Установка для наводораживания тонкопленочных композитов в водородной плазме и способ наводораживания тонкопленочных композитов в водородной плазме с ее помощью

Группа изобретений относится к вакуумно-плазменной обработке композитов. Установка для наводораживания тонкопленочных композитов в водородной плазме содержит СВЧ-печь и установленный внутри нее кварцевый реактор. Реактор состоит из корпуса в виде полого цилиндра и установленных на его торцах диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода, а другой - для вакуумирования СВЧ-печи и реактора. Один из фланцев выполнен с возможностью его снятия, при этом каждый из фланцев состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла с центральным отверстием. Способ включает размещение композитов внутри реактора, вакуумирование реактора и СВЧ-печи, подачу водорода в реактор и осуществление его промывки и СВЧ-печи водородом, затем в реакторе путем СВЧ-разряда зажигают водородную плазму и производят обработку водородом композитов с дополнительным вакуумированием СВЧ-печи в процессе обработки. Обеспечивается улучшение условий воздействия плазмы на композит в процессе непрерывной обработки. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к вакуумно-плазменной обработке и может быть использовано при создании устройств и способов наводораживания нанокомпозитов.

Известна установка для вакуумно-плазменной обработки изделий в среде рабочего газа, содержащая рабочую вакуумную камеру с загрузочным окном для обрабатываемых изделий, средства вакуумной откачки полости рабочей камеры и средство генерирования потока атомов металла, используемого для осаждения слоя покрытия на поверхность обрабатываемых изделий, включающее несколько катодов с поверхностью испарения и анод электродугового испарителя металла, электрически связанные с источником постоянного тока вакуумно-дугового разряда.

К недостаткам вышеописанной установки типа ″Булат″ необходимо отнести следующее: большое время получения рабочего давления в вакуумном объеме рабочей камеры (в различных типах установок в зависимости от примененного вакуумного оборудования время колеблется от 0,5 до 1 ч); высокая стоимость относительно мощных откачных средств; наличие микрокапельной фазы; нестабильность характеристик упрочняющих покрытий из-за нестабильности вакуумной среды, вызванной частыми вскрытиями рабочей вакуумной камеры на атмосферу; низкий коэффициент использования испаренного металла (ниже 0,5); сложность электрооборудования, вызванная большим количеством испарительных устройств; большая материалоемкость установки, связанная с большими размерами вакуумной камеры.

Известна установка для вакуумно-плазменной обработки изделий в среде рабочего газа, содержащая рабочую вакуумную камеру с загрузочным окном для обрабатываемых изделий, средства вакуумной откачки полости рабочей камеры и средство генерирования потока атомов металла, используемого для осаждения слоя покрытия на поверхность обрабатываемых изделий, включающее катод с поверхностью испарения и анод электродугового испарителя металла, электрически связанные с источником постоянного тока вакуумно-дугового разряда, при этом она снабжена автономным устройством предварительного нагрева обрабатываемых изделий, вакуумным затвором с проходным отверстием и заслонкой, по меньшей мере, одной шлюзовой камерой с держателем для обрабатываемых изделий или кассеты с изделиями, установленным с возможностью возвратно-поступательного перемещения вдоль продольной оси камеры, вакуумный затвор герметично закреплен на рабочей камере в зоне расположения загрузочного окна для обрабатываемых изделий, шлюзовая камера установлена последовательно с вакуумным затвором и разъемно-герметично соединена с последним с возможностью циклического перемещения посредством механизма перемещения из рабочей позиции через технологическую зону разгрузки в позицию предварительного нагрева, при этом средства вакуумной откачки включают в себя электродуговой и форвакуумный насосы, первый из которых установлен со стороны загрузочного окна рабочей камеры перед заслонкой вакуумного затвора, второй посредством магистральной связи соединен с разделенными заслонкой вакуумного затвора полостями рабочей и шлюзовых камер, катод электродугового испарителя металла выполнен в виде катода электродугового насоса, средство генерирования потока металла, используемого для осаждения слоя покрытия на поверхность обрабатываемых изделий, снабжено мишенью с распыляемой поверхностью, расположенной по периметру внутренней поверхности рабочей камеры в зоне размещения обрабатываемых изделий и электрически связанной с отрицательным по отношению к электродам электродугового испарителя металла полюсом высоковольтного источника постоянного тока, а катод электродугового испарителя металла установлен вне зоны прямой видимости со стороны анода испарителя (Патент РФ №2060298, МПК: С23С 14/32).

Работа указанной установки осуществляется следующим образом.

Загруженная кассета с обрабатываемыми изделиями устанавливается в технологической зоне загрузки-разгрузки, и над ней располагается шлюзовая камера. С помощью механизма подъема кассета загружается в шлюзовую камеру, и затем последняя размещается над устройством предварительного нагрева в виде печи, в которую опускается кассета с изделиями для прогрева. Производится прогрев изделий до температуры примерно 150°С. Прогретые изделия поднимаются в шлюзовую камеру. Затем последняя устанавливается над рабочей вакуумной камерой и герметично соединяется с ней посредством уплотнения. Производится откачка шлюзовой камеры с помощью форвакуумного насоса при закрытых заслонках вакуумного затвора. После откачки шлюзовой камеры открывается шлюзовой затвор. Совместная откачка рабочей и шлюзовой камер производится электродуговым насосом. Поскольку в электродуговой насос не производится напуск атмосферы, то откачка рабочего объема до рабочего давления производится за несколько секунд. После откачки рабочего объема в рабочую камеру подается гелий и на анод подается напряжение. При этом возбуждается двухступенчатый вакуумно-дуговой разряд. Далее производят прогрев изделия подачей на него высоковольтного отрицательного потенциала одним из известных способов. Ионы гелия, бомбардируя поверхность изделия, прогревают его до температуры от 150 до 500°С. При необходимости проведения химико-термической обработки в гелий добавляется азот. Нанесение покрытия осуществляется подачей напряжения на распыляемую мишень. Под воздействием ионной бомбардировки мишень распыляется, и распыленный металл осаждается на изделии.

Основным недостатком является недостаточная надежность работы установки, обусловленная значительной сложностью ее конструкции.

Известна установка для обработки нанокомпозитов в водородной плазме, содержащая СВЧ-печь, внутри которой размещен кварцевый реактор, представляющий собой цилиндр, зажатый между двумя фторопластовыми фланцами с вакуумным уплотнением из термостойкой резины, стянутыми друг к другу с помощью фторопластовых стержней, при этом к каждому из фланцев подведены вакуумные шланги, по одному из которых в реактор поступает водород, а через другой производится вакуумирование системы, состоящей из СВЧ-печи и реактора, при помощи механического насоса, при этом реактор выполнен с возможностью замены исследуемого образца, предпочтительно, при помощи съемной крышки, расположенной на одном из фланцев (И.М. Трегубов, О.В. Стогней, В.И. Пригожин и др. Термический нагрев тонкопленочных нанокомпозитов металл-диэлектрик в водородной плазме. Вестник Воронежского государственного технического университета, том 6, №3, 2010 г., г. Воронеж, стр. 10-13 - прототип).

Принцип работы указанной установки заключается в следующем.

Сначала для вакумирования системы производится откачка воздуха до предельного значения при открытом натекателе. После этого производится подача водорода в реактор из баллона и осуществляется промывка всей системы водородом. Затем натекатель прикрывается для достижения рабочего давления в реакторе. При включении СВЧ-разряда в реакторе зажигается водородная плазма и производится требуемая обработка образцов из нанокомпозиционных материалов.

Основными недостатками является то, что в процессе горения плазмы происходит сильный разогрев всех элементов и частей конструкции реактора, что делает невозможным постоянное поддержание процесса горения плазмы из-за сильного возрастания давления и температуры. При нагреве фланцев, который происходит в результате бомбардировки их ионами плазмы, молекулярные связи фторопласта начинают разрушаться и происходит деструкция поверхности фланца, обращенной внутрь реактора. В результате этого состав газа в реакторе меняется и давление, соответственно, падает, что приводит к необходимости использовать прерывистый режим горения плазмы. Для обеспечения работоспособности установки приходится осуществлять циклический режим работы, когда период горения плазмы составляет 5 секунд с интервалом 25 секунд. В этом режиме реализуется динамическое равновесие скорости подачи водорода и его откачки, но в то же время значительно возрастает время обработки нанокомпозиционных материалов в водородной плазме.

Задачей изобретения является создание установки для обработки тонкопленочных композитов в водородной плазме, применение которой позволит обеспечить непрерывный процесс обработки.

Решение указанной задачи достигается тем, что предложенная установка для наводораживания тонкопленочных композитов в водородной плазме, содержащая СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем композитов, состоящий из корпуса в виде полого цилиндра, выполненный из кварцевого стекла, и установленного на его торцах с использованием вакуумного уплотнения из термостойкой резины диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса, причем один из фланцев выполнен с возможностью его снятия, согласно изобретению, содержит устройство для создания разрежения в СВЧ-печи, связанное с внутренней полостю СВЧ-печи, при этом каждый из фланцев выполнен составным и состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла с центральным отверстием, при этом наружная оболочка выполнена в виде полого двухступенчатого цилиндра с хвостовиком для вакуумного шланга и имеет наружную резьбу для установки на нее крышки и внутреннюю коническую поверхность для установки уплотнения в конический зазор между корпусом кварцевого реактора и наружной оболочкой, при этом крышка выполнена с внутренней резьбой для взаимодействия с наружной резьбой наружной оболочки, а профилированная прокладка выполнена с хвостовиком, входящим ответно в хвостовик наружной оболочки и взаимодействующим с ним своей наружной поверхностью, и размещена между торцом наружной оболочки и торцом корпуса кварцевого реактора.

Предложен способ наводораживания тонкопленочных композитов в водородной плазме с использованием указанной установки, при применении которого композиты размещают внутри кварцевого реактора, производят его вакуумирование и СВЧ-печи путем откачки воздуха при открытом натекателе, после чего производят подачу водорода в кварцевый реактор и осуществляют его промывку и СВЧ-печи водородом, затем натекатель прикрывают для достижения рабочего давления в кварцевом реакторе, после чего в кварцевом реакторе путем СВЧ-разряда зажигают водородную плазму и производят обработку водородом композитов с дополнительным вакуумированием СВЧ-печи в процессе обработки.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показана принципиальная схема установки, на фиг. 2 - продольный разрез реактора.

Предложенная установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь 1, внутри которой размещен кварцевый реактор 2, представляющий собой полый цилиндр 3, выполненный из кварцевого стекла. На торцах цилиндра 3 установлены диэлектрические фланцы 4 и 5 с вакуумным уплотнением из термостойкой резины. К фланцам 4 и 5 подведены вакуумные шланги, при этом по фланцу 4 в реактор поступает водород из баллона 6 через натекатель 7, а через фланец 5 производится вакуумирование системы, состоящей из СВЧ-печи 1 и реактора 2, при помощи механического насоса 8. Реактор 2 выполнен с возможностью замены исследуемого образца 9, предпочтительно, при помощи одного из фланцев, выполненных с возможностью снятия/установки. Каждый фланец 4 и 5 выполнен составным как минимум из двух частей, наружной 11 и 12 соответственно, выполненной из фторопласта, и внутренней 13 и 14 соответственно, выполненной из кварцевого стекла, и взаимодействующей с упомянутым цилиндром 3. Во внутренней части фланца каждого фланца 4 и 5 выполнен хвостовик 15 и 16 соответственно, входящий в ответный хвостовик 17 и 18 наружной части и взаимодействующий с ним своим наружным диаметром.

В варианте исполнения внутренняя полость СВЧ-печи 1 соединена с устройством 19 для создания разрежения в указанной полости.

Фланец 4 состоит из наружной части 11 и крышки 20, установленной на наружной части при помощи резьбы. Между наружной частью 11 и крышкой 20 установлено уплотнение 21.

Фланец 5 состоит из наружной части 12 и крышки 22, установленной на наружной части при помощи резьбы. Между наружной частью 11 и крышкой 22 установлено уплотнение 23.

Предложенная установка работает следующим образом.

Через съемный фланец внутрь корпуса кварцевого реактора 2 загружается исследуемый образец 9 из нанокомпозиционного материала. Для вакуумирования системы, состоящей из СВЧ-печи 1 и реактора 2, производится откачка воздуха при помощи механического насоса 8 до предельного значения при открытом натекателе 7. После этого производится подача водорода в кварцевый реактор 2 из баллона 6 и осуществляется промывка всей системы водородом. Затем натекатель 7 прикрывается для достижения рабочего давления в реакторе 2. При включении СВЧ-разряда в кварцевом реакторе 2 зажигается водородная плазма и производится требуемая обработка водородом образцов из нанокомпозиционных материалов.

За счет того что каждый фланец 4 и 5 выполнен составным из двух частей, наружной 11 и 12 соответственно, выполненной из фторопласта, и внутренней 13 и 14 соответственно, выполненной из кварцевого стекла, и взаимодействующей с упомянутым цилиндром 3, фторопласт фланца непосредственно не контактирует с плазмой и его разрушения не происходит. Кроме этого выполнение во внутренней части фланца каждого фланца 4 и 5 хвостовиков 15 и 16 соответственно, входящих в ответные хвостовик 17 и 18 наружной части и взаимодействующих с ним своим наружным диаметром, позволяет исключить контакт фторопласта с плазмой и снизить температуру конструкции в месте подвода/отвода рабочего тела-водорода. Нагрев фторопластовой части фланцев осуществляется только за счет теплопроводности кварца и, как показали измерения, их температура не превышает 70°С. Использование составных фланцев позволило перейти от циклического режима горения плазмы к непрерывному, что позволило значительно снизить трудоемкость процесса.

Создание при работе установки разрежения в полости СВЧ-печи 1 при помощи устройства 19 позволит улучшить условия создания разрежения в кварцевом реакторе 2 и тем самым улучшить условия воздействия на исследуемый образец 9.

Проведенные авторами и заявителем испытания полноразмерной установки для обработки нанокомпозиционных материалов в водородной плазме подтвердили правильность заложенных конструкторско-технологических решений.

Использование предложенного технического решения позволит создать установку для обработки тонкопленочных композитов в водородной плазме с непрерывным процессом обработки.

1. Установка для наводораживания тонкопленочных композитов в водородной плазме, содержащая СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем композитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения из термостойкой резины диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса, причем один из фланцев выполнен с возможностью его снятия, отличающаяся тем, что она содержит устройство для создания разрежения в СВЧ-печи, связанное с внутренней полостью СВЧ-печи, при этом каждый из фланцев выполнен составным и состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла с центральным отверстием, при этом наружная оболочка выполнена в виде полого двухступенчатого цилиндра с хвостовиком для вакуумного шланга и имеет наружную резьбу для установки на нее крышки и внутреннюю коническую поверхность для установки уплотнения в конический зазор между корпусом кварцевого реактора и наружной оболочкой, при этом крышка выполнена с внутренней резьбой для взаимодействия с наружной резьбой наружной оболочки, а профилированная прокладка выполнена с хвостовиком, входящим ответно в хвостовик наружной оболочки и взаимодействующим с ним своей наружной поверхностью, и размещена между торцом наружной оболочки и торцом корпуса кварцевого реактора.

2. Способ наводораживания тонкопленочных композитов в водородной плазме с использованием установки по п. 1, характеризующийся тем, что композиты размещают внутри кварцевого реактора, производят его вакуумирование и СВЧ-печи путем откачки воздуха при открытом натекателе, после чего производят подачу водорода в кварцевый реактор и осуществляют его промывку и СВЧ-печи водородом, затем натекатель прикрывают для достижения рабочего давления в кварцевом реакторе, после чего в кварцевом реакторе путем СВЧ-разряда зажигают водородную плазму и производят обработку водородом композитов с дополнительным вакуумированием СВЧ-печи в процессе обработки.



 

Похожие патенты:

Изобретение относится к вакуумно-плазменной обработке композитов. При обработке нанокомпозитов в водородной плазме используют установку, содержащую СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения из термостойкой резины диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса.

Изобретение относится к вакуумно-плазменной обработке композитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса.

Изобретение относится к устройствам для получения борных волокон. .

Изобретение относится к области металлургии и машиностроения, а именно к комбинированным способам упрочнения металлов, и может быть использовано при изготовлении деталей, работающих в условиях изнашивания и знакопеременных нагрузок.

Изобретение относится к химической обработки металлов , в частности, к фосфатированию перед окраской электроосаждением, и может быть использовано в машинои приборостроении.

Изобретение относится к устройствам для получения неорганических материалов. Устройство содержит рабочую камеру 1, включающую источник высокотемпературной ионизированной среды 2 и источник инертного газа 4, корпус которой имеет систему охлаждения в виде рубашки 8, заполненной хладагентом, полость камеры 1 сообщена с контейнером 3 исходного неорганического порошкообразного материала - кремния или углерода, рабочая камера 1 оснащена вакуум-установкой 5, а в полости камеры 1 размещен теплообменник 9 для аккумулирования перерабатываемого исходного материала, соединенный с источником теплообменной среды и закрепленный на одной из сторон рабочей камеры 1, соединенной с корпусом посредством шарнира 10.

Изобретение относится к способу электровзрывного напыления на поверхности трения композиционных покрытий системы TiB2-Mo. Осуществляют размещение порошковой навески из диборида титана между двумя слоями молибденовой фольги.

Изобретение относится к вакуумно-плазменной обработке композитов. При обработке нанокомпозитов в водородной плазме используют установку, содержащую СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения из термостойкой резины диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса.

Изобретение относится к формированию на медных электрических контактах покрытий на основе вольфрама, углеродистого вольфрама и меди, и может быть использовано в электротехнике.

Изобретение относится к формированию на медных электрических контактах покрытий на основе вольфрама и меди, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка вольфрама массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы W-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Изобретение относится к вакуумно-плазменной обработке композитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса.

Изобретение относится к области нанесения тонких пленок в вакууме и может быть использовано, например, в микроэлектронике. Устройство содержит вакуумную камеру и магнитную систему.
Изобретение относится к области металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки неметаллов, металлов и металлических сплавов, например шнеков армированных твердосплавными пластинами центрифугальных машин, применяемых в угольной промышленности для обогащения и обезвоживания угля.

Изобретение относится к формированию покрытий на медных электрических контактах и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка диборида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы TiB2-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Изобретение относится к формированию на медных электрических контактах покрытий на основе молибдена, углеродистого молибдена и меди, которые могут быть использованы в электротехнике как электроэрозионно-стойкие покрытия с высокой адгезией с основой на уровне когезии.

Изобретение относится к медицине, в частности к способу получения лантансодержащего биопокрытия титанового имплантата. Способ получения заключается в предварительной подготовке лантансодержащего порошка, подготовке поверхности титановой основы имплантата, плазменном напылении титанового подслоя на поверхности титановой основы, плазменном напылении порошка гидроксиапатита на титановый подслой, формировании лантансодержащего биопокрытия.
Наверх