Способ получения люминесцентного материала для создания результирующего белого света в светодиодах

Изобретение относится к способам получения фотолюминофоров и может быть использовано при изготовлении светодиодов белого света. Смешивают компоненты смеси, измельчают в планетарной мельнице с ускорением 20 G в течение не менее 25 мин. Полученный порошок прокаливают и подвергают ультразвуковой обработке путем резкого охлаждения в ультразвуковой ванне с последующей отмывкой и прецизионным просевом через сито с размером ячейки 15-20 мкм. Полученный люминофор имеет средний размер частиц не более 4 мкм, максимум полосы люминесценции при λ=545-565 нм. Уменьшается длительность процесса получения люминесцентного материала, увеличивается яркость люминесценции. 4 пр.

 

Способ получения люминесцентного материала для создания результирующего белого света в светодиодах.

Область техники, к которой относится изобретение

Изобретение относится к способам получения фотолюминофоров, используемых для конвертирования излучения синих светодиодов в желтую, желто-зеленую область спектра с целью получения результирующего белого света, в частности к способу получения легированного церием люминофора на основе иттрий-алюминиевого граната, который применяют в двухкомпонентных светодиодных источниках освещения.

Уровень техники

Известен люминофор для световых источников, содержащий алюминий, иттрий, церий, лютеций и кислород при следующем соотношении: (Y1-xCex)3Al5O12 и 5-60 мас. % сверх 100% (Lu1-yCey)2O3, где х=0,005-0,1; у=0,01-0,1 («Люминофор для световых источников», патент РФ на изобретение №2396302, опубл. 10.08.2010). Известный люминофор получают коллоидно-химическим способом. Изобретение обеспечивает создание высокодисперсного люминофора с положением максимума полосы люминесценции при λ=590 нм при снижении температуры и длительности его синтеза. Однако одним из очевидных недостатков данного изобретения является высокая стоимость оксида лютеция, сложность получения коллоидного редкоземельного оксида при сохранении высокой чистоты.

Известен люминофор для световых источников состава (CHINA GLAZE CO., LTD, Patent application number: US 2011254435, опубл. 20.10.2011), предназначенный для преобразования излучения синих светодиодов в желто-оранжевую область спектра с целью получения результирующего белого света. Люминофор, имеющий формулу: (Rel-yBay) 3-х (Rg) 5O12: Сех, где: Re является Y, Tb, Lu, Sc, La, Gd, Sm или их комбинации; Rg является Al, Ga, В или их комбинации; 0<х<3, 0<у<1.

Данный люминофор получают твердофазной реакцией с применением реагентов, содержащих Ва, такие как BaSO4, карбонаты, такие как ВаСО3, или галогениды, такие как BaF2. Реагенты, содержащие Y, Tb, Lu, Sc, La, Gd, Sm могут быть оксиды, такие как Y2O3, или нитраты, такие как Tb (NO3). Реагенты, содержащие Al, Ga, или В, могут быть оксиды, такие как γ-Al2O3, Ga2O3 или B2O3. Реагенты, содержащие Се, могут быть оксиды, такие как CeO2. Описанные реагенты соответствующего эквивалента равномерно смешивают и измельчают в шаровой мельнице. Затем смесь нагревают в высокотемпературной печи. После спекания при температуре 1300°С до 1500°С в течение 8-16 часов в восстановительной атмосфере (5% Н2 и 95% N2) получают люминофор.

Существенным недостатком данного люминофора является то, что средний размер частиц превышает 10 мкм, кроме того, применение шаровых мельниц для измельчения требует порядка 6-20 часов для измельчения и перемешивания реагентов.

Наиболее близким к заявленному способу получения люминесцентного материала для создания результирующего белого света в светодиодах является способ, описанный в заявке ЕР N1710292 (кл. С09К 11/64, 2006, см. реферат, описание, абзацы 0003, 0004, 0028, 0029, 0109, 0117-0119, 0137-0141). Способ изготовления порошкообразного флуоресцентного материала содержит этапы: 1) спекания исходного порошка; 2) химическая обработка спеченного порошка раствором смеси кислот, в том числе плавиковой кислоты, серной кислоты и воды, 3) стадия гранулирования влажного порошка, который помещают в сито размером 40-200 мкм, подвергают вибрации или ударам, чтобы получить агрегатные комплексы из мелких и крупных частиц; 4) спекание после гранулирования, 5) суспендирование полученного порошка с целью классификации и удаления мелких частиц. Суть суспендирования в том, чтобы распределить порошок в жидкости и дать ему осесть, в результате мелкие частицы, взвешенные в жидкости после 2 минут после того, как жидкость перемешивают или подвергнут вибрации, не осядут на дно стакана, и эту часть можно декантировать. Основная сущность патента заключается в том, чтобы простым способом классифицировать порошок, удалив мелкие частицы, которые имеют меньшую эффективность.

Из сопоставительного анализа заявленного способа с известным следует, что общими для них признаками являются следующие: смешивание компонентов смеси, ее измельчение в планетарной мельнице, прокаливание полученного порошка и ультразвуковая обработка.

Основным недостатком указанного способа является то, что получаются частицы размером 30-40 мкм, что приводит к меньшей эффективности люминофора в СИД, поскольку при одной и той же яркости люминофора, люминесцентный состав с меньшим размером зерна дает в целом более высокий прирост по интенсивности в СИД.

Раскрытие изобретения

Задачей предлагаемого изобретения является создание мелкодисперсного люминофора со средним размером частиц 4-5 мкм, увеличение кристалличности и набивной плотности, а также увеличение яркости люминесценции по сравнению с мелкокристаллическим аналогом, измельченным в шаровых мельницах с применением размольных шаров.

Технический результат - уменьшение длительности процесса получения люминесцентного материала, увеличение кристалличности и набивной плотности получаемого люминофора и, как следствие, увеличение яркости люминесценции по сравнению с мелкокристаллическим аналогом, измельченным в шаровых мельницах с применением размольных шаров.

Указанный технический результат достигается тем, что способ получения люминесцентного материала для создания результирующего белого света в светодиодах включает смешивание компонентов смеси, ее измельчение в планетарной мельнице, прокаливание полученного порошка и ультразвуковую обработку, причем согласно изобретению измельчение в планетарной мельнице проводят с ускорением 20 G в течение не менее 25 мин, ультразвуковую обработку проводят после прокаливания путем резкого охлаждения в ультразвуковой ванне с последующей (отмывкой) и прецизионным просевом через сито с размером ячейки 15-20 мкм.

Предлагаемый люминофор получают следующим образом.

Пример 1.

Оксиды иттрия, церия в мольном соотношении 2,6-2,80:0,005-0,2 растворяют в азотной кислоте до полного растворения при постоянном перемешивании. Далее, к полученному раствору добавляют нитрат алюминия (мольное соотношение оксида иттрия и алюминия 2,8:5,0-5,1). К полученному раствору при постоянном перемешивании добавляют по каплям водный аммиак 25% до рН-10. В результате реакции образуются гидроксиды металлов иттрия, церия и алюминия и имеется некоторый избыток аммиака и нитрат аммония как побочный продукт. Полученную смесь гидроксидов отмывают деионизованной водой до рН 8-9, затем отфильтровывают на воронке Бюхнера, помещают в фарфоровую чашу (тигель) и отжигают при температуре 600-800°С в течение 3-4 часов. Затем порошок помещают в алундовый тигель и прокаливают на воздухе при температуре 1500-1570°С в течение 4-8 часов. Полученный полупродукт просеивают с помощью многочастотных анализаторов через сито 15 микрон, уплотняют при помощи планетарной мельницы с ускорением 20G в течение 5 минут без применения размольных шаров и просеивают через сито 15 микрон, засыпают в алундовый тигель, затем прокаливают в среде формиргаза в течение 4-8 часов при температуре 1500-1600°С. Готовый люминофор выгружают из элеваторной печи при температуре 1400°С, королек в течение 2-3 с после извлечения из тигля бросают в стакан с водой, который находится в ультразвуковой водяной ванне при температуре воды 25°С и частоте ультразвука от 10 до 25 кГц. Резко охлажденный до комнатной температуры люминофор отмывают деионизованной водой и просеивают через сито 20 микрон. Средний размер частиц люминофора - 12 мкм. Яркость свечения (при λвозб=450-460 нм) составляет 98% относительно яркости свечения крупнокристаллического аналога.

Пример 2

Оксиды иттрия, церия, галлия и гадолиния в мольном соотношении 2,85-2,95:0,0032-0,13:0,001-0,01:0,0011-0,011 растворяют в азотной кислоте до полного растворения при постоянном перемешивании. Оксиды галлия растворяют в азотной кислоте в микроволновой печи при высоком давлении. Далее к полученному раствору добавляют нитрат алюминия (мольное соотношение оксида иттрия и алюминия 2,9:5,0-5,1), который предварительно фильтруют. К полученному раствору при постоянном перемешивании добавляют по каплям водный аммиак 25% до рН-9-10. В результате реакции образуются гидроксиды металлов иттрия, церия, гадолиния, галлия и алюминия. В полученном полупродукте имеется некоторый избыток аммиака и нитрат аммония как побочный продукт. Полученную смесь гидроксидов отмывают деионизованной водой до рН 8-9, затем отфильтровывают на воронке Бюхнера, помещают в фарфоровую чашу (тигель) и отжигают при температуре 600-800°С в течение 3-4 часов. Затем порошок помещают в алундовый тигель и прокаливают на воздухе при температуре 1500-1570°С в течение 4-8 часов. Полученный полупродукт просеивают с помощью многочастотных анализаторов через сито 15 микрон, уплотняют при помощи планетарной мельницы с ускорением 20G в течение 15 минут без применения размольных шаров и просеивают через сито 15 микрон, засыпают в алундовый тигель, затем прокаливают в среде формиргаза в течение 4-6 часов при температуре 1500-1600°С. Люминофор выгружают из элеваторной печи при температуре 1400°С, затем королек в течение 2-3 с после извлечения из тигля бросают в стакан с водой, который находится в ультразвуковой водяной ванне при температуры воды 25°С и частоте ультразвука от 10 до 25кГц. Резко охлажденный до комнатной температуры люминофор отмывают деионизованной водой и просеивают через сито 20 микрон. Средний размер частиц люминофора - 9 мкм. Яркость свечения (при λвозб=450-460 нм) составляет 99-100% относительно яркости свечения крупнокристаллического аналога.

Пример 3

Оксиды иттрия, церия в мольном соотношении 2,6-2,80:0,005-0,2 растворяют в азотной кислоте до полного растворения при постоянном перемешивании. Далее, к полученному раствору добавляют нитрат алюминия (мольное соотношение оксида иттрия и алюминия 2,8:5,0-5,1). К полученному раствору при постоянном перемешивании добавляют по каплям водный аммиак 25% до рН-10. В результате реакции образуются гидроксиды металлов иттрия, церия и алюминия и имеется некоторый избыток аммиака и нитрат аммония как побочный продукт. Полученную смесь гидроксидов отмывают деионизованной водой до рН 8-9, затем отфильтровывают на воронке Бюхнера, помещают в фарфоровую чашу (тигель) и отжигают при температуре 600-800°С в течение 3-4 часов. Затем порошок помещают в алундовый тигель и прокаливают на воздухе при температуре 1500-1570°С в течение 4-8 часов. Полученный полупродукт просеивают с помощью многочастотных анализаторов через сито 15 микрон, уплотняют при помощи планетарной мельницы с ускорением 20G в течение 25 минут без применения размольных шаров, и просеивают через сито 15 микрон, засыпают в алундовый тигель, затем прокаливают в среде формиргаза в течение 4-8 часов при температуре 1500-1600°С. Готовый люминофор выгружают из элеваторной печи при температуре 1400°С, королек в течение 2-3 с после извлечения из тигля бросают в стакан с водой, который находится в ультразвуковой водяной ванне при температуре воды 25°С и частоте ультразвука от 10 до 25 кГц. Резко охлажденный до комнатной температуры люминофор отмывают деионизованной водой и просеивают через сито 20 микрон. Средний размер частиц люминофора - 4-5 мкм. Яркость свечения (при λвозб=450-460 нм) составляет 98% относительно яркости свечения крупнокристаллического аналога.

Пример 4

Оксиды иттрия, церия в мольном соотношении 2,6-2,80:0,005-0,2 растворяют в азотной кислоте до полного растворения при постоянном перемешивании. Далее, к полученному раствору добавляют нитрат алюминия (мольное соотношение оксида иттрия и алюминия 2,8:5,0-5,1). К полученному раствору при постоянном перемешивании добавляют по каплям водный аммиак 25% до рН-10. В результате реакции образуются гидроксиды металлов иттрия, церия и алюминия и имеется некоторый избыток аммиака и нитрат аммония как побочный продукт. Полученную смесь гидроксидов отмывают деионизованной водой до рН 8-9, затем отфильтровывают на воронке Бюхнера, помещают в фарфоровую чашу (тигель) и отжигают при температуре 600-800°С в течение 3-4 часов. Затем порошок помещают в алундовый тигель и прокаливают на воздухе при температуре 1500-1570°С в течение 4-8 часов. Полученный полупродукт просеивают с помощью многочастотных анализаторов через сито 15 микрон, уплотняют при помощи планетарной мельницы с ускорением 20G в течение 35 минут без применения размольных шаров и просеивают через сито 15 микрон, засыпают в алундовый тигель, затем прокаливают в среде формиргаза в течение 4-8 часов при температуре 1500-1600°С. Готовый люминофор выгружают из элеваторной печи при температуре 1400°С, королек в течение 2-3 с после извлечения из тигля бросают в стакан с водой, который находится в ультразвуковой водяной ванне при температуре воды 25°С и частоте ультразвука от 10 до 25 кГц. Резко охлажденный до комнатной температуры люминофор отмывают деионизованной водой и просеивают через сито 20 микрон. Средний размер частиц люминофора - 1-2 мкм. Яркость свечения (при λвозб=450-460 нм) составляет 70% относительно яркости свечения крупнокристаллического аналога.

Следовательно, применение центробежного ускорения 20G в течение не менее 25 минут способствует получению желтого люминофора с яркостью свечения 98% относительно яркости крупнокристаллического аналога при среднем размере частиц 4-5 микрон, что является оптимальным с точки зрения соотношения высокой яркости и минимального среднего размера частиц люминофора для применения в современных СИД.

Способ получения люминесцентного материала для создания результирующего белого света в светодиодах, включающий смешивание компонентов смеси, ее измельчение в планетарной мельнице, прокаливание полученного порошка и ультразвуковую обработку, отличающийся тем, что измельчение в планетарной мельнице проводят с ускорением 20 G в течение не менее 25 мин, ультразвуковую обработку проводят после прокаливания путем резкого охлаждения в ультразвуковой ванне с последующей отмывкой и прецизионным просевом через сито с размером ячейки 15-20 мкм.



 

Похожие патенты:

Изобретение относится к области светотехники. Техническим результатом является расширение арсенала технических средств.

Пуговица // 2546428
Изобретение относится к производству фурнитуры. Пуговица содержит разъемный корпус, имеющий полость и состоящий из двух частей с элементом крепления на одной из них и с установленным на другой части, по меньшей мере, одним светодиодом, соединенным проводниками с источником постоянного электрического тока, расположенным в полости.

Изобретение относится к области светотехники. Техническим результатом является увеличение эффективности освещения.

Изобретение относится к светотехнике, в частности к энергосберегающим осветительным устройствам без слепящего действия, созданным на основе мощных светодиодов с большим сроком эксплуатации.

Изобретения относятся к химической промышленности и светотехнике и могут быть использованы в светодиодах для эмиссии окрашенного или белого света. Люминесцентное вещество с силикатными люминофорами, легированными Eu2+, содержит твердые растворы смешанных фаз оксиортосиликатов щелочноземельных и редкоземельных металлов, представленными, например, формулой (1-х)MII 3SiO5·x SE2SiO5:Eu, где 0<х≤0,2; МII представляет собой ионы двухвалентного металла, содержащие по меньшей мере один ион, выбранный из группы, состоящей из стронция и бария, и SE - редкоземельные металлы из группы, включающей Y, La, Gd.

Лампа включает нижний корпус, печатную плату, верхний корпус, втулку, крышку датчика и камеру. Нижний корпус снабжен частью с электрическими контактами на его дне.

Изобретение относится к области полупроводниковой светотехники, а именно к светодиодным лампам. Светодиодная лампа содержит колбу из прозрачного материала, сменный излучающий элемент и средство фиксации в виде электропатрона.

Изобретение относится к области светотехники. Техническим результатом является повышение мощности.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности освещения путем распределения света в виде двойного пучка или однородного всенаправленного распределения света.

Изобретение относится к области электротехники. Технический результат заключается в повышении равномерности освещения.

Изобретение относится к области светотехники. Светильник включает корпус, источник питания, совокупность светодиодных линеек и отражателей, стекло, закрывающее светодиодные линейки, наружное оребрение, расположенное на корпусе, слой теплоотводящего материала, преимущественно выполненный на основе графита, расположенный между светодиодными линейками и корпусом светильника, полимерные крышки, резиновые прокладки, шайбы, в которые вставлены резиновые прокладки, расположенные в отверстиях корпуса, и мембранный клапан в крышке корпуса.

Изобретение относится к области светотехники и может быть использовано в производстве световых приборов с мощными и блочными светодиодными кристаллами. Светотехнический модуль состоит из светодиодного кристалла, электромонтажной платы, отражателя и радиатора, отличающийся тем, что плата, на которой смонтирован кристалл, отражатель и радиатор выполнены из единого куска металла с хорошей теплопроводностью и высоким коэффициентом отражения.

Изобретения относятся к химической промышленности и светотехнике и могут быть использованы в светодиодах для эмиссии окрашенного или белого света. Люминесцентное вещество с силикатными люминофорами, легированными Eu2+, содержит твердые растворы смешанных фаз оксиортосиликатов щелочноземельных и редкоземельных металлов, представленными, например, формулой (1-х)MII 3SiO5·x SE2SiO5:Eu, где 0<х≤0,2; МII представляет собой ионы двухвалентного металла, содержащие по меньшей мере один ион, выбранный из группы, состоящей из стронция и бария, и SE - редкоземельные металлы из группы, включающей Y, La, Gd.

Изобретение относится к области светотехники и может быть использовано для уличного, промышленного, бытового и архитектурно-дизайнерского освещения. Техническим результатом является повышение эффективности охлаждения за счет увеличения коэффициента теплопередачи охлаждающей среды и выравнивание параметров светового потока по всей площади формируемого светового пятна.

Изобретение относится к светотехнике, а именно к светодиодным оптическим блокам, используемым в качестве источника света в световых приборах прожекторного типа, применяемым, преимущественно, для освещения железнодорожных путей и междупутий.

Изобретение относится к источникам белого света на основе полупроводниковых светоизлучающих диодов (СИД) с удаленными фотолюминофорными конвертерами. Предложенный осветитель содержит теплоотводящее основание с отверстием для выхода излучения, закрепленные по периферии отверстия СИД, излучающие первичное излучение, на удалении от которых с одной стороны отверстия последовательно расположены конвертер первичного излучения, выполненный в виде вогнутого слоя фотолюминесцентного материала, и светоотражатель с вогнутой отражающей свет поверхностью, обращенные вогнутостями к СИД и выходному отверстию.

Изобретение относится к области светотехники. .

Изобретение относится к области электротехники. .

Изобретение относится к области светотехники и касается конструкции ламп светодиодных, предназначенных для применения, преимущественно, в помещениях общественного назначения (библиотеки, театры, офисы, кафе и др.).

Изобретение относится к светотехнике, предпочтительно к области горно-шахтного осветительного оборудования. .

Изобретение относится к полимер-неорганическим композиционным материалам на основе полиметилметакрилата и наночастиц твердых растворов ZrO2 с лантанидами, выбранными из Eu, Tb и Tm.
Наверх