Двухканальная система топливопитания и регулирования газотурбинного двигателя


 


Владельцы патента RU 2553915:

Открытое Акционерное Общество "Омское машиностроительное конструкторское бюро" (RU)

Двухканальная система предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система имеет основной и резервный каналы управления. Автоматический запуск на резервном канале управления обеспечивается установкой временного автомата параллельно дросселю междроссельной камеры. Автомат содержит дросселирующий элемент с сервомотором. В магистралях, соединяющих временный автомат с насосом, установлены клапан постоянного расхода и электромагнитный клапан. Технический результат - обеспечение автоматического запуска газотурбинного двигателя при работе резервного канала управления без усложнения конструкции. 1 ил.

 

Изобретение относится к области двигателестроения, в частности, к системам автоматического управления газотурбинными двигателями (ГТД).

Известна двухканальная система регулирования подачи топлива в газотурбинный двигатель (ГТД), содержащая насос, дозатор, выполненный в виде дозирующей иглы с сервопоршнем, клапан постоянного перепада давлений на дозаторе, основной и резервный каналы управления, золотник-селектор переключения каналов управления, электрогидропреобразователь и электрический датчик положения дозирующей иглы, связанные с электронным регулятором и дозатором, управляющий клапан сравнения, соединенный пружиной с иглой, выполняющий функцию клапана управления резервного канала, пневмогидропреобразователь, соединенный с каналом подвода воздуха от компрессора, гидравлическую проточную камеру с дросселями и междроссельной камерой, соединенной с клапаном сравнения. При этом первый дроссель непосредственно соединен с задатчиком режимов двигателя. Возможен вариант выполнения системы с релейным перемещением задатчика режимов двигателя или вариант системы с пропорциональным перемещением задатчика режимов (см. патент РФ №2230922, 7 F02C 9/26, 2002 г.).

Недостатком варианта системы с релейным перемещением задатчика режима является ограниченная функциональность резервного канала управления, снижающая надежность системы, так как запуск двигателя на резервном канале управления не предусмотрен.

В варианте системы с пропорциональным перемещением задатчика режима возможен ручной запуск двигателя, но для управления перемещением задатчика требуется механическая или электромеханическая связь задатчика с рычагом управления двигателем. Кроме того, для ручного управления запуском необходим квалифицированный оператор. Все это усложняет конструкцию и эксплуатацию двигателя.

Техническим результатом, на достижение которого направлено изобретение, является обеспечение автоматического запуска газотурбинного двигателя при работе резервного канала управления, без существенного усложнения конструкции.

Для достижения указанного технического результата в двухканальной системе топливопитания и регулирования подачи топлива в газотурбинный двигатель, содержащей насос, дозатор топлива, клапан постоянного перепада давлений на дозаторе, основной и резервный каналы управления, золотник-селектор переключения каналов управления с электромагнитным клапаном, электрогидропреобразователь основного канала управления, задатчик режимов резервного канала управления, гидравлически связанный с исполнительным электромеханизмом управления режимами работы двигателя, междроссельную камеру резервного канала управления, входной дроссель которой соединен с задатчиком режимов, клапан управления резервного канала, соединенный пружиной с дозатором и гидравлически - с междроссельной камерой, пневмогидропреобразователь, соединенный с каналом подвода командного давления воздуха, а гидравлической магистралью - с задатчиком режимов и с междроссельной камерой, в гидравлической магистрали, соединяющей пневмогидропреобразователь с задатчиком режимов и междроссельной камерой, параллельно дросселю междроссельной камеры установлен временной топливный автомат, состоящий из дросселирующего элемента с сервомотором, а в гидравлических магистралях, соединяющих управляемую полость сервомотора с насосом, установлены клапан постоянного расхода и электромагнитный клапан.

Отличительные признаки, а именно установка в гидравлической магистрали, соединяющей пневмогидропреобразователь с задатчиком режимов и междроссельной камерой, параллельно дросселю междроссельной камеры временного топливного автомата, состоящего из дросселирующего элемента с сервомотором, а в гидравлических магистралях, соединяющих управляемую полость сервомотора с насосом, - клапана постоянного расхода и электромагнитного клапана, обеспечивают возможность автоматического запуска газотурбинного двигателя. Автоматизация запуска газотурбинного двигателя при работе резервного канала управления гарантирует надежный выход двигателя на режим малого газа и исключает возможность неблагоприятных явлений, которые могут привести к необратимому снижению прочности деталей двигателя. Пример подобных явлений - заброс температуры газов перед турбиной.

Предложенная система представлена на чертеже и описана ниже.

Система содержит топливный насос 1, дозатор топлива, выполненный в виде дозирующей иглы 2 с сервопоршнем 3 и датчиком положения 4; механические упоры минимального расхода 5 и максимального расхода 6; клапан постоянного перепада давлений 7 на дозирующей игле 2, золотник-селектор 8 переключения с основного на резервный канал управления, управляемый электромагнитным клапаном 9.

Система также содержит магистраль 10 подвода управляющего давления к управляемой полости 11 сервопоршня 3, имеющую возможность соединения через золотник-селектор 8 либо с магистралью 12 основного канала управления, либо с магистралью 13 резервного канала управления.

Электрогидропреобразователь 14 основного канала управления соединен с электронным блоком управления газотурбинного двигателя (БУ ГТД) (на схеме не показан).

Канал резервного управления содержит: задатчик режимов 15 с пазом 16 и междроссельную камеру 17. Входной дроссель междроссельной камеры 17 образован проходным сечением паза 16. На выходе междроссельной камеры 17 резервного канала управления расположен дроссель 18.

Клапан 19 управления резервного канала соединен пружиной обратной связи 20 с дозирующей иглой 2 и гидравлически - с междроссельной камерой 17.

Канал 21 подвода командного давления воздуха соединен с пневмогидропреобразователем 22, который через паз 16 гидравлически связан с междроссельной камерой 17.

Пневмогидропреобразователь 22 состоит из вакуумированного сильфона 23, соединенного рычагом 24 с клапаном 25.

Исполнительный электромеханизм 26, управляющий режимами работы двигателя, гидравлически связан с задатчиком режимов 15. Электромеханизм 26 может быть выполнен как в виде работающего в релейном режиме электромагнитного клапана, так и в виде пропорционального электрогидропреобразователя.

В гидравлической магистрали, соединенной с пневмогидропреобразователем 22 и задатчиком режимов 15 параллельно дросселю 18 междроссельной камеры 17, расположен временной топливный автомат 27. Временной топливный автомат 27 состоит из дросселирующего элемента 28, сервомотора 29, пружины 30, упора 31 и регулировочного винта 32.

В гидравлических магистралях 33, 34, 35 и 36, соединяющих управляемую полость сервомотора 29 с насосом 1, установлены электромагнитный клапан 37 и клапан постоянного расхода 38, состоящий из регулируемого жиклера 39 и клапана 40.

Входная магистраль 41 насоса 1 соединена магистралью 36 с электромагнитным клапаном 37. Электромагнитный клапан 37 соединен магистралью 35 с управляемой полостью сервомотора 29.

Магистраль нагнетания 42 соединена магистралью 33 с клапаном постоянного расхода 38. Клапан 38 соединен магистралью 34 с управляемой полостью временного топливного автомата 27.

Система работает следующим образом.

Из входной магистрали 41 топливо поступает в топливный насос 1, там давление топлива повышается, и топливо из магистрали нагнетания 42 поступает к элементам регулирования и дозирования.

Расход топлива в двигатель определяется площадью открытого проходного сечения дозирующей иглы 2 и перепадом давлений топлива на нем. Проходное сечение определяется положением дозирующей иглы 2. Клапан постоянного перепада 7 поддерживает постоянный перепад давлений на дозирующей игле 2.

При уменьшении величины перепада на дозирующей игле 2 клапан 7, перемещаясь, уменьшает перепуск топлива из магистрали нагнетания 42 во входную магистраль 41.

При увеличении величины перепада на дозирующей игле 2 клапан 7, перемещаясь, увеличивает перепуск топлива из магистрали нагнетания 42 во входную магистраль 41.

При работе основного канала управления на электромагнитный клапан 9 подается команда, клапан 9 закрывается, увеличивая давление, подводимое к золотнику-селектору 8. Золотник-селектор 8 перемещается, при этом магистраль 10 подвода управляющего давления к управляемой полости 11 сервопоршня 3 переключается с магистрали 13 резервного канала управления на магистраль 12 основного канала управления.

Управление расходом топлива в двигатель на установившихся и переменных режимах при работе основного канала управления осуществляется по командам БУ ГТД. Электрические сигналы от БУ ГТД преобразуются в электрогидропреобразователе 14 в гидравлические команды, управляющие положением дозирующей иглы 2.

При поступлении на электрогидропреобразователь 14 от БУ ГТД команды на увеличение режима электрогидропреобразователь 14 увеличивает давление в управляемой полости 11 сервопоршня 3. Сервопоршень 3 с дозирующей иглой 2 перемещается в сторону увеличения проходного сечения дозирующей иглы 2. При этом клапан 7 поддерживает постоянный перепад на дозирующей игле 2. Расход топлива в двигатель увеличивается. Датчик положения 4 выдает в БУ ГТД электрический параметр, величина которого пропорциональна положению дозирующей иглы 2. БУ ГТД в зависимости от величины параметра, характеризующего положение дозирующей иглы 2, выполняет корректировку управляющей команды, в результате чего дозирование топлива выполняется по заданному закону приемистости.

При поступлении на электрогидропреобразователь 14 от БУ ГТД команды на уменьшение режима электрогидропреобразователь 14 уменьшает давление в управляемой полости 11 сервопоршня 3. Дозирующая игла 2 перемещается в сторону уменьшения проходного сечения дозирующей иглы 2. При этом клапан 7 поддерживает постоянный перепад на дозирующей игле 2. Расход топлива в двигатель уменьшается. Датчик положения 4 выдает в БУ ГТД электрический параметр, величина которого пропорциональна положению дозирующей иглы 2. БУ ГТД в зависимости от величины параметра, характеризующего положение дозирующей иглы 2, выполняет корректировку управляющей команды, в результате чего дозирование топлива выполняется по заданному закону сброса.

Перемещение дозатора при работе основного канала управления огранивают механические упоры минимального расхода 5 и максимального расхода 6.

На установившихся режимах при отклонении величины регулируемых параметров двигателя от заданных значений БУ ГТД производит корректировку управляющего тока на электрогидропреобразователе 14. Работа элементов системы при корректировке расхода топлива аналогична работе при приемистости и сбросе.

На неработающем двигателе пружина 30 перемещает сервомотор 29 временного топливного автомата 27 в положение, определяемое регулировочным винтом 32. Во время запуска двигателя закрытый электромагнитный клапан 37 разъединяет магистраль 35 и магистраль 36. Топливо из магистрали нагнетания 42 поступает по магистралям 33 и 34 через клапан постоянного расхода 38 в управляемую полость временного топливного автомата 27. Сервомотор 29 перемещается, преодолевая усилие пружины 30, в положение определяемое упором 31. При работе основного канала управления изменение величины проходного сечения дросселирующего элемента 28 не оказывает влияния на величину расхода топлива.

При работе на резервном канале управления снимается команда с электромагнитного клапана 9, он открывается, уменьшая давление, подводимое к золотнику-селектору 8. Золотник-селектор 8 перемещается, при этом магистраль 10 подвода управляющего давления к управляемой полости 11 сервопоршня 3 переключается с магистрали 12 основного канала управления на магистраль 13 резервного канала управления.

При работе на резервном канале управления система обеспечивает управление расходом топлива в зависимости от величины воздушной команды с коррекцией расхода топлива по положению задатчика режимов 15.

Расход топлива в двигатель определяется площадью открытого проходного сечения дозирующей иглы 2, зависящей от положения иглы 2 и перепада давлений топлива, поддерживаемого клапаном постоянного перепада 7.

Положение дозирующей иглы 2 определяется командным давлением в междроссельной камере 17, гидравлически связанной с клапаном 19 управления резервного канала, которое уравновешивается усилием от пружины обратной связи 20 на дозирующей игле 2. Усилие от пружины обратной связи 20 увеличивается пропорционально ходу дозирующий иглы 2 от упора минимального расхода 5.

При увеличении командного давления в междроссельной камере 17 равновесие нарушается, сила от командного давления в междроссельной камере 17 преодолевает силу пружины 20 и перемещает клапан 19. Клапан 19 уменьшает перепуск топлива, подводимого к нему по магистралям 10 и 13, из управляемой полости 11 сервопоршня 3 во входную магистраль 41. Давление в управляемой полости 11 сервопоршня 3 увеличивается. Дозирующая игла 2, сжимая пружину 20, перемещается в сторону упора максимального расхода 6 до тех пор, пока не займет новое равновесное положение, при котором возросшее усилие пружины 20, действующее на клапан 19, станет равным усилию от командного давления в междроссельной камере 17.

При уменьшении командного давления в междроссельной камере 17 равновесие нарушается, сила от пружины 20 преодолевает силу от командного давления в междроссельной камере 17 и перемещает клапан 19. Клапан 19 увеличивает перепуск топлива, подводимого к нему по магистралям 10 и 13, из управляемой полости 11 сервопоршня 3 во входную магистраль 41. Давление в управляемой полости 11 сервопоршня 3 уменьшается. Дозирующая игла 2 перемещается в сторону упора минимального расхода 5 до тех пор, пока не займет новое равновесное положение, при котором снизившееся усилие пружины 20, действующее на клапан 19, станет равным усилию от командного давления в междроссельной камере 17.

Командное давление в междроссельной камере 17 вырабатывается, в зависимости от величины воздушной команды, подводимой по магистрали 21 к пневмогидропреобразователю 22, и корректируется задатчиком режимов 15.

Пневмогидропреобразователь 20 вырабатывает гидравлическую команду РГ, пропорциональную величине воздушной команды, уравновешивая на рычаге 24 момент силы от давления воздуха, сжимающего вакуумированный сильфон 23, и момент силы от давления топлива, действующего на клапан 25.

При увеличении величины воздушной команды пропорционально увеличивается величина гидравлической команды.

В качестве воздушной команды может использоваться:

- полное давление на входе в двигатель;

- давление на выходе из какой-либо ступени компрессора;

- отношение давлений и др.

Гидравлическая команда РГ корректируется (редуцируется) в междроссельной камере 17, а проходное сечение паза 16 изменяется в зависимости от положения задатчика режимов 15, которым управляет исполнительный электромеханизм 26.

При поступлении электрической команды на уменьшение режима исполнительный электромеханизм 26 соединяет управляемую полость задатчика режимов 15 и входную магистраль 41. Задатчик режимов 15 перемещается, уменьшая проходное сечение паза 16. Командное давление в междроссельной камере 17 уменьшается, клапан 19, воздействуя на давление в управляемой полости 11 сервопоршня 3, перемещает дозирующую иглу 2 в новое равновесное положение, уменьшая проходное сечение дозирующей иглы 2. Расход топлива в двигатель уменьшается.

При поступлении электрической команды на увеличение режима исполнительный электромеханизм 26 разъединяет задатчик режимов 15 и входную магистраль 41. Задатчик режимов 15 перемещается, увеличивая проходное сечение паза 16. Давление в междроссельной камере 17 увеличивается, клапан 19, воздействуя на давление в управляемой полости 11 сервопоршня 3, перемещает дозирующую иглу 2 в новое равновесное положение, увеличивая проходное сечение дозирующей иглы 2. Расход топлива в двигатель увеличивается.

На неработающем двигателе пружина 30 перемещает сервомотор 29 временного топливного автомата 27 в положение, определяемое регулировочным винтом 32. До начала запуска двигателя исполнительный электромеханизм 26 соединяет управляемую полость задатчика режимов 15 и входную магистраль 41.

В начале запуска двигателя электромагнитный клапан 37 открыт. Управляемая полость временного топливного автомата 27 соединена магистралями 36 и 35 с входной магистралью 41. При этом расход топлива, поступающий в управляемую полость временного топливного автомата 27 по магистралям 33 и 34, равен расходу топлива, сливаемому через электромагнитный клапан 37 по магистралям 35 и 36 во входную магистраль 41. Пружина 30 прижимает сервомотор 29 к регулировочному винту 32. При этом суммарная величина проходного сечения дросселирующего элемента 28 и дросселя 18 обеспечивает в междроссельной камере 17 давление, соответствующее величине начального расхода топлива на запуске. Регулировочный винт 32 предназначен для установки величины начального расхода на запуске изменением величины проходного сечения дросселирующего элемента 28.

После поступления электрической команды электромагнитный клапан 37 закрывается, разъединяя магистрали 35 и 36. Топливо из управляемой полости временного топливного автомата 27 перестает сливаться во входную магистраль 41.

Из магистрали нагнетания 42 топливо поступает через клапан постоянного расхода 38 в управляемую полость временного топливного автомата 27. Сервомотор 29 перемещается, преодолевая усилие пружины 30. При этом величина суммарного проходного сечения дросселирующего элемента 28 и дросселя 18 изменяется в зависимости от хода сервомотора 29, изменяя давление в междроссельной камере 17, тем самым управляя расходом топлива. Проходное сечение дросселирующего элемента 28 сервомотора 29 определяет величину расхода топлива.

Скорость перемещения сервомотора 29 определяется величиной расхода топлива, поступающего в управляемую полость временного топливного автомата 27, которая устанавливается регулируемым жиклером 39 клапана постоянного расхода 38. Постоянный расход поддерживается клапаном 40, который изменяет свое проходное сечение, поддерживая постоянную величину перепада давлений на регулируемом жиклере 39. Скорость перемещения сервомотора 29 постоянная, следовательно, ход сервомотора 29 пропорционален времени, прошедшему с момента поступления электрической команды на электромагнитный клапан 37. Зависимость изменения проходного сечения дросселирующего элемента 28 от хода сервомотора 29 определяет изменение расхода топлива по времени.

Таким образом, реализуется автоматическое дозирование топлива по времени на режиме запуска при работе резервного канала управления.

После перемещения сервомотора 29 в положение, определяемое упором 31, величина суммарного проходного сечения дросселирующего элемента 28 и дросселя 18 соответствует расходу топлива на установившемся режиме.

Двухканальная система топливопитания и регулирования газотурбинного двигателя, содержащая насос, дозатор топлива, клапан постоянного перепада давлений на дозаторе, основной и резервный каналы управления, золотник-селектор переключения каналов управления с электромагнитным клапаном, электрогидропреобразователь основного канала управления, задатчик режимов резервного канала управления, гидравлически связанный с исполнительным электромеханизмом управления режимами работы двигателя, междроссельную камеру резервного канала управления, входной дроссель которой соединен с задатчиком режимов, клапан управления резервного канала, соединенный пружиной с дозатором и гидравлически - с междроссельной камерой, пневмогидропреобразователь, соединенный с каналом подвода командного давления воздуха, а гидравлической магистралью - с задатчиком режимов и с междроссельной камерой, отличающаяся тем, что в гидравлической магистрали, соединяющей пневмогидропреобразователь с задатчиком режима и междроссельной камерой, параллельно дросселю междроссельной камеры установлен временной топливный автомат, состоящий из дросселирующего элемента с сервомотором, а в гидравлической магистрали, соединяющей управляемую полость сервомотора с насосом, установлены клапан постоянного расхода и электромагнитный клапан.



 

Похожие патенты:

Изобретение относится к энергетике. Парогазовая установка с пароприводным дозатором-компрессором газового топлива содержит газотурбинный двигатель с камерой сгорания и регулирующим клапаном по топливу, турбогенератор, энергетическую паровую турбину, установленную на валу турбогенератора, котел-утилизатор с паровыми контурами одного или более давлений, систему трубопроводов газа, пара и воды с регулирующей и запорной арматурой, причём установка также содержит компенсационную турбину, установленную на одном валу с приводной паровой турбиной и дозатором-компрессором в общем герметичном корпусе со стороны дозатора-компрессора.

Изобретение относится к области управления работой газотурбинных авиационных двигателей. Согласно способу измеряют температуру воздуха на входе в двигатель, по значению сигнала температуры воздуха на входе в двигатель и первому заданному программному значению регулируемого параметра вырабатывают первый программный управляющий сигнал, который сравнивают с фактическим значением сигнала регулируемого параметра и по сигналу разности их значений осуществляют регулирование подачи топлива в двигатель.

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня.

Изобретение используется в системах автоматического регулирования дозирования топлива в камеру сгорания газотурбинного двигателя. Технический результат: экономия топлива за счет повышения стабильности статических и динамических характеристик устройства дозирования топлива, повышения точности дозирования топлива в газотурбинный двигатель с одновременным повышением точности всей системы управления газотурбинным двигателем.

Устройство для предварительного смешивания топлива и воздуха, предназначенное для использования перед впускным отверстием основного канала потока текучей среды системы выделения/преобразования энергии и отделенное от зоны тепловыделения в системе выделения/преобразования энергии, содержит множество концентрических, копланарных, некруглых, кольцевых элементов с аэродинамической формой, множество расположенных в радиальном направлении спицеобразных элементов.

Изобретение относится к топливному расходомеру, в который подают топливо с помощью насоса, имеющего входное отверстие и выходное отверстие. Регулирующее устройство содержит поршень, отделяющий вдоль оси вторую камеру от третьей камеры, соединенный с выходным отверстием измерительного клапана, включает в себя соединительный элемент, выполненный с возможностью взаимодействия с элементом клапана, вторую пружину, размещенную в третьей камере, которая прикладывает осевое усилие к поршню, в результате чего проявляется тенденция удержания поршня отсоединенным от элемента клапана, регулирующее устройство также включает в себя канал для соединения второй камеры с третьей камерой.

Способ поэтапного изменения подачи топлива при эксплуатации реактора с камерой сгорания с захваченным вихрем, имеющего, по меньшей мере, одну полость с захваченным вихрем, при этом реактор с камерой сгорания с захваченным вихрем дополнительно имеет как входное устройство для предварительного смешивания, которое обеспечивает смешивание топлива и воздуха и ввод воздушно-топливной смеси в основное впускное отверстие реактора с камерой сгорания с захваченным вихрем, так и, по меньшей мере, одно вихревое устройство для предварительного смешивания, которое обеспечивает смешивание топлива и воздуха и ввод воздушно-топливной смеси непосредственно в, по меньшей мере, одну подобную полость с захваченным вихрем в реакторе с камерой сгорания с захваченным вихрем.

Изобретение относится к трубопроводной арматуре и предназначено для управления потоками рабочих сред путем изменения площади проходного сечения и может быть использовано для транспортировки газа в системах газораспределительных станций.

Система предназначена для регулирования подачи топлива в ГТД со свободной турбиной. Система имеет основной и резервный каналы управления.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в локальных системах управления (ЛСУ) газотурбинными силовыми установками (ГТУ) судов различного назначения.

Изобретение относится к области эксплуатации авиационных газотурбинных двигателей (ГТД) и может быть использовано для управления подачей топлива в коллекторы основной и/или форсажной камер сгорания ГТД. Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя включает подачу дозированного топлива в как минимум один топливный коллектор камеры сгорания с последующим его впрыском через форсунки в камеру сгорания двигателя. Дополнительно через как минимум один другой коллектор перепускают недозированное топливо, причем циркуляцию недозированного топлива через данный коллектор отключают при подаче в него дозированного топлива. Техническим результатом настоящего изобретения является повышение эффективности работы ГТД за счет сокращения времени приемистости при переходе с режима на режим, которое обеспечивается за счет сокращения времени на заполнение топливом включаемого в работу топливного коллектора, а также обеспечение плавного изменения тяги двигателя. 1 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Способ формирования сигнала установочной точки подачи топлива, подаваемого клапаном золотникового типа измерительного устройства в систему впрыска топлива для впрыска топлива в камеру сгорания турбодвигателя, причем положение золотникового клапана зависит от сигнала установочной точки. Способ включает в себя этапы, на которых получают первый сигнал, представляющий результат измерения расходомером расхода топлива, впрыскиваемого в камеру сгорания; выполняют оценку второго сигнала на основе результатов измерения положения золотникового клапана; выполняют оценку третьего сигнала путем применения цифровой модели расходомера ко второму сигналу и формируют сигнал установочной точки путем суммирования сигнала компенсации с первым сигналом, причем сигнал компенсации получают путем вычитания третьего сигнала из второго сигнала. Также представлены способ подачи сигнала, устройство формирования сигнала, система подачи сигнала, а также газовая турбина. Изобретение позволяет улучшить точность измерения расхода топлива. 5 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Способ работы газотурбинной установки, содержащей компрессор, турбину и камеру сгорания с группой пусковых горелок, группой горелок с предварительным смешением, работающих на обогащенной топливовоздушной смеси, и группой горелок с предварительным смешением, работающих на обедненной топливовоздушной смеси, в условиях изменения состава поступающего газового топлива, при этом указанный способ включает стадии: непрерывного измерения в реальном времени состава газового топлива, регулирования работы указанного газотурбинного двигателя и сжигание топлива в указанных горелках с использованием указанных измерений состава газового топлива в реальном времени. Также представлена газотурбинная установка для осуществления способа согласно изобретению. Изобретение позволяет обеспечить работу установки в оптимальном диапазоне, а также обеспечить оптимальный эффект сокращения вредных выбросов, оптимальные пульсационные характеристики и надежность работы газотурбинного двигателя. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя, включающий заполнение дозированным топливом как минимум одного топливного коллектора камеры сгорания и подачу через его форсунки топлива в камеру сгорания двигателя. В процессе работы двигателя в емкости подготавливают порцию топлива, достаточную для заполнения вводимого в работу как минимум одного коллектора, перед введением в работу которого заполняют данный коллектор подготовленной порцией топлива, после чего подают в него дозированное топливо. Изобретение позволяет повысить эффективность работы газотурбинного двигателя за счет сокращения времени приемистости при переходе с режима на режим. 1 ил.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы камеры сгорания изменяемой геометрии, т.е. изменяемого объема и изменяемого проходного сечения отверстий жаровой трубы. Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания за счет корректировки заданного значения коэффициента избытка воздуха в первичной зоне горения, в зависимости от значения коэффициента полноты сгорания топлива. Дополнительно введены последовательно соединенные вычислитель коэффициента полноты сгорания топлива и схема сравнения, выход которой соединен с входом программного блока, а также датчик индексов эмиссии монооксидов углерода (CO) и углеводородов (HC), установленный на выходе основной камеры сгорания, выход которого соединен с входом вычислителя коэффициента полноты сгорания топлива, при этом на второй вход схемы сравнения подается заданное значение коэффициента полноты сгорания топлива. 1 ил.

Камера сгорания предназначена для использования в способе поэтапного изменения подачи топлива, при котором части топлива, подаваемые во множестве мест ввода топлива в камеру сгорания, варьируются в соответствии с требуемой мощностью. Камера сгорания содержит множество полостей сжигания в захваченном вихре, устройство предварительного смешивания в комбинации с множеством полостей сжигания в захваченном вихре. Устройство предварительного смешивания содержит входное устройство предварительного смешивания и множество вихревых устройств предварительного смешивания. Входное устройство предварительного смешивания имеет основное впускное отверстие, в котором начинается основной поток, проходящий через камеру сгорания, и множество концентричных, имеющих аэродинамическую форму колец, расположенных перед указанным множеством полостей сжигания в захваченном вихре. Каждое из колец имеет внутренний канал и дополнительно содержит множество отверстий для впрыска топлива, так что топливо протекает из внутреннего канала во входной поток текучей среды вблизи указанного кольца. Каждая пара колец образует между собой кольцевой канал. Вихревое устройство предварительного смешивания соединено с полостью сжигания в захваченном вихре и содержит впускное отверстие для топлива, впускное отверстие для воздуха, камеру, в которой смешиваются топливо и воздух, и выпускное отверстие для воздушно-топливной смеси. Впускное отверстие для топлива включает в себя топливный коллектор с диффузионной пластиной, расположенной в нем. Воздушно-топливная смесь вводится непосредственно в полость сжигания в захваченном вихре в направлении, тангенциальном относительно рециркулирующего потока внутри полости сжигания в захваченном вихре. Поток топлива, проходящий через каждое из множества вихревых устройств предварительного смешивания, является независимо изменяемым. Непосредственно за входным устройством предварительного смешивания и перед указанным множеством полостей сжигания в захваченном вихре расположен конический обтекатель, выполненный с возможностью образования сопла и ускорения предварительно смешанной смеси, выходящей из входного устройства предварительного смешивания. Изобретение направлено на улучшение эксплуатационных характеристик. 6 н. и 13 з.п. ф-лы, 15 ил.

Изобретение может быть использовано в системах управления топливоподачей в форсажную камеру сгорания турбореактивным двухконтурным двигателем с форсажной камерой (ТРДДФ) на форсированных режимах. Способ управления ТРДДФ заключается в том, что измеряют давление за компрессором ( p к * ) и давление за турбиной ( p т * ) , вычисляют перепад давления на турбине ( π T ∑ * = p к * / р т * ) . Далее определяют скорость изменения указанного перепада ( δ π T ∑ * ) и определяют скорость изменения расхода топлива (δGТФ), подаваемого в форсажную камеру сгорания. На максимальных форсированных режимах регулируют подачу топлива в форсажную камеру сгорания в зависимости от величины отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива ( δ π T ∑ * / δ G T Ф ) , обеспечивая его значение близким к нулю. Технический результат - повышение точности регулирования расхода топлива. 1 з.п. ф-лы, 4 ил..

Изобретение относится к способам регулирования авиационных турбореактивных двигателей (ТРД) с изменяемой геометрией выходного устройства. Способ регулирования авиационного ТРД с изменяемой геометрией выходного устройства включает поддержание заданного перепада давления на турбинах в зависимости от температуры воздуха на входе в двигатель и от режима работы двигателя. При осуществлении способа предварительно для данного типа двигателя дополнительно формируют по меньшей мере две программы регулирования перепада давлений на турбинах, при каждой программе регулирования создают на входе в двигатель и на выходе из двигателя условия, соответствующие различным условиям полета по высоте и скорости, измеряют значения тяги и расхода топлива, затем строят зависимости расхода топлива от тяги, по ним определяют программу регулирования, обеспечивающую минимальный расход топлива в заданном диапазоне тяги и вводят ее дополнительно в регулятор двигателя, а по сигналу с борта самолета при полете на максимальную продолжительность и дальность полета в регуляторе двигателя производят переключение программы управления перепада давления на турбинах на программу, обеспечивающую минимальный расход топлива. Осуществление способа позволяет существенно увеличить дальность и продолжительность полета самолета. 2 ил., 1 табл.

Изобретение относится к энергетике. Способ управления положением золотника топливодозирующего устройства для турбинного двигателя как функция заданного значения весового расхода содержит ответ на критерий действительности для выбора весового расхода. Также представлены носитель информации, содержащий исполняемые компьютером инструкции, которые при выполнении предписывают компьютеру осуществлять способ согласно настоящему изобретению, электронный блок и авиадвигатель. Изобретение позволяет улучшить точность управления расходом топлива турбинного двигателя. 4 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Передатчик хода включает канал для обеспечения прохода текучей среды, исполнительный модуль для увеличения давления в гидравлической жидкости, клапанный модуль, функционирующий в зависимости от давления гидравлической жидкости, при этом клапанный модуль расположен внутри канала для регулирования потока текучей среды, и трубку, соединяющую исполнительный модуль и клапанный модуль для передачи давления гидравлической жидкости между исполнительным модулем и клапанным модулем, при этом исполнительный модуль расположен снаружи канала, а клапанный модуль расположен внутри канала. Также представлена газовая турбина, содержащая передатчик хода. Изобретение позволяет предотвратить повреждение исполнительного модуля, а также позволяет повысить гибкость конструкции исполнительного модуля. 2 н. и 12 з.п. ф-лы, 3 ил.
Наверх