Устройство диагностирования контактных соединений в электрооборудовании автомобиля

Изобретение относится к области эксплуатации автомобильной техники и может быть использовано для диагностирования работоспособности электрической проводки автомобильной техники и поиска неисправностей при ремонте. Устройство для диагностирования разъемных электрических контактных соединений содержит мост сопротивлений, одним плечом которого является диагностируемое сопротивление, измерительный прибор, источник электрического тока, соединенный к двум вершинам моста, дополнительно содержит два конденсатора, два ключа, дифференциальный усилитель. При этом конденсаторы соединяют входы усилителя с вершинами моста, ключи соединены параллельно с конденсаторами, а измерительный прибор соединен с выходом дифференциального усилителя. Технический результат заключается в расширении функциональных возможностей за счет возможности диагностирования флуктуации переходного сопротивления контактов по шумовой составляющей тока, а также в повышении чувствительности устройства. 1 ил.

 

Изобретение относится к области эксплуатации автомобильной техники и может быть использовано для диагностирования работоспособности электрической проводки с контактными соединениями автомобильной техники и поиска неисправностей при ремонте.

Известно устройство диагностирования надежности электрических контактов, содержащее источник электрического тока, измерительные сопротивления и измерительный прибор. Пропусканием тока через измерительные сопротивления и через измеряемое сопротивление и измерением напряжения на них определяют величины токов через них, а соответственно, величину измеряемого сопротивления. Примерами устройства является омметр или тестер. [Морозов А.Г. Электротехника, электроника и импульсная техника. - М.: Высшая школа, 1987. - 420 с.; Иванов А.А. Основы метрологии, стандартизации и сертификации: учебник для вузов. - Рязань, РВАИ, 2004, - 560 с.]

Недостатком устройства является сложность измерения малых сопротивлений и большая погрешность измерения.

Наиболее близким к предлагаемому является устройство для диагностирования разъемных электрических контактных соединений, содержащее мост сопротивлений, одним плечом которого является диагностируемое сопротивление, измерительный прибор, источник электрического тока, соединенный к двум вершинам моста. [Демирчан К.С. Теоретические основы электротехники: К.С.Демирчан, Л.Л.Нейман, В.Л.Чечурин. - СПб.: Изд.СПб, Питер, 2003. - T.1. - 462 с.- Т.2. - 575 с. Бессонов Л.А. Теоретические основы электротехники. - М.: Высш. школа, 1973.-749 с.]

Устройство работает следующим образом. Измеряемое сопротивление соединяется в одно из плеч моста. На две вершины моста подается напряжение от источника тока, а к другим вершинам соединен измерительный прибор. Сопротивление какого-либо из плеч моста, кроме измеряемого, подбирается такой величины, чтобы ток через измерительный прибор был равен нулю. Из равенства отношений сопротивлений в двух питаемых параллельных ветвях моста определяется измеряемое сопротивление.

Недостатком известного устройство является то, что оно не чувствительно к флуктуациям переходного сопротивления контактных соединений, являющихся показателем начала выхода из строя контактного соединения. Кроме того, погрешность измерения и предел измерения по сопротивлению ограничивается чувствительностью измерительного прибора, в качестве которого используется, как правило, магнитоэлектрический гальванометр.

Технический результат направлен на расширение функциональных возможностей, в частности диагностирования флуктуации переходного сопротивления контактов по шумовой составляющей тока, а также на повышение чувствительности устройства.

Технический результат достигается тем, что устройство для диагностирования разъемных электрических контактных соединений, содержащее мост сопротивлений, одним плечом которого является диагностируемое сопротивление, измерительный прибор, источник электрического тока, соединенный к двум вершинам моста, дополнительно содержит два конденсатора, два ключа, дифференциальный усилитель, при этом конденсаторы соединяют входы усилителя с вершинами моста, ключи соединены параллельно с конденсаторами, а измерительный прибор соединен с выходом дифференциального усилителя.

Отличительной особенностью предлагаемого изобретения является то, что устройство для диагностирования разъемных электрических контактных соединений дополнительно содержит два конденсатора, два ключа, дифференциальный усилитель, при этом конденсаторы соединяют входы усилителя с вершинами моста, ключи соединены параллельно с конденсаторами, а измерительный прибор соединен с выходом дифференциального усилителя.

На рисунке представлена схема предлагаемого устройства. Устройство содержит измерительный мост сопротивлений R1, R2, R5, Rизм, где Rизм - измеряемое сопротивление, соединяемое к контактам устройства Кн1 и Кн2, R1, R2, R5 - сопротивления известной величины, источник питания GB, два конденсатора С1 и С2, два ключа К1 и К2, два каскада усиления на полевых транзисторах ПТ1, ПТ2 с переходными конденсаторами С3, С3 и со стоковыми сопротивлениями R3, R4, дифференциальный усилитель DA и измерительный прибор рА. При этом источник питания GB соединен к вершинам моста. Другие две вершины соединены через конденсаторы С1 и С2 с входами дифференциального усилителя DA, к выходу которого соединен измерительный прибор рА. Для уменьшения погрешности к входам дифференциального усилителя могут быть соединены усилительные каскады на полевых транзисторах ПТ1, ПТ2 с высокоомными входами, содержащими нагрузочные сопротивления R3, R4, и переходные конденсаторы С2, С3. Ключи К1 и К2 соединены параллельно с конденсаторами С1, С2 и в отключенном положении позволяют подавать на входы DA отдельно переменную составляющую тока между вершинами моста. Для обеспечения режима постоянного тока синхронно с блокировкой конденсаторов С11, С2 ключами К1, К2 необходимо блокировать и конденсаторы С3, С4.

Устройство работает следующим образом. При подаче питания на вершины моста по параллельным ветвям R1, R2 и Р5, Ризм моста потечет ток. При произвольных значениях R1, R2 и R5 на вершинах моста в точках А и В наиболее вероятно окажутся разные потенциалы. При замкнутых ключах К1, К2 эти потенциалы подаются на входы усилителя DA. Высокое входное сопротивление полевого транзистора заметной для измерений погрешности не вносит. Разница в потенциалах на входах вызывает сигнал на выходе, регистрируемый измерительным прибором рА. Подбором одного из сопротивлений R1, R2 и R3 выравниваются потенциалы на вершинах, соединенных с входами усилителя, и показания прибора становятся равными нулю. При известных значениях R1, R2 и R3 по пропорции R1/R2=R3/Rизм определяется величина Rизм.

При разомкнутых ключах К1 и К2 на входы усилителя поступает только переменная составляющая потенциалов вершин моста. Переменная составляющая в виде шумовой составляющей возникает при частично вышедших из строя контактах (образование запорного слоя, окисление, уменьшение силы прижима и др). Известно, что шумовые сигналы всегда только суммируются, поэтому на выходе усилителя появится сигнал, отражающий суммарную величину шума, поступающего на оба входа усилителя. Любая причина частичной потери контакта наиболее вероятно имеет флуктуирующий характер и приводит все к большей потере контакта вплоть до полного отказа. Поэтому возникновение шумовой составляющей сигнала на контактах указывает на начало процесса потери контактных свойств разъемного соединения. При больших плотностях токов контактное соединение может необратимо разрушиться вследствие выделения тепла. Регистрация сигнала шумовой составляющей потенциалов на вершинах моста позволяет диагностировать частичный выход из строя разъемных электрических соединений.

Сопоставительный анализ с прототипом показал, что предлагаемое устройство имеет большую чувствительность по регистрации разности потенциалов на вершинах моста, а соответственно расширяет пределы измерений сопротивлений и позволяет диагностировать отказы контактных соединений на ранней стадии отказа, то есть имеет более широкие функциональные возможности.

Устройство для диагностирования разъемных электрических контактных соединений, содержащее мост сопротивлений, одним плечом которого является диагностируемое сопротивление, измерительный прибор, источник электрического тока, соединенный к двум вершинам моста, отличающийся тем, что дополнительно содержит два конденсатора, два ключа, дифференциальный усилитель, при этом конденсаторы соединяют входы усилителя с вершинами моста, ключи соединены параллельно с конденсаторами, а измерительный прибор соединен с выходом дифференциального усилителя.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками.

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными и резистивными датчиками и передачи результата измерения по радиоканалу.

Техническое решение относится к технике резонансных радиотехнических измерений для вычисления и мониторинга комплексной диэлектрической проницаемости материалов.

Изобретение относится к технике СВЧ и предназначено для ответвления и регистрации прямой и отраженной микроволновой мощности в квазиоптическом зеркальном тракте большой мощности (1-500 кВт) при длительности импульса СВЧ 1-100 мс, в диапазоне частот 30-80 ГГц.

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления. Сущность изобретения заключается в снижении погрешности определения емкости и сопротивления за счет применения нескольких измерений с последующей их статистической обработкой.

Изобретение относится к устройствам для контроля процесса пропитки наполнителя полимерным связующим, в частности преформ, преимущественно в процессе инфузии, и может найти применение при изготовлении изделий из полимерных композиционных материалов как простой, так и сложной геометрической формы и различных размеров, в которых в качестве наполнителя могут быть использованы, например, преформы из стекло- или углеволокна.

Изобретение относится к электротехнике и может быть использовано при создании переносных устройств поиска присоединений с поврежденной изоляцией сетей постоянного оперативного тока.

Изобретение относится к технике электрических измерений и может быть использовано для измерения израсходованного ресурса электрической изоляции электрооборудования.

Изобретение относится к контролю электрических параметров и может быть применено в авиационной технике. Устройство состоит из основного блока и универсального соединителя.

Изобретение относится к электрическим измерениям, а именно к устройствам контроля сопротивления изоляции электрической сети переменного тока. Устройство контроля сопротивления изоляции электрической сети переменного тока содержит фильтр низкой частоты, вход которого подключен к контролируемой сети, источник опорного напряжения, индикатор и компараторы аварийной и предупредительной сигнализации.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, емкости и напряжения. Микроконтроллерный измерительный преобразователь сопротивления, емкости и напряжения в двоичный код содержит четыре резистора, два генератора, управляемые напряжением и снабженные входами разрешения генерирования, и микроконтроллер; первые выводы резисторов подключены соответственно к первому, второму, третьему и четвертому выходам микроконтроллера, вторые выводы первого и второго резисторов подключены к входу управления напряжением первого генератора, вторые выводы третьего и четвертого резисторов подключены к входу управления напряжением второго генератора, выходы генераторов подключены к счетным входам встроенных в микроконтроллер первого и второго двоичных счетчиков. Техническим результатом является повышение точности преобразования сопротивления, емкости и напряжения в двоичный код. 1 з.п. ф-лы, 1 ил.

Способ определения параметров прибора СВЧ, включающий измерение в n точках рабочей полосы частот его комплексных параметров рассеяния, моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты, определение собственно параметров посредством математической процедуры. Причем эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений Z1, Z2, Z3, при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно, каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci, а определение собственно параметров осуществляют посредством двух математических процедур, при этом в первой определяют три комплексных сопротивления в n точках рабочей полосы частот, во второй - собственно параметры прибора СВЧ Ri, Li и Ci из соответствующих математических формул. Технический результат заключается в существенном упрощении способа и повышении точности определения. 1 з.п. ф-лы.

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый резонатор, измеряют резонансную частоту открытого резонатора и по измеренной частоте открытого резонатора, производят отсчет величины измеряемой электрической величины. Техническим результатом заявляемого технического решения является повышение точности измерения электрической величины. 1 ил.

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического сопротивления образец помещают в кварцевый реактор, содержащий корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель, а в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца. Причем образец внутри корпуса устанавливают в С-образных зажимах с плоскими губками, которые выполняют из вольфрамовой проволоки. С-образные зажимы раскрепляют на растяжках, которые выполняют в виде пружин из вольфрамовой проволоки меньшего диаметра. После чего при помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Технический результат - повышение точности получаемых данных. 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике. Заявленный кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно, пленочных образцов из нанокомпозиционных материалов, содержит корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель; внутри корпуса на растяжках, выполненных в виде пружин из вольфрамовой проволоки, установлены C-образные зажимы с плоскими губками для размещения исследуемого образца, выполненные из вольфрамовой проволоки, причем в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца, размещаемого в C-образных зажимах. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах [ f p 1 ,   f p 2 ] определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины. Причем в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Хн, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где - начальное, при номинальном значении измеряемой физической величины, значение Хн, [Хн1, Хн2] - фиксированные пределы изменения Хн0, соответствующие фиксированным пределам [ f p 1 ,   f p 2 ] , - амплитуда колебаний в волноводном резонаторе при величине Хн0 оконечной нагрузки. Технический результат заключается в упрощении процесса измерения. 2 ил.

Изобретение относится к электроэнергетике, в частности к строительству воздушных линий электропередачи и заземляющих устройств. Для проектирования и строительства линий электропередачи проводятся изыскательские работы, при этом исследуется местность, определяются характеристики грунта, в том числе электрическое сопротивление земли. Для измерений электрического сопротивления земли в котловане предложена упрощенная конструкция измерительного устройства, состоящего из двух симметрично изогнутых штанг, соединенных шарниром. На штангах закрепляются измерительные электроды, штепсельные разъемы и провода, соединяющие их. Для измерений устройство устанавливается в котлован, подключаются измерительные приборы, с помощью рукояток штанги разводятся к стенкам котлована, электроды внедряются в землю, производятся измерения. Техническим результатом является повышение точности измерений электрического сопротивления земли, снижение массы измерительного устройства и времени, затрачиваемого на измерения. При этом предлагается измерять электрическое сопротивление непосредственно в котловане перед установкой опоры, а результаты измерений использовать при монтаже заземляющего устройства. 2 ил.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора (СТ) подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего СТ. К резисторному ограничителю тока заряда подключен первый электрод коммутатора. Первичная обмотка повышающего СТ подключена к источнику напряжения переменного тока. Через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего СТ. Эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами. Блок регистрации и обработки сигнала содержит первый и второй АЦП, первый и второй блоки быстрого преобразования Фурье (ББПФ), блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных. Первый АЦП подключен к потенциальному выходу тестируемого токового шунта и к первому ББПФ. Второй АЦП подключен к выходу эталонного трансформатора тока и к второму ББПФ, который соединен с блоком функционального преобразования. Блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных. Блок формирования треугольного импульса подключен к входам первого и второго АЦП, а блок сравнения спектров подключен к выходам первого и второго ББПФ. Технический результат заключается в снижении влияния искажения спектра преобразуемых сигналов на определяемые амплитудно-частотную и фазочастотную характеристики тестируемого шунта и уменьшение погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров. 2 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей любого рода тока, находящихся под рабочим напряжением или обесточенных и изолированных от «земли». Согласно заявленному способу цикл измерения состоит из двух полуциклов. В начале первого полуцикла к контролируемой сети подключают источник регулируемого постоянного тока, по двум измеренным значениям напряжения вычисляют эквивалентную емкость и длительность интервала времени, необходимого для окончания переходного процесса. В соответствии с этим устанавливают временные интервалы процесса измерения. В конце первого полуцикла запоминают значения тока и среднего напряжения в точке подсоединения к контролируемой сети. В начале второго полуцикла изменяют направление тока источника регулируемого постоянного тока, производят аналогичные действия и обрабатывают результаты измерений по формуле, вычисляя величину сопротивления изоляции сети. Устройство для измерения сопротивления изоляции электрических сетей реализует указанный способ. Устройство содержит блок управления, первый блок управляемого тока, второй блок управляемого тока, блок подсоединения, регулируемый источник напряжения, блок фильтрации, блок измерения тока, блок измерения напряжения, блок вычисления емкости, блок формирования интервалов времени и выходное устройство. Технический результат заключается в уменьшении времени измерения сопротивления изоляции при наличии в контролируемой сети малых емкостей. 2 н.п. ф-лы, 1 ил.

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ определения составляющих импеданса биологического объекта состоит в измерении напряжения на биообъекте на границах диапазона, при этом определяют активное сопротивление и эквивалентную емкость тканей биообъекта по информативным параметрам амплитудно-частотной характеристики (АЧХ), а именно - предельному напряжению и резонансной частоте, которые определяют по двум значениям напряжений на двух фиксированных частотах, являющихся границами диапазона. Из отношения предельного напряжения к резонансной частоте находят предельный ток исследуемой АЧХ, информативные и искомые параметры которой нормируют относительно эталонной АЧХ за счет определения известных составляющих импеданса образцового биологического объекта. Использование изобретения позволяет повысить точности измерения составляющих комплексного сопротивления биообъекта. 4 ил., 1 табл.
Наверх