Способ извлечения углеводородов из нефтеносных песков и горючих сланцев



Способ извлечения углеводородов из нефтеносных песков и горючих сланцев
Способ извлечения углеводородов из нефтеносных песков и горючих сланцев
Способ извлечения углеводородов из нефтеносных песков и горючих сланцев

 

F24J2/00 - Использование солнечного тепла, например солнечные тепловые коллекторы (дистилляция или выпаривание воды с использованием солнечной энергии C02F 1/14; кровельные покрытия с устройствами для сбора энергии E04D 13/18; устройства для использования солнечной энергии с целью получения механической энергии F03G 6/00; полупроводниковые устройства, предназначенные для преобразования солнечной энергии в электрическую, H01L 25/00;H01L 31/00; полупроводниковые приборы, содержащие средства для использования тепловой энергии H01L 31/058; генераторы, в которых световое излучение непосредственно преобразуется в электрическую энергию, H02N 6/00)

Владельцы патента RU 2553573:

Эни С.п.А. (IT)

Изобретение относится к способу извлечения углеводородов, содержащихся в нефтеносных песках. Способ включает подачу нефтеносных песков в устройство для нагревания и нагревание нефтеносных песков в устройстве для нагревания, где устройство для нагревания представляет собой экстракционную колонну, где нагревание обеспечивают посредством соответствующей текучей среды-переносчика, нагретой от солнечной энергии, собранной посредством оптических концентрирующих систем, образуя нагретую текучую среду-переносчик, которая действует как горячая экстрагирующая текучая среда. Причем указанная экстрагирующая текучая среда находится в сверхкритической фазе, и извлечение можно осуществлять путем модификации условий по температуре и давлению для достижения докритических условий. Способ позволяет сэкономить энергию от ископаемых источников и снизить вредное воздействие на окружающую среду. 6 з.п. ф-лы, 3 ил.

 

Данное изобретение относится к способу извлечения углеводородов, содержащихся в нефтеносных песках и горючих сланцах, с использованием тепловой энергии от солнечного источника.

В уровне техники известны технологии извлечения, применяющие горячую воду и/или высокотемпературные углеводородные растворители, соответствующим образом нагретые с использованием ископаемого топлива (обычно природного газа или нефтяного кокса).

Эти процессы являются «энергетически интенсивными» и требуют от 8,5 м3 (300 куб футов) (н.у.) до 36,8 м3 (1300 куб футов) (н.у.) природного газа на 0,159 м3 (1 баррель) извлеченного битума в зависимости от применяемой технологии (разработка месторождения или in-situ термическое извлечение).

Экстракция горячей водой требует огромного количества воды (0,3 -0,7 м3 на 0,159 м3 (1 баррель) битума), а также создает проблему отделения неорганических частиц материала микронного размера (мелкие порошки), которая предполагает применение отстойников для хвостовых фракций, что оказывает значительное воздействие на окружающую среду.

Теперь обнаружен способ, который позволяет путем непосредственного использования солнечной энергии сэкономить энергию от ископаемых источников (с получением выгод как экономических, так и в отношении охраны окружающей среды) и может позволить использование текучих сред-переносчиков, оказывающих меньшее воздействие на окружающую среду (органический растворитель, сверхкритический СО2 и т.д.).

Являющийся объектом данного изобретения способ извлечения углеводородов, содержащихся в нефтеносных песках и горючих сланцах, включает подачу указанных нефтеносных песков или горючих сланцев в соответствующее устройство, такое как реактор, или экстракционная колонна, или шнековый конвейер, в котором их нагревают непосредственно и/или посредством соответствующей текучей среды-переносчика, с использованием солнечной энергии, собранной посредством оптических концентрирующих систем.

В случае нефтеносных песков их можно направить в экстракционную колонну, в которую противотоком направляют поток текучей среды-переносчика, предварительно нагретый на стадии нагревания с использованием солнечной энергии, собранной с помощью оптической концентрирующей системы, и действующий как горячая экстрагирующая текучая среда, отделяя, таким образом, песок в нижней части, по существу не содержащий органических компонентов, от верхнего потока, состоящего по существу из выделенного из песка органического компонента совместно с горячей экстрагирующей текучей средой, который подвергают стадии разделения, для отделения органического компонента от холодной экстрагирующей текучей среды, которую подают рециклом на стадию нагревания.

В качестве альтернативы нефтеносные пески можно также подавать в верхнюю часть экстракционной колонны, в которую прямотоком подают поток текучей среды-переносчика, предварительно нагретый на стадии нагревания с использованием солнечной энергии, собранной с помощью оптических концентрирующих систем, и действующий как поток горячей экстрагирующей текучей среды, с получением:

- нижнего потока, состоящего по существу из выделенного из песка органического компонента совместно с горячей экстрагирующей текучей средой, который подвергают стадии разделения, для отделения органического компонента от холодной экстрагирующей текучей среды, которую подают рециклом на стадию нагревания;

- и песка, по существу не содержащего органического компонента, впоследствии выгружаемого из реактора.

Стадия разделения предпочтительно может представлять собой отгонку.

Текучую среду-переносчик, действующую как текучий экстрагент, предпочтительно выбирают из воды, содержащей щелочные агенты, и/или органических текучих сред на основе нафтена и/или ароматических соединений.

Вода, которая входит в состав текучей среды или образует текучую среду, предпочтительно имеет рН>7.

Экстрагирующую текучую среду можно использовать в сверхкритической фазе, и в этом случае разделение органического компонента и экстрагирующей текучей среды можно осуществить путем изменения условий по температуре и давлению, приводя указанные текучую среду в докритические условия.

В случае горючих сланцев их можно подавать в реактор пиролиза, работающий при температурах выше 350°С, чтобы получить в верхней части газообразные продукты, образованные при пиролизе, а в нижней части - неорганические компоненты указанного горючего сланца.

Нагревание горючего сланца позволяет провести крекинг керосина, содержащегося в породе, с последующим отделением газов и жидких углеводородов от неорганических компонентов.

Тепло для проведения реакции пиролиза можно непосредственно подавать в реактор пиролиза посредством солнечной энергии, уловленной оптическими концентрирующими системами, или тепло можно обеспечить косвенным образом, с помощью текучей среды-переносчика, предварительно нагретой на стадии нагревания с использованием солнечной энергии, собранной оптическими концентрирующими системами, до высокой температуры, предпочтительно выше чем 350°С.

Высокотемпературная текучая среда-переносчик может быть выбрана из расплавленных солей, более предпочтительно из смесей нитрата натрия и нитрата калия.

В обоих случаях, и для песков, и для горючего сланца, предварительно нагретую текучую среду-переносчик можно накапливать в теплоаккумулирующей емкости, из которой ее удаляют в ходе осуществления процесса.

Существуют три основных типа оптических концентрирующих систем для улавливания солнечной энергии:

- параболоцилиндр;

- энергоустановка со сферическим гелиоконцентратором;

- гелиоэнергетическая установка башенного типа.

В системе параболоцилиндра прямое солнечное излучение концентрируют посредством линейных параболических отражающих систем на прямой трубке приемника, расположенной в фокусе параболы. Эту энергию используют для нагревания теплоносителя, который циркулирует внутри трубки приемника.

Энергоустановки со сферическим гелиоконцентратором применяют параболические диски, которые отражают солнечный свет, падающий на приемник, расположенный в точке фокуса. Эти концентраторы собирают на структуре, которая вращается вокруг двух осей, чтобы следовать за движением солнца.

Гелиоэнергетические установки башенного типа работают с многочисленными зеркалами (гелиостатами), способными следовать за движением солнца посредством соответствующего перемещения по двум осям, чтобы концентрировать солнечный свет на одном приемнике, расположенном на вершине башни. Тепло, собранное приемником, используют в термодинамическом энергетическом цикле, который, в свою очередь, производит электроэнергию в традиционной системе турбина-генератор.

Дополнительные подробности можно найти в публикации EPRI-Solar Thermal Electric Technology: 2006- December 6, 2006 (с. с 2-1 по 2-10).

Далее с помощью прилагаемых чертежей описаны три воплощения данного изобретения, которые, однако, не следует рассматривать как ограничивающие объем самого изобретения.

Фиг.1 приводит схему воплощения способа, являющегося объектом данного изобретения, в случае нефтеносных песков.

Нефтеносные пески подают в экстракционную колонну (Е) сверху, а горячую экстрагирующую текучую среду (1) - снизу, с получением песка (S), по существу не содержащего органических компонентов (битума), в нижней части колонны, а в верхней части колонны - потока (2), состоящего по существу из экстрагированного органического компонента совместно с горячей экстрагирующей текучей средой, который подают на стадию разделения посредством отгонки (F), с отделением органического вещества, битума в нижней части и холодной экстрагирующей текучей среды (3) - в верхней части.

Холодную экстрагирующую текучую среду (3) подают рециклом и нагревают на стадии нагревания с использованием солнечной энергии посредством оптических концентрирующих систем (С) и накапливают в теплоаккумулирующей емкости (Т) для последующего удаления.

Фиг.2 приводит схему другого воплощения способа - объекта данного изобретения для случая нефтеносных песков.

Нефтеносные пески и затем находящуюся под давлением горячую экстрагирующую текучую среду (1) загружают прямотоком в верхнюю часть реактора (R) с неподвижным слоем. Поток (2), состоящий из битума и горячей экстрагирующей текучей среды, отбирают из нижней части реактора. Песок впоследствии выгружают из реактора. Выходящий поток (2) направляют в сепаратор (G), из верхней части которого извлекают холодную текучую среду, которую подают рециклом (3), нагревают на стадии нагревания с использованием солнечной энергии посредством оптических концентрирующих систем (С) и накапливают в теплоаккумулирующей емкости (Т) для последующего удаления. Битум отбирают из нижней части сепаратора (G).

Фиг.3 приводит схему воплощения способа - объекта данного изобретения в случае горючих сланцев.

Горючий сланец направляют в реактор (Р) пиролиза, работающий при температурах выше 350°С, с получением пиролизованного органического компонента из упомянутого горючего сланца (пиролизованный нефтепродукт) из верхней части и неорганического компонента сланца (I) из нижней части.

Тепло для пиролиза подают в реактор посредством солнечной энергии, собранной оптическими концентрирующими системами, или непосредственно, или опосредованно, из высокотемпературной среды-переносчика (4), нагретой посредством упомянутых оптических концентрирующих систем (С) и аккумулированной в теплоаккумулирующей емкости (Т) для последующего удаления.

Текучую среду-переносчик (5), выходящую из реактора, подают рециклом на стадию нагревания.

1. Способ извлечения углеводородов, содержащихся в нефтеносных песках, включающий подачу нефтеносных песков в устройство для нагревания и нагревание нефтеносных песков в устройстве для нагревания, где устройство для нагревания представляет собой экстракционную колонну, где нагревание обеспечивают посредством соответствующей текучей среды-переносчика, нагретой от солнечной энергии, собранной посредством оптических концентрирующих систем, образуя нагретую текучую среду-переносчик, которая действует как горячая экстрагирующая текучая среда, и где указанная экстрагирующая текучая среда находится в сверхкритической фазе, и извлечение можно осуществлять путем модификации условий по температуре и давлению для достижения докритических условий.

2. Способ по п. 1, в котором нефтеносные пески подают в экстракционную колонну, в которую противотоком подают поток текучей среды-переносчика, предварительно нагретый на стадии нагревания с использованием солнечной энергии, собранной посредством оптических концентрирующих систем, действующий как горячая экстрагирующая текучая среда, отделяя таким образом песок, по существу не содержащий органических компонентов, из нижней части от потока из верхней части, состоящего по существу из органического компонента песка совместно с горячей экстрагирующей текучей средой, который подвергают стадии разделения, для отделения органического компонента от холодной экстрагирующей текучей среды, которую подают рециклом на стадию нагревания.

3. Способ по п. 1, в котором нефтеносные пески подают в верхнюю часть экстракционной колонны, в которую прямотоком направляют предварительно нагретую текучую среду-переносчик, при этом нагревание осуществляют в ходе стадии нагревания с использованием солнечной энергии, собранной с применением оптических концентрирующих систем, и эта текучая среда действует как горячая экстрагирующая среда; с получением:
- потока из нижней части устройства, состоящего по существу из органического компонента песка, совместно с горячей экстрагирующей текучей средой, который подвергают стадии разделения для отделения органического компонента от холодной экстрагирующей текучей среды, которую подают рециклом на стадию нагревания;
- и песка, по существу не содержащего органического компонента, впоследствии выгружаемого из реактора.

4. Способ по п. 2 или 3, в котором стадия разделения представляет собой стадию отгонки.

5. Способ по п. 2 или 3, в котором текучую среду-переносчик, действующую как экстрагирующая текучая среда, выбирают из воды, содержащей щелочные агенты, и/или органических текучих сред на основе нафтена и/или ароматических соединений.

6. Способ по п. 5, в котором вода имеет pH>7.

7. Способ по п. 2 или 3, в котором предварительно нагретую текучую среду-переносчик аккумулируют в теплоаккумулирующей емкости, из которой ее отбирают.



 

Похожие патенты:
Изобретение относится к строительной индустрии и может быть использовано для строительства зданий и сооружений промышленного и гражданского строительства в зонах, опасных по землетрясениям, ураганам, военным действиям.
Изобретение относится к строительной индустрии и может быть использовано для строительства зданий и сооружений. Способ состоит в том, что изготавливают мини-батареи наружных плиток, для чего из стеклобоя, получаемого при механической рассортировке бытовых отходов, выплавляют наружные плитки в виде коробов с двумя отверстиями для вывода упруго-растяжимых плюсового и минусового проводов солнечной мини-батареи плитки, на стенде собирают и электрически соединяют по габаритам наружной плитки фотоэлементы для создания солнечной мини-батареи наружной плитки, сборку фотоэлементов помещают в короб плитки наружного покрытия лицевой частью фотоэлементов наверх, герметизируют солнечную мини-батарею наружной плитки затвердевающим веществом, становящимся после затвердевания прозрачным, упруго-растяжимые электросоединители, после сборки каждого ряда, перед пенобетоном ряд за рядом соединяют между собой с образованием в конце концов солнечной батареи всего здания или сооружения, которую присоединяют к контроллеру и к аккумуляторной батарее всего здания или сооружения, при необходимости питания электроприемников напряжением 220 вольт систему электроснабжения присоединяют через инвертор.

Изобретение относится к области ветроэнергетики. Способ производства энергии, заключающийся в том, что выработку энергии производят за счет вращения рабочих лопаток ветром, ускоренным сооружением, выполненным в виде сопла Лаваля в верхней части, а в нижней - представляющей из себя плоскость, и за счет солнечных батарей, а также за счет солнечных лучей, которые попадают на батарею, за счет их отражения от внутренней плоскости сопла Лаваля.

Изобретение относится к получению спирта. Система аккумулирования возобновляемой энергии представляет собой блок источников возобновляемой энергии, подключенный к технологической схеме получения спирта.

Изобретение может быть использовано в химической промышленности, в системах производства топлива для транспорта и в стационарных энергоустановках. Способ преобразования солнечной энергии в химическую и аккумулирования ее в водородсодержащих продуктах включает производство биомассы с использованием солнечной энергии, которую подвергают реакции парокислородной каталитической конверсии с получением продуктов реакции, содержащих водород и диоксид углерода.

Группа изобретений относится к области теплообмена и может быть использована для охлаждения воздуха или оборудования, а также для утилизации сбросного тепла. Технический результат - повышение эффективности теплообмена, экономичности, экологичности, а также повышение надежности и долговечности, расширение области применения, расширение функциональных возможностей.

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и децентрализованного электроснабжения.

Изобретение относится к устройствам, предназначенным для использования в народном хозяйстве лучистой энергии, преимущественно излучения Солнца, и может быть применено в любой отрасли народного хозяйства.

Изобретение относится к гелиотехнике, в частности к солнечным концентраторным модулям для получения электрической и тепловой энергии. .

Изобретение относится к автономным источникам электропитания, использующим энергию Солнца. .

Изобретение относится к вариантам способа переработки угля и/или углеродсодержащих отходов в жидкое топливо, заключающийся в том, что в реактор для электроимпульсного измельчения подают уголь и/или углеродсодержащие отходы, органический растворитель при соотношении уголь и/или углеродсодержащие отходы : органический растворитель 1:2 и воду не менее 5 мас.% от угля и/или углеродсодержащих отходов, воздействуют на находящиеся в реакторе для электроимпульсного измельчения уголь и/или углеродсодержащие отходы, органический растворитель и воду электрическим высоковольтным разрядом, измельчают уголь и/или углеродсодержащие отходы в среде органического растворителя и воды, получая водоугольную органическую смесь, подают ее в реактор для электроимпульсного измельчения, повторно измельчают уголь и/или углеродсодержащие отходы в водоугольной органической смеси и выделяют ожиженное топливо из смеси с повторно измельченным углем или углеродсодержащими отходами, при этом водоугольную органическую смесь пропускают через приеморазделительный блок и золоотделитель.

Изобретение относится к способу удаления тяжелых углеводородов из потока растворителя, включающему: а) подачу первой партии смеси, содержащей тяжелые углеводороды, растворенные по меньшей мере в одном растворителе; б) экстракцию первой партии смеси путем промывки легкими углеводородами; в) промывку первой партии смеси с помощью первой промывки водой.

Изобретение относится к устройству ля извлечения нефти из песка. .
Изобретение относится к области добычи полезных ископаемых, а именно к способам получения углеводородов из содержащего их песка. .

Изобретение относится к нефтехимической и углеперерабатывающей промышленности. .

Изобретение относится к способу получения тяжелой нефти, включающему смешивание материала, содержащего тяжелую нефть, с растворителем, включающим биодизель, для формирования смеси и разделение смеси на фазу растворителя, обогащенного тяжелой нефтью, и остаточную фазу песка.

Изобретение относится к области переработки угля путем его ожижения в органических растворителях. .

Изобретение относится к области получения жидких углехимических продуктов и может быть использовано при получении кислородсодержащих растворимых органических соединений из бурого угля.

Изобретение относится к способу получения жидких продуктов термическим сжижением углей, что может быть использовано в углехимии. .
Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа получения углеводородного топлива повышенной плотности для ракетной техники из нефтей Ванкорского месторождения путем выделения фракции, выкипающей внутри интервала температур 120-270°C с получением топлива.
Наверх