Сверхпрочный сплав на основе алюминия и изделие из него

Изобретение относится к металлургии, в частности к сплавам на основе алюминия, предназначенным для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах. Сплав содержит, мас.%: цинк 8-10, магний 2,0-3,0, медь 1,6-2,6, скандий 0,12-0,25, цирконий 0,06-0,20, бериллий 0,0001-0,005, кобальт 0,05-0,15, никель 0,5-1,0, железо 0,45-0,95, алюминий - остальное, при этом отношение содержания цинка к содержанию магния находится в пределах 3,1-4,1. Техническим результатом изобретения является повышение прочности сплава при комнатной температуре и сопротивления ползучести при умеренно повышенных температурах до 60°С. 3 табл., 1 пр.

 

Изобретение относится к области металлургии легких сплавов, в частности, сплавов на основе алюминия, предназначенных для изготовления прессованных или кованых полуфабрикатов для использования их в изделиях атомной или оборонной промышленности, работающих длительное время при высоких напряжениях и умеренно повышенных температурах.

Известен сплав марки 1960, используемый в виде труб и штамповок в газовых центрифугах и имеющий следующий химический состав, мас.%:

Цинк 8,0-9,0
Магний 2,3-3,0
Медь 2,0-2,6
Цирконий 0,1-0,2
Железо 0,05-0,3
Кремний 0,03-0,15
Бериллий 0,0001-0,002
Водород (0,9-3,6)×10-5
Алюминий остальное

При соотношении Fe/Si≥0,5.

Патент РФ №2164541 от 27 декабря 2000 г. (аналог).

Авторы: Фридляндер И.Н., Каблов Е.Н., Кутайцева Е.И., Исаев В.И., Молостова И.И.

Сплав имеет высокие прочностные и коррозионные свойства, высокое сопротивление ползучести при умеренно повышенных температурах и многие годы успешно использовался в газовых центрифугах, но в целом по комплексу упомянутых свойств он уже не удовлетворяет требованиям, которые предъявляются к деталям нового поколения газовых центрифуг.

Известен алюминиевый сплав Al-Zn-Mg-Cu следующего химического состава, мас.%:

Цинк 6,6-7,4
Магний 3,2-4,0
Медь 0,8-1,4
Скандий 0,12-0,30
Цирконий 0,06-0,20
Титан 0,01-0,07
Молибден 0,01-0,07
Никель 0,35-0,65
Железо 0,35-0,65
Кремний 0,10-0,30
Алюминий остальное

Патент РФ №2442037 от 27 апреля 2012 г. (прототип).

Авторы: Захаров В.В., Ростова Т.Д., Фисенко И.А., Кириллова Л.П.

Известный сплав обладает более высокой кратковременной прочностью при комнатной и умеренно повышенных температурах, однако его сопротивление ползучести не удовлетворяет современным требованиям.

Задачей изобретения является создание высокопрочного конструкционного сплава на основе алюминия, обладающего высокой прочностью при комнатной и умеренно повышенных температурах (не ниже, чем у известного сплава) и одновременно имеющего повышенное сопротивление ползучести при умеренно повышенных температурах (до 60°C) и по комплексу служебных свойств превосходящего известные сплавы.

Предлагается сплав на основе алюминия следующего химического состава, мас.%:

Цинк 8-10
Магний 2,0-3,0
Медь 1,6-2,6
Скандий 0,12-0,25
Цирконий 0,06-0,20
Бериллий 0,0001-0,005
Кобальт 0,05-0,15
Никель 0,5-1,0
Железо 0,45-0,95
Алюминий остальное

Отношение содержания цинка к содержанию магния должно находиться в пределах 3,1-4,1.

Предлагаемый сплав отличается от сплава прототипа тем, что он дополнительно содержит бериллий и кобальт при следующем соотношении компонентов, мас.%:

Цинк 8-10
Магний 2,0-3,0
Медь 1,6-2,6
Скандий 0,12-0,25
Цирконий 0,06-0,20
Бериллий 0,0001-0,005
Кобальт 0,05-0,15
Никель 0,5-1,0
Железо 0,45-0,95
Алюминий остальное

Отношение содержания цинка к содержанию магния должно находиться в пределах 3,1-4,1.

Технический результат - повышение сопротивления ползучести при умеренно повышенных температурах при сохранении высоких прочностных характеристик при комнатной температуре не ниже соответствующих показателей у известного сплава. Кроме того, предлагаемый сплав обладает значительно более высокой прокаливаемостью и более высокой технологичностью при обработке давлением и, в частности, при прессовании.

Пример. Методом непрерывного литья были получены слитки диаметром 300 мм двух сплавов: известного сплава среднего химического состава и предлагаемого сплава среднего состава. Фактический химический состав сплавов представлен в таблице 1 (мас.%).

Слитки гомогенизировали по режиму 450°C, 24 ч и затем механической обработкой получали заготовки ⌀275×250 мм, которые прессовали на трубы ⌀134,5×3,0 мм. Трубы закаливали в воде с температуры 470°C и искусственно старили.

В процессе прессования было выявлено, что предлагаемый сплав характеризуется более высокой технологичностью при прессовании. Так, скорость истечения металла при прессовании известного сплава составила 0,2 м/мин, а предлагаемого сплава 0,3 м/мин. При этом усилие прессования было на 20-25% меньше.

Кроме того, было отмечено, что предлагаемый сплав обладает более высокой устойчивостью твердого раствора основных легирующих компонентов в алюминии, чем известный сплав. Так, с повышением температуры закалочной воды от 25°C до 80°C, темп снижения прочностных характеристик у известного сплава значительно больший, чем у предлагаемого.

Были проведены испытания на растяжение закаленных и искусственно состаренных образцов, взятых из трубы в продольном направлении: с определением σв, σ02, δ при комнатной и повышенных температурах. После закалки трубы из известного и предлагаемого сплавов имели нерекристаллизованную структуру.

В таблице 2 представлены результаты испытания на растяжение образцов труб, взятых в продольном направлении, при комнатной температуре.

Предлагаемый сплав заметно превосходит по прочностным показателям известный сплав, уступая ему в пластичности и сохраняя вместе с тем большой запас пластичности (требования нормативной документации δ≥3%).

Преимущество предлагаемого сплава сохраняется при испытании на растяжение при умеренно повышенных температурах (таблица 3).

Образцы, взятые из труб в продольном направлении, были подвергнуты испытаниям на ползучесть при постоянно действующем растягивающем напряжении 50 кгс/мм2 при температуре 60°C. Скорость ползучести определяли на установившейся стадии на прямолинейном участке кривой ползучести на временном участке 500-1800 часов. Средняя скорость ползучести из 10 результатов испытаний составила для известного сплава 1,97×10-4%/час, а для предлагаемого сплава 0,65×10-4%/час.

Таким образом, предлагаемый сплав имеет явные преимущества по сопротивлению ползучести при температуре 60°C и по прочностным характеристикам по сравнению с известным сплавом.

Сплав на основе алюминия, содержащий цинк, магний, медь, скандий, цирконий, никель и железо, отличающийся тем, что он дополнительно содержит бериллий и кобальт при следующем соотношении компонентов, мас.%:

цинк 8-10
магний 2,0-3,0
медь 1,6-2,6
скандий 0,12-0,25
цирконий 0,06-0,20
бериллий 0,0001-0,005
кобальт 0,05-0,15
никель 0,5-1,0
железо 0,45-0,95
алюминий остальное

при отношении содержания цинка к содержанию магния в пределах 3,1-4,1.



 

Похожие патенты:
Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций.
Изобретение относится к металлургии алюминиевых полуфабрикатов, а именно к металлургии свариваемых алюминиевых сплавов системы алюминий - цинк - магний, и может найти применение при изготовлении гомогенных или слоистых броневых плит для броненесущих и бронекорпусных объектов.

Изобретение относится к конструкционным элементам из алюминиевого сплава, в частности для аэрокосмической промышленности. Плита выполнена толщиной по меньшей мере 4 дюйма из алюминиевого сплава, который содержит: от 6,4 до 8,5 мас.% Zn, от 1,4 до 1,9 мас.% Mg, от 1,4 до 1,85 мас.% Сu, от 0,05 до 0,15 Zr, от 0,01 до 0,06 мас.% Ti, до 0,15 мас.% Fe, до 0,12 мас.% Si, остальное алюминий, сопутствующие элементы и примеси.
Изобретение относится к области металлургии, в частности к способам производства труб осесимметричных штамповок диаметром до 200 мм из высокопрочных алюминиевых сплавов Al-Zn-Mg-Cu, легированных скандием и цирконием.
Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения.

Изобретение относится к активному материалу отрицательного электрода для электрического устройства, содержащему сплав с формулой состава SixZnyAlz, где каждый из х, y и z представляет массовое процентное содержание, удовлетворяющее: (1) x+y+z=100, (2) 26≤х≤47, (3) 18≤y≤44 и (4) 22≤z≤46.
Группа изобретений относится к изделиям из дисперсионно-твердеющего алюминиевого сплава. Изделие выполнено толщиной от 2 дюймов (50 мм) до 12 дюймов (305 мм) из сплава следующего химического состава, вес.%: Zn - от 3 до 11, Mg - от 1 до 3, Cu - от 0,9 до 3, Ge - от 0,03 до 0,4, Si - максимум 0,5, Fe -максимум 0,5, Ti - максимум 0,3, остальное - алюминий и обычные и/или неизбежные элементы и примеси.
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах.

Изобретение относится к способу производства длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте. .
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением.

Изобретение относится к высоколегированным сверхпрочным сплавам на основе алюминия системы Al-Zn-Mg-Cu, предназначенным для применения в качестве конструкционного материала в авиационной и ракетной технике, в транспортных наземных средствах и в изделиях приборного машиностроения. Высокопрочный сплав на основе алюминия и изделие, выполненное из него, содержат следующие компоненты, мас.%: цинк 8,5-9,3, магний 1,6-2,1, медь 1,3-1,8, цирконий 0,06-0,14, марганец 0,01-0,1, железо 0,02-0,10, кремний 0,01-0,05, хром 0,01-0,05, бериллий 0,0001-0,005, водород 0,8·10-5-2,7·10-5 и по крайней мере один из элементов группы, содержащей титан 0,02-0,06, бор 0,001-0,01, алюминий - остальное. Суммарное содержание основных компонентов цинка, магния, меди не должно превышать 12,5-13,0%. Суммарное содержание переходных металлов циркония, марганца и хрома не должно превышать 0,25-0,30%. Соотношение железа к кремнию должно быть не менее 1,5. Техническим результатом настоящего изобретения является повышение прочностных характеристик и вязкости разрушения сплава. 2 н. и 3 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к металлургии. Лигатуру алюминий-цирконий, технический алюминий и отходы загружают в центральную часть печного пространства с температурой 740-750°C. В расплав вводят лигатуру алюминий-бериллий при температуре 730-740°C, магний и цинк с температурой 710-730°C и после выдержки расплава 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний. Осуществляют нагрев расплава до 720-740°C и перемешивание. За 15-25 минут до перелива расплав модифицируют лигатурой алюминий-титан в объеме 50% от расчетного количества. Перелитый в ковш расплав обрабатывают флюсом при температуре 710-730°C. Расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор. Осуществляют вакуумную обработку 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа. Литье осуществляют с использованием фильтрующего элемента. Слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка. Обеспечивается получение слитков с однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз. 4 табл.

Изобретение относится к области цветной металлургии, в которой получают многокомпонентные металлические сплавы, содержащие алюминий, цинк и кремний. Способ включает размещение предварительно сформированной и содержащей соединения всех перечисленных выше элементов исходной сырьевой смеси во внутреннем объеме применяемого для ее переработки устройства. В устройстве генерируют физические поля, накладываемые на все зоны его полости, в которых находится перерабатываемая в сплав исходная сырьевая масса. С помощью этих физических полей производят восстановление составляющих этот сплав Al; Zn; Si, т.е. компонентов исходного рудного материала. При проведении указанной выше операции осуществляется соединение входящих в сырьевую смесь отдельных уже восстановленных фрагментов готового конечного продукта в целостное монолитное структурное образование, состоящее из самого сплава. При выполнении способа производят перемешивание сырьевого материала. Техническим результатом является возможность получения указанного сплава непосредственно из рудного сырья. 2 н.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ термической обработки изделия из высокопрочного алюминиевого сплава системы Al - Zn - Mg - Cu, содержащего, мас.%: цинк 6,0-9,0, магний 1,6-2,6, медь 0,8-1,6, цирконий 0,07-0,15, железо 0,02-0,15, кремний менее 0,1, алюминий и неизбежные примеси - остальное, включает закалку и искусственное старение, содержащее стадии изотермического и неизотермического старения, при этом сначала проводят первую стадию изотермического старения при температуре 60-90°С в течение 10-24 ч, затем проводят первую стадию неизотермического старения путем нагрева изделия до температуры 160-195°С со скоростью 10-15°С/ч, после чего осуществляют вторую стадию изотермического старения при температуре 160-195°С в течение времени, определяемом из зависимости t=ln(473/T)/0,009, где t - время выдержки, ч, Т - температура выдержки, К, и вторую стадию неизотермического старения путем охлаждения с температуры 160-195°С до температуры 80°С со скоростью, определяемой по формуле V=ln(T/88,5)/0,0057, где V - скорость охлаждения, К/ч, Т - температура выдержки, К. Технический результат заключается в снижении склонности к расслаивающей, межкристаллитной и питтинговой коррозии, повышении однородности структуры и свойств в объеме изделия, получении изделий с повышенными прочностными и коррозионными характеристиками, в том числе для эксплуатации в морских условиях. 2 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к получению изделий из алюминиевых сплавов 7ххх. Способ получения продуктов из деформируемого алюминиевого сплава 7ххх, содержащего 2,0-22 мас.% цинка и по меньшей мере 1,0 мас.% меди, включает приготовление изделия из алюминиевого сплава для послезакалочной холодной обработки давлением, холодную обработку давлением изделия на более чем 50% и термическую обработку с приданием формы во время этапа термической обработки, при этом упомянутое приготовление содержит этап закалки, а холодную обработку давлением и термическую обработку осуществляют для получения нерекристаллизованной микроструктуры, имеющей менее чем 50%-ю объемную долю зерен, имеющих разброс ориентации зерен не более 3°. Изобретение направлено на улучшение прочностных свойств сплавов 7ххх. 10 з.п. ф-лы, 3 пр., 17 табл., 31 ил.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас. %: кремний 5-13, медь 4-7, цинк 4-7, никель 0,5-3, марганец 0,3-3, железо 0,3-3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, остальное - алюминий. Отношение содержания железа к марганцу составляет от 1:1 до 1:1,1. Отношение содержания никеля к железу составляет не более 1:2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас. %. При пайке с длительным термическим циклом припой дополнительно содержит, мас.%: кобальт 0,001-0,8 и молибден 0,001-0,8. Технический результат заключается в понижении температуры плавления припоя, повышении прочности и коррозионной стойкости получаемых паяных конструкций из алюминиевых сплавов, что обеспечивает повышение их срока службы. 2 з.п. ф-лы, 2 табл., 3 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 5-13, медь 1-13,5, цинк 2-10, никель 0,5-4,5, олово 0,1-0,3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, натрий 0,001-0,2, титан 0,001-0,1, ванадий 0,001-0,2, по меньшей мере один элемент, выбранный из группы кобальт 0,001-0,8, молибден 0,001-0,8, бериллий 0,001-0,1, алюминий остальное. Суммарное содержание цинка и меди не превышает 15 мас.%, отношение содержания никеля к меди составляет от 1:2 до 1:4. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Припой позволяет обеспечить высокий уровень прочности паяного соединения при возможности проведения процесса пайки при температурах ниже 590°С, что позволит использовать в паяных конструкциях большинство современных конструкционных алюминиевых сплавов. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области цветной металлургии, в частности к высокопрочным сплавам на основе алюминия. Сплав на основе алюминия содержит, мас.%: медь 0,5-3,5; магний 1,5-4,5; цинк 7,0-10,0; марганец 0,005-0,9; цирконий 0,005-0,5; кобальт 0,005-0,5; церий 0,005-0,5; бериллий 0,0001-0,01; по крайней мере один элемент из группы, содержащей железо, никель 0,005-0,35 каждого, и по крайней мере один элемент из группы, содержащей скандий, титан 0,001-0,35 каждого, бор, углерод 0,0001-0,02 каждого, алюминий остальное. Техническим результатом является повышение пределов прочности и текучести при комнатной температуре, прочности при температуре 80ºС и малоцикловой усталости после упрочняющей термической обработки. 2 н.п. ф-лы, 1 пр., 2 табл.

Изобретение относится к области металлургии, в частности к производству высокопрочных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, в частности для изготовления деталей, используемых для автомобилестроения, летательных аппаратов, спортивного инвентаря, корпусов электронных устройств и др. Высокопрочный сплав на основе алюминия содержит, мас. %: цинк 5,2-6,0, магний 1,5-2,0, никель 0,5-2,0, железо 0,4-1,0, медь 0,01-0,25, цирконий 0,05-0,20, по меньшей мере, один элемент из группы, включающей скандий 0,05-0,10 и титан 0,02-0,05, алюминий – остальное, при выполнении соотношения 1≤Ni/Fe≤2 и суммарном содержании циркония и, по меньшей мере, одного элемента из группы, включающей титан и скандий, составляющем не более 0,25 мас. %. Техническим результатом изобретения является увеличение прочностных свойств сплава и изделий, выполненных из него, за счет образования вторичных выделений упрочняющей фазы путем дисперсионного твердения. 7 з.п. ф-лы, 3 пр., 4 табл., 2 ил.

Изобретение относится к области металлургии, в частности к высокопрочным деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Высокопрочный деформируемый сплав на основе алюминия системы Al-Zn-Mg-Cu и изделие из него содержат, мас.%: цинк 7,8-8,2, магний 2,0-2,4, медь 1,8-2,1, скандий 0,1-0,17, цирконий 0,1-0,14, церий 0,0005-0,001, титан 0,01-0,03, бор 0,0005-0,001, алюминий и неизбежные примеси, в том числе железо не более 0,12, кремний не более 0,11, марганец не более 0,02, хром не более 0,02, - остальное, при этом водород присутствует в сплаве в количестве 0,05-0,3 см3/100 г металла, а отношение магния и цинка составляет от 0,25 до 0,3. Техническим результатом изобретения является повышение прочностных характеристик, в том числе удельной прочности материала. 2 н.п. ф-лы, 1 пр., 2 табл.
Наверх