Способ оптической локации и устройство для его реализации



Способ оптической локации и устройство для его реализации
Способ оптической локации и устройство для его реализации
Способ оптической локации и устройство для его реализации
Способ оптической локации и устройство для его реализации
Способ оптической локации и устройство для его реализации
Способ оптической локации и устройство для его реализации

 


Владельцы патента RU 2554108:

Акционерное общество "Швабе-Технологическая лаборатория" (RU)

Предлагаемое изобретение относится к оптико-электронному приборостроению, в частности к способам формирования электронного изображения окружающего пространства при его непрерывном сканировании. Достигаемый технический результат изобретения - возможность измерения дальности до объекта лазерным дальномером при непрерывном сканировании с большими скоростями окружающего пространства, в том числе и кругового. Указанный результат достигается тем, что окружающее пространство сканируют в азимутальной плоскости, выбирают видеокадр с объектом, до которого требуется измерить расстояние, измеряют вертикальную и горизонтальную координаты изображения объекта относительно координат начала видеокадра, устанавливают визирную ось лазерного дальномера по вычисленным координатам объекта, а замер дальности до объекта проводят при следующем цикле сканирования в момент начала формирования видеокадра с выбранным объектом. Реализация способа обеспечивается установкой на сканирующую платформу, снабженную приводом и датчиком углового положения, оптико-электронного модуля и лазерного дальномера, а перед лазерным дальномером размещают два оптических клина, каждый из которых снабжен приводом и датчиком углового положения. 2 н.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к оптико-электронному приборостроению, в частности к устройствам измерения угловых координат и дальности до объектов при непрерывном сканировании окружающего пространства с возможностью измерения дальности до выбранных объектов лазерным дальномером, и может быть использовано при создании сканирующих устройств непрерывного обзора как стационарных, например, для обзора акватории морского порта, так и передвижных - для охраны границ. Возможная реализация предлагаемого способа представлена в устройстве оптической локации, приведенном в настоящем изобретении.

При круговом или секторном сканировании окружающего пространства проблемным является измерение дальности до объектов лазерными дальномерами, имеющими очень малое поле зрения - единицы угловых минут, в то время как поле зрения устройств технического зрения, например, теле- или тепловизионных камер, составляет единицы или даже десятки градусов. Эта проблема усугубляется при непрерывном сканировании окружающего пространства с угловой скоростью в сотни градусов в секунду и более. При этом объект, имеющий малые угловые размеры, пролетает поле зрения лазерного дальномера за десятые доли миллисекунды.

Известны оптико-локационные системы и системы кругового обзора [В.Я. Ширнин и др., Широкопольная инфракрасная система кругового обзора, патент РФ №2189049 от 03.10.2001 г.; А.Я. Прилипко, Н.И. Павлов, Теплопеленгатор, патент РФ №2458356 от 15.04.2011 г.; А.Я. Прилипко и др., Многофункциональная оптико-локационная система, патент РФ №2292566 от 15.09.2005 г.; В.Г. Архипов, Ю.В. Чжан, Оптический локатор кругового обзора, патент РФ №2352957 от 22.01.2007 г.], в которых применены оптико-электронные модули технического зрения. Основным недостатком этих систем является невозможность получения панорамной картины окружающего пространства и измерения дальности лазерным дальномером в процессе непрерывного сканирования окружающего пространства.

В известном способе и устройстве кругового обзора [Ф.М. Броун и др., Способ кругового обзора матричным фотоприемным устройством и устройство для его осуществления, патент РФ №2445644 от 19.04.2010 г] формирование массива видеокадров осуществляют при непрерывном горизонтальном сканировании окружающего пространства оптико-электронным модулем с матричным фотоприемным устройством (МФПУ), а фиксацию оптического изображения на МФПУ обеспечивают вращающимся оптическим компенсатором.

В известном теплопеленгаторе [А.Я. Прилипко, Н.И. Павлов, Теплопеленгатор, патент РФ №2458356 от 15.04.2011 г.] смещение оптического изображения на МФПУ при сканировании компенсируют вращающимися оптическими клиньями.

Недостаток указанных устройств состоит в невозможности измерения лазерным дальномером расстояния до объектов, попадающих в процессе сканирования в поле зрения оптической системы, из-за его малого поля зрения, составляющего единицы угловых минут, и большой скорости сканирования.

Частично этот недостаток преодолен в оптико-пеленгационной системе кругового обзора [В.В. Тарасов и др., Оптико-пеленгационная система кругового обзора, патент РФ №2356063 от 27.11.2007 г.]. Указанная система содержит оптико-электронный блок электронного сканирования пространства, имеющий несколько оптико-электронных каналов электронного сканирования (ОЭКЭС), объективы которых равномерно расположены в азимутальной плоскости на окружности с радиальным расположением их оптических осей, в фокальной плоскости каждого объектива расположена фоточувствительная поверхность МФПУ. Поля обзора этих объективов перекрывают сканируемое пространство в азимутальной плоскости без пропусков, что позволяет получить соответствующий массив видеокадров.

Система дополнительно включает оптико-электронный канал механического сканирования пространства, оптическая ось объектива которого проходит перпендикулярно азимутальной плоскости через центр окружности, на которой расположены объективы оптико-электронных каналов электронного сканирования. Оптико-электронный канал механического сканирования включает поворотное зеркало, расположенное на оптической оси его объектива под углом к ней и выполненное с возможностью поворота как по азимуту, так и по углу места.

Система также содержит светодальномерный канал, управляемый в соответствии с наблюдением за объектом в поле обзора оптико-электронного канала механического сканирования.

Недостатки указанной системы состоят: во-первых, в большом количестве ОЭКЭС, необходимых для обзора, уменьшение числа которых автоматически ведет к увеличению их полей зрения, а следовательно, к уменьшению масштаба видеоизображений, и, как результат, к уменьшению дальности обнаружения и распознавания объектов, вплоть до их пропуска; во-вторых, в потере времени, необходимого для наведения на объект по двум осям светодальномерного канала, в-третьих, в наличии двухосного карданного подвеса, на котором установлены оптико-электронный канал и лазерный дальномер, что вносит свои погрешности в измерения.

Техническим результатом предлагаемого изобретения является возможность измерения трех координат объекта: горизонтального и вертикального углов и дальности до объекта при непрерывном сканировании с большими угловыми скоростями окружающего пространства, в том числе и кругового, при этом дальность измеряется лазерным дальномером, а также повышение точности измерений координат.

Этот результат достигается тем, что, во-первых, окружающее пространство сканируют оптико-электронным модулем вокруг одной вертикальной оси, известными средствами непрерывно получают массив видеокадров сканируемого пространства, который запоминают в видеопамяти, выбирают видеокадр и объект в нем, измеряют горизонтальную и вертикальную координаты объекта в координатной системе выбранного видеокадра, устанавливают визирную ось лазерного дальномера по измеренным горизонтальной и вертикальной координатам объекта, и при следующем цикле сканирования проводят замер дальности до объекта в момент начала формирования кадра с выбранным объектом, который совпадает с моментом прохождения визирной оси лазерного дальномера через объект; во-вторых, оптико-электронный модуль и лазерный дальномер жестко закреплены на одной платформе, что существенно снижает вероятность разъюстировки их визирных осей; в-третьих, существенным преимуществом оптических клиньев является наличие «оптической редукции» между углом поворота клина и углом отклонения визирной оси лазерного дальномера [М.М. Мирошников, Теоретические основы оптико-электронных приборов, Ленинград, Машиностроение, Ленинградское отделение, 1983, §6.2, стр.106], что повышает точность выставки визирной оси лазерного дальномера по измеренным координатам объекта.

Аппаратно указанная последовательность операций обеспечивается жесткой установкой оптико-электронного модуля и модуля лазерного дальномера на сканирующую платформу, вращающуюся вокруг вертикальной оси. Сканирующая платформа снабжена приводом и датчиком углового положения. Перед лазерным дальномером размещен блок с оптическими клиньями, каждый из которых снабжен приводом и датчиком угла. Управление всем устройством осуществляет вычислительный блок, к видеовыходу которого подключен монитор, а к информационному входу/выходу через шину последовательного обмена подключены входы/выходы всех приводов, датчиков углов, блока видеопамяти и устройства выбора объекта.

Видеокадры окружающего пространства отображаются на экране монитора вычислительного блока. Выбор объекта осуществляет оператор с помощью устройства выбора объекта, например, компьютерной «мыши», наведением на него курсора, при этом вычислительный блок определяет вертикальные и горизонтальные координаты выбранного объекта относительно центра видеокадра.

На фиг.1 показана структурная схема устройства. На фиг.2 приведен пример положения объекта на экране монитора и соответствующие этому положению его координаты.

Устройство непрерывного обзора с измерением дальности до объектов содержит сканирующую платформу 1 (фиг.1), на которой размещены оптико-электронный модуль 2 и модуль лазерного дальномера 3 с лазерным дальномером 4. Привод сканирования 5 и датчик угла сканирования 6 соединены с осью вращения сканирующей платформы 1. Вход привода сканирования 5 и выход датчика угла сканирования 6 через шину последовательного обмена 7 соединены с информационным входом/выходом вычислительного блока 8.

Оптико-электронный модуль 2 содержит оптическую систему 9, блок оптического компенсатора 10, телекамеру 11 и блок видеопамяти 12. В фокальной плоскости оптической системы 9 расположено МФПУ телекамеры 11. Телекамера 11 соединена своим выходом с входом блока видеопамяти 12, вход/выход которого через шину последовательного обмена 7 соединен с вычислительным блоком 8. Блок оптического компенсатора 10 установлен между оптической системой 9 и телекамерой 11 и через шину последовательного обмена 7 соединен своим входом с информационным входом/выходом вычислительного блока 8.

Модуль лазерного дальномера 3 содержит лазерный дальномер 4, узел оптических клиньев 13, выполненный в виде двух оптических клиньев 14 и 15, каждый их которых установлен в свою вращающуюся обойму 16 и 17 соответственно. Каждая обойма с клипом снабжена приводом 21, 22 и датчиком угла 23, 24 соответственно.

Информационные входы/выходы лазерного дальномера 4, привода сканирования 5, датчика угла сканирования 6, приводов клиньев 21 и 22, датчиков угла 23 и 24, блока видеопамяти 12, монитора 25 и устройства выбора объекта 26 через шину последовательного обмена 7 подключены к вычислительному блоку 8.

Устройство работает следующим образом.

Вычислительный блок 8 задает скорость и углы сканирования приводу сканирования 5, который вращает сканирующую платформу 1 с установленными на ней оптико-электронным модулем 2 и модулем лазерного дальномера 3. Оптическая система 9 с блоком оптического компенсатора 10 формируют последовательность оптических изображений, которую телекамера 11 преобразует в массив видеокадров. Эти видеокадры запоминают в блоке видеопамяти 12.

Оператор просматривает видеокадры на мониторе 25 (фиг.2) и с помощью устройства выбора объекта 26 (например, компьютерной «мыши») выбирает видеокадр (на фиг.2 это видеокадр N) и объект в нем, координаты которого требуется измерить. Оператор с помощью устройства выбора объекта 26 наводит курсор вычислительного блока 8 на изображение объекта на мониторе и дает команду на определение угловых координат объекта и дальности до него. По этой команде вычислительный блок 8 вычисляет горизонтальную x и вертикальную y координаты объекта в выбранном кадре относительно координатной системы фотоприемной матрицы с началом координат в ее центре x0 и y0.

На основании [М.М. Мирошников, Теоретические основы оптико-электронных приборов, Ленинград, Машиностроение, Ленинградское отделение, 1983, §6.2, стр.104-105] можно показать, что углы поворота клиньев, необходимые для вывода визирной оси лазерного дальномера на координаты X и Y, для положительных значений X равны

,

,

а для отрицательных значений X

,

,

при этом

где β1 и β2 - углы поворота клиньев,

X и Y - угловые координаты объекта в поле зрения оптико-электронного модуля,

x и y - линейные координаты изображения объекта в координатной системе фотоприемной матрицы с началом координат в центре матрицы,

f - фокусное расстояние оптической системы оптико-электронного модуля,

σ - угол при вершине клиньев,

n - показатель преломления материала клиньев. С учетом представленных выше формул вычислительный блок 8 анализирует знак координаты объекта по оси ординат, определяет углы β1 и β2 и выдает на приводы 21 и 22 сигналы, пропорциональные этим вычисленным углам. Приводы 21 и 22 поворачивают клинья 14 и 15 и выводят визирную ось лазерного дальномера 4 на вычисленные углы.

Контроль поворота осуществляет вычислительный блок 8 по информации с датчиков угла 23 и 24.

После выполнения операции поворота визирной оси лазерного дальномера на заданные углы, вычислительный блок 8 выдает лазерному дальномеру 4 команду на подготовку замера дальности.

Получив сигнал готовности лазерного дальномера к замеру дальности, вычислительный блок 8 в следующем цикле сканирования выдает команду лазерному дальномеру 4 на измерение дальности в момент tn (фиг.2) начала формирования видеокадра с выбранным объектом, который совпадает с моментом прохождения визирной оси лазерного дальномера 4 через выбранный объект.

1. Способ оптической локации, включающий сканирование окружающего пространства, формирование его оптического изображения на фоточувствительной поверхности матричного фотоприемного устройства и запись многокадрового панорамного видеоизображения в электронную память, отличающийся тем, что окружающее пространство сканируют в азимутальной плоскости, выбирают видеокадр и объект в видеокадре, до которого требуется измерить расстояние, измеряют вертикальную и горизонтальную координаты изображения выбранного объекта в координатной системе, связанной с матричным фотоприемным устройством, устанавливают визирную ось лазерного дальномера по измеренным координатам объекта, а замер дальности до объекта проводят в следующем цикле сканирования в момент начала формирования видеокадра с выбранным объектом.

2. Устройство оптической локации, содержащее сканирующую в азимутальной плоскости платформу, снабженную электроприводом и датчиком углового положения, оптико-электронный модуль, установленный на этой платформе и формирующий последовательность оптических изображений окружающего пространства на фоточувствительной поверхности матричного фотоприемного устройства телекамеры, подключенной к входу блока видеопамяти, который подключен к вычислительному устройству с монитором и устройством выбора объекта на мониторе, и лазерный дальномер, жестко закрепленный на сканирующей платформе, отличающееся тем, что перед лазерным дальномером установлен узел с двумя оптическими клиньями, каждый из которых снабжен приводом и датчиком углового положения клина, подключенными к вычислительному устройству.



 

Похожие патенты:

Изобретение относится к оптико-электронным приборам для поиска теплоизлучающих объектов. Система содержит обтекатель, сканирующее зеркало, теплопеленгационный (ТП) канал с оптической системой и фотоприемным устройством, лазерный канал дальнометрирования с излучателем, приемной оптической системой и фотоприемным устройством, лазерный канал помехового излучения и телевизионный канал для получения изображения пространства объектов.

Изобретение относится к области оптического приборостроения и касается датчика направленности света. Датчик направленности света содержит фотоприемное устройство, состоящее из множества фоточувствительных элементов.

Изобретение относится к навигационной технике, а именно к пеленгаторам, определяющим угловое положение источника света. Устройство определения углового положения источника света содержит четыре одинаковых фотодетектора и электрическую схему.

Изобретение относится к методам обработки сигналов, позволяющих обнаруживать и измерять импульсы от точечных объектов со сканирующих оптико-электронных устройств.

Изобретение может быть использовано для определения координат беспилотных летательных аппаратов (БЛА) в автоматическом режиме. Способ автоматизированного определения координат беспилотных летательных аппаратов заключается в том, что по отраженному лазерному излучению от беспилотного летательного аппарата определяются дальность, вертикальные и горизонтальные углы, с помощью которых затем определяется точное местоположение в пространстве БЛА, при этом автоматизированная система обработки информации позволяет определять направление движения БЛА.

Изобретение относится к методам обнаружения тепловых объектов на маскирующем атмосферном фоне в условиях ночного неба с использованием оптико-электронных средств.

Изобретение относится к методам обнаружения тепловых объектов на сложном атмосферном фоне в условиях ночного неба с использованием оптико-электронной системы (ОЭС), работающей в инфракрасном диапазоне волн.

Изобретение относится к технике инфракрасных (ИК) систем оптического приборостроения для использования в наблюдательных и прицельных системах кругового обзора. .

Устройство пеленгации источников лазерного излучения относится к области оптико-электронного приборостроения, а более конкретно к устройствам обнаружения и пеленгации источников лазерного излучения для систем защиты подвижных объектов военной техники. Устройство содержит приемную оптическую систему, оптически связанный с ней многоэлементный фотоприемник, n каналов обработки сигналов, каждый из которых состоит из предусилителя, порогового устройства и двухвходовой схемы «ИЛИ», ждущий мультивибратор, n формирователей сигналов контроля, каждый из которых содержит двухвходовую схему «И», аналоговый ключ, схему нормирования длительности импульса и стабилизированный источник напряжения. Достигаемый технический результат - обеспечение проверки правильности обработки выходных сигналов фотоприемника в эксплуатации без использования источника излучения, находящегося в поле зрения устройства. 1 ил.

Изобретение относится к оптико-электронному приборостроению и, в частности, к локационным устройствам. Оптико-электронный модуль и лазерный дальномер жестко связаны между собой. Наведение визирной оси лазерного дальномера на выбранный объект в поле зрения оптико-электронного модуля осуществляют поворотами оптических клиньев, которые установлены перед лазерным дальномером. Угловые координаты выбранного объекта вычисляют электронным способом. Технический результат - повышение точности измерения угловых координат выбранных объектов и дальности до них. 1 з.п. ф-лы, 2 ил.

Изобретение относится к выносным индикаторным постам (ВИП) для мониторинга и управления воздушным движением. Технический результат - сокращение времени развертывания ВИП. Для этого ВИП выполнен мобильным и содержит кузов, установленный на шасси автомобиля, и прицепную электростанцию. Кузов содержит аппаратный отсек, агрегатный отсек и отсек дополнительного оборудования. В аппаратном отсеке установлено не менее одного автоматизированного рабочего места (АРМ) оператора, шкаф обработки радиолокационной информации (РЛИ), шкаф радиосвязи, АРМ начальника связи и отопительные воздуховоды. В агрегатном отсеке установлен кондиционер, соединенный по очищенному воздуху с отопительными воздуховодами аппаратного отсека. В отсеке дополнительного оборудования расположены выносные средства сопряжения, кабельное и выносное беспроводное оборудование для быстрого дистанционного соединения с источниками РЛИ. Также имеются складная спутниковая антенна, первая антенна беспроводной связи с источниками РЛИ, вторая антенна беспроводной связи с источниками РЛИ, а также две мачты, с установленными на них антеннами радиосвязи с воздушными судами и антенна радиорелейной связи с потребителями РЛИ. 1 з.п. ф-лы, 6 ил.

Маска // 2578267
Изобретение относится к области оптического приборостроения и касается маски, которая накладывается на чувствительную поверхность сдвоенного пироэлектрического датчика. Маска представляет собой лист, выполненный из блокирующего инфракрасное излучение материала. В маске выполнены сквозные отверстия, сформированные таким образом, чтобы обеспечивать возможность изменения процентных долей соответствующих облученных инфракрасными лучами областей двух пироэлектрических элементов при перемещении источника излучения по двум координатным осям. Отверстия формируют две области апертур. При этом граница одной из областей апертур выступает по направлению, перпендикулярному расположению пироэлектрических элементов дальше, чем граница другой области апертур. Технический результат заключается в увеличении чувствительности и обеспечении возможности регистрации перемещения объекта одновременно по двум координатным осям. 5 з.п. ф-лы. 40 ил.
Наверх