим гидрофобизатором, который препятствует проникновению влаги в поры сплава, стабилизируя работу колодки в различных климатических условиях.

Заявленная совокупность компонентов, вводимых в предлагаемый состав в предлагаемом соотношении, обеспечивают повышение износостойкости и стабильности коэффициента трения, снижает износ колеса. Снижение физического износа колеса, за счет исключения процессов адгезионного сваривания (схватывания) в паре трения «тормозная колодка-колесо», позволяет значительно, порядка на 10-15 дБ, понизить уровень шума.

Исследования разрушения поверхностных слоев фрикционного сплава показали - на поверхности трения отсутствуют деформированные слои, т.е. изнашивание происходит путем выкрашивания перлита, взаимодействующего с поверхностью колеса, что обеспечивает деформационную составляющую коэффициента трения. Мелкопластинчатая структура обеспечивает высокую износостойкость матрицы материала. Выходящие на поверхность фрикционного материала включения меди, графита и фрикционного наполнителя повышают коэффициент трения.

В данном техническом решении фрикционный материал изготавливался методом порошковой металлургии.

Для экспериментальной проверки свойств заявляемого порошкового композиционного фрикционного сплава на железной основе были подготовлены четыре смеси ингредиентов. Одна смесь с предпочтительным содержанием ингредиентов две с запредельным содержанием ингредиентов и одна с содержанием ингредиентов по прототипу (см. таблицу). Сплав готовят перемешиванием исходных порошков, прессованием в стальных пресс-формах при давлении 100-150 МПа. Полученные образцы подвергали спеканию. График спекания фрикционного материала является «ноу-хау». Спекание производится в атмосфере азота, при 1090°C.

Исследования фрикционных характеристик проводились на машине трения ИИ5018. График торможения на машине имитировал схему торможения реальной тормозной колодки.

По результатам испытаний оценивались коэффициент трения

скольжения, линейный износ образца. Давление в зоне контакта образцов соответствовало реальному давления в зоне «тормозная колодка-колесо» и составляло 50 кг/см

Предлагаемый порошковый фрикционный сплав по сравнению с известным сплавом имеет повышенную износостойкость и улучшенные триботехнические характеристики, что обеспечивает более высокую

надежность и долговечность тормозной колодки для железнодорожных вагонов. Химический состав фрикционного спеченного материала на основе железа и результаты исследований металлокерамического сплава с различными соотношениями ингредиентов, приведены в таблице. В таблице представлены полученные результаты

В сплаве №3 дополнительно содержится молибден - 0,15, фосфор - 0,7 мас.%. На фиг.1 представлена структура фрикционного сплава, на фиг.2 представлена структура фрикционного наполнителя. Структура сплава, полученная при спекании ингредиентов по варианту 4 имеет структуру, состоящую из железной матрицы 1 и фрикционного наполнителя 2, основа железной матрицы имеет мелкозернистую структуру 3 с размером зерна 15-70 мкм, состоящую из мелкопластинчатого перлита с межпластинчатым расстоянием 0,3-2,0 мкм, по границам зерен 4 дополнительно имеются включения цементита и карбидов хрома, микротвердость зерен перлита 250-350 HV и микротвердость цементита и карбидов хрома 1350-1500 HV. Фрикционный наполнитель 2 в сплаве находится в виде отдельных включений 5.

Подготовлена опытная партия тормозных колодок, изготовленная на машиностроительных заводах страны по предлагаемому техническому решению, для проведения испытания.

1. Композиционный сплав на основе железа для тормозной колодки железнодорожного вагона, содержащий медь, хром, углерод, окись алюминия, железо остальное, отличающийся тем, что он дополнительно содержит оксид кремния при следующем соотношении компонентов, мас.%:

медь 5-20
хром 0,1-5,0
углерод 3-20
окись алюминия 1-10
оксид кремния 0,5-5
железо остальное

при этом сплав состоит из железной матрицы и фрикционного наполнителя, пропитан кремнийорганическим гидрофобизатором, причем основа железной матрицы имеет мелкозернистую структуру с размером зерна 15-70 мкм, состоящую из мелкопластинчатого перлита с межпластинчатым расстоянием 0,3-2,0 мкм, по границам которых распределены включения цементита, карбида хрома и свободного графита, микротвердость зерен перлита составляет 250-350 HV, микротвердость цементита и карбида хрома составляет 1350-1500 HV, а фрикционный наполнитель в сплаве представляет собой отдельные включения оксидов алюминия Al2O3 и кремния SiO2.

2. Сплав по п.1, отличающийся тем, что размеры включений фрикционного наполнителя составляют 5-160 мкм.

3. Сплав по п.1, отличающийся тем, что соотношение оксидов алюминия и кремния составляет 2:1-1:1.



 

Похожие патенты:

Изобретение относится к области железнодорожного транспорта, а именно к тормозным колодкам железнодорожных транспортных средств. Тормозная колодка содержит композиционный фрикционный элемент, проволочный каркас из сваренных между собой широкой и узкой рамок, твердую вставку с выступами, вставленную в узкую рамку проволочного каркаса, и металлическую сетку или перфорированную металлическую полосу.
Изобретение относится к области железнодорожного транспорта, а именно к тормозным колодкам железнодорожных транспортных средств. Тормозная колодка железнодорожного транспортного средства содержит композиционный фрикционный элемент, металлический каркас и вставку из чугуна.
Изобретение относится к области железнодорожного транспорта, а именно к тормозным колодкам железнодорожных транспортных средств. Тормозная колодка содержит композиционный фрикционный элемент, металлический каркас и чугунную вставку.

Изобретение относится к области машиностроения, а именно к тормозным колодкам транспортных средств и различного оборудования. Фрикционное изделие содержит металлический каркас с отверстиями, приформованный к нему фрикционный элемент, противошумную металлическую пластину с отогнутыми элементами, полимерный демпфирующий слой, зафиксированный к поверхности металлического каркаса, противоположной поверхности, к которой приформован фрикционный элемент.

Изобретение относится к машиностроению, а именно к колодкам дисковых тормозов автомобилей и другой техники, снабженных акустическими сигнализаторами о предельном износе.

Изобретение относится к области машиностроения, а именно к колодкам дисковых тормозов автомобилей и другой техники. Колодка дискового тормоза содержит плоский металлический каркас и зафиксированный на нем фрикционный элемент, при этом торцевая поверхность металлического каркаса выполнена с выступом.

Изобретение относится к области машиностроения, а именно к тормозным фрикционным изделиям, эксплуатирующимся в тормозных и фрикционных узлах. Фрикционное изделие содержит металлический каркас с отверстиями.

Изобретение относится к области машиностроения, а именно к тормозным фрикционным изделиям, эксплуатирующимся в тормозных и фрикционных узлах. Фрикционное изделие содержит металлический каркас и приформованный к нему полимерный композиционный фрикционный элемент.

Изобретение относится к области машиностроения, а именно к тормозным фрикционным изделиям, эксплуатирующимся в тормозных и фрикционных узлах. Фрикционное изделие содержит металлический каркас и приформованный к нему полимерный композиционный фрикционный элемент.

Изобретение относится к железнодорожному транспорту, в частности к тормозным колодкам подвижного состава. Тормозная колодка содержит стальной каркас и чугунное дугообразное тело, снабженное вставками, которые размещены группами.

Изобретение относится к области металлургии, в частности производству труб нефтепромыслового сортамента. Для обеспечения низкой анизотропии предела текучести трубы при приложении к ней различных напряжений, зависящих от среды использования, получают трубу из аустенитного сплава, имеющую предел текучести при растяжении YSLT по меньшей мере 689,1 МПа.

Изобретение относится к области термической обработки. Для предотвращения образования закалочных трещин в стальной трубе осуществляют закалку трубы (1) из средне- или высокоуглеродистой стали или из мартенситной нержавеющей стали, включающую нагрев материала стальной трубы до температуры выше Ас3, охлаждение посредством водяного охлаждения от наружной поверхности стальной трубы, причем концевые участки стальной трубы подвергают воздушному охлаждению, а по меньшей мере часть основного тела, не являющуюся концевыми участками трубы, подвергают водяному охлаждению, обеспечивая содержание мартенсита в материале стальной трубы, за исключением концевых участков, 80% об.
Изобретение относится к способу производства текстурированной электротехнической листовой стали. Для получения листа с высокой плотностью магнитного потока осуществляют выплавку стали, содержащей, мас.%: С - 0,035-0,065, Si - 2,9-4,0, Mn - 0,05-0,20, S - 0,005-0,01, Al - 0,015-0,035, N - 0,004-0,009, Sn - 0,005-0,090, Nb - 0,200-0,800, железо Fe и неизбежные примеси - остальное, во вращающейся печи или электрической печи, вторичное рафинирование расплавленной стали и отливку сляба, затем проводят горячую прокатку сляба, нормализацию, холодную прокатку, обезуглероживающий отжиг листа, нанесение на лист покрытия из MgO, высокотемпературный отжиг листа при нагреве сначала до 700-900°C, а затем со скоростью нагрева 9-17°C/ч до 1200°C с выдержкой при в течение 20 ч для очищения листа и нанесение слоя изоляционного покрытия.

Изобретение относится к области металлургии, а именно к получению листов, изготовленных из сплава на основе железа, используемых для магнитных сердечников электромоторов, электрогенераторов и трансформаторов.

Изобретение относится к ножницам для резки длинномерного проката. Ножницы содержат по меньшей мере одно лезвие, изготовленное из стали, химическая композиция которой, выраженная в массовых процентах, состоит из 0,45-0,55% углерода, 0,10-0,30% кремния, 0,20-0,50% марганца, 4,00-5,50% хрома, 2,00-3,00% молибдена, 0,45-0,65% ванадия, остальное - железо и неизбежные примеси и микроструктура которой состоит из отпущенного мартенсита.

Изобретение относится к горячекатаному, холоднокатаному и плакированному стальному листу, имеющим улучшенные равномерную пластичность и локальную пластичность при высокой скорости деформации.

Изобретение относится к области металлургии. В настоящем изобретении предложен стальной лист, полученный методом горячей прокатки, который имеет улучшенное свойство удлинения при сохранении удовлетворительно высокой прочности, составляющей по меньшей мере 590 МПа.

Изобретение относится к области металлургии. Сляб получают из стали, содержащей, мас.%: С 0,020-0,15, Si 2,5-7,0, Mn 0,005-0,3, кислотно-растворимый алюминий 0,01-0,05, N 0,002-0,012, по меньшей мере один из S и Se с их общим содержанием 0,05 или менее, Fe и неизбежные примеси - остальное.

Изобретение относится к электротехнике, к магнитам из редкоземельных металлов. Технический результат состоит в повышении коэрцитивной силы без добавления большого количества таких редкоземельных металлов, как Dy и Tb.

Изобретение относится к области металлургии, в частности, к наплавляемому материалу и детали с наплавленным металлом и может быть использовано в технологическом устройстве, требующем высокие показатели сопротивления коррозии и сопротивления изнашиванию.

Изобретение относится к области металлургии. Для устранения дефектов формы листа, образующихся при окончательном отжиге, и увеличения выхода годной продукции рулон листа текстурованной электротехнической стали после холодной прокатки подвергают первичному рекристаллизационному отжигу, наносят на него сепаратор отжига и проводят окончательный отжиг. Нагрев рулона под первичный рекристаллизационный отжиг ведут со скоростью не менее 80°C/с от 500°C до 700°C в ходе нагрева, а при нагреве под окончательный отжиг осуществляют выдержку от 2 до 100 часов при температуре от 700°C до 1000°C. Окончательный отжиг рулона выполняют в отжиговой печи, при этом на верхнюю поверхность станины, поддерживающей рулон, укладывают теплоизолирующий материал, концентрически от внешней периферии станины, поддерживающей рулон, и по области не менее 20% радиуса станины, поддерживающей рулон. 2 з.п. ф-лы, 5 ил., 1 табл., 1 пр.
Наверх