Способ регулирования горения при низкой температуре

Изобретение относится к области регулирования впрыска в двигателях с самовоспламенением топлива. Техническим результатом является снижение токсичности отработавших газов при сжигании топлив с различным цетановым числом. Сущность изобретения заключается в том, что регулируют давление впрыска топлива, а также момент начала его впрыска в ответ на обратную связь по горению топливовоздушной смеси. Причем давление впрыска повышают, если момент начала впрыска запаздывает. 2 н и 8 з.п.ф-лы, 5 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к способу регулирования горения при низкой температуре.

Уровень техники

Топливозаправочные станции могут предоставлять топливо, отличающееся по цетановому числу. Цетановое число топлива - это характеристика воспламеняемости топлива, определяющая период задержки воспламенения смеси. В частности, топлива с более высоким цетановым числом имеют меньшую задержку воспламенения, а топлива с более низким цетановым числом - большую задержку воспламенения. Единственное требование к цетановому числу топлива в США - оно должно быть выше 40, и испытания показали, что цетановое число потребительского дизельного топлива может время от времени варьировать минимум от 40,3 до 56,9. Хотя определять конкретное цетановое число для сгоревшего топлива при работе двигателя может быть и нецелесообразным, признано, что выбросы двигателя могут меняться при изменении цетанового числа, поскольку изменение задержки воспламенения смеси может повлиять на продукты сгорания топливной смеси в цилиндре воздушно-топливной смеси. Следовательно, может потребоваться распознавать топлива, имеющие разные цетановые числа.

В публикации международной патентной заявки WO 2009063298 авторы описывают способ определения цетанового числа топлива, основанный на расчетном времени впрыска. По этому способу определяют цетановое число топлива по времени впрыска, при котором начинаются пропуски зажигания; пропуски зажигания основываются на изменении увеличения крутящего момента двигателя при переключении времени впрысков топлива. После определения цетанового числа по этому способу уменьшают давление впрыска топлива, если момент начала впрыска задерживается. Однако этот способ не подходит для горения при низкой температуре, при котором более продолжительная задержка воспламенения смеси может привести к образованию меньшого количества твердых частиц сгорания, и при котором меньшая задержка воспламенения смеси может привести к образованию повышенного количества твердых частиц сгорания.

Раскрытие изобретения

Для того чтобы устранить вышеупомянутые недостатки, авторы настоящего изобретения разработали способ эксплуатации двигателя, включающий следующие стадии: стадию, на которой топливную смесь сжигают в двигателе, в котором имеется задержка после конца впрыска топлива до начала горения, и стадию, на которой давление впрыска топлива и момент начала впрыска топлива регулируют в ответ на обратную связь по горению топливной смеси, причем давление впрыска топлива повышают, если момент начала впрыска топлива запаздывает.

Путем повышения давления впрыска топлива и задержки момента начала впрыска топлива можно обеспечить выделение тепла во время горения при низкой температуре для топлива с более высоким цетановым числом, которое подобно выделению тепла при сгорании топлива с номинальным цетановым числом. Кроме того, давление впрыска топлива можно снижать, а момент начала впрыска топлива можно делать опережающим, чтобы выделение тепла при сгорании для топлива с меньшим цетановым числом было подобно выделению тепла при сгорании топлива с номинальным цетановым числом. Таким путем регулировки времени и давления впрыска для топлива, имеющего цетановое число, отличающееся от номинального цетанового числа, можно корректировать так, чтобы выбросы двигателя были аналогичными, даже если сжигается топливо с другим цетановым числом.

Настоящее изобретение может обеспечить ряд преимуществ. Например, предлагаемый подход может уменьшить выбросы двигателя при сгорании в двигателе топлив с разными цетановыми числами. Кроме того, предлагаемый подход может быть включен в систему регулирования крутящего момента по сигналу обратной связи по горению. Более того, предлагаемый подход при определенных условиях может улучшить управляемость транспортного средства.

Вышеописанные и другие преимущества и отличительные признаки настоящего изобретения станут понятными из последующего раздела «Подробное описание изобретения», взятого отдельно или со ссылками на прилагаемые чертежи.

Следует понимать, что приведенное выше краткое описание преследует цель представить в упрощенном виде выбор концепций, дополнительно описываемых в подробном описании изобретения. Оно не преследует цель определить основные или существенные отличительные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, следующей после подробного описания. Кроме того, заявленный предмет изобретения не ограничивается вариантами осуществления, устраняющими любые недостатки, отмеченные выше или в любой части настоящего описания.

Краткое описание чертежей

Фиг.1 представляет собой схематическое изображение двигателя.

На Фиг.2A-2D приведен примерный УПКВ-10, выбросы твердых частиц в отработавших газах двигателя, NOx, связанный с цетановым числом топлива, и углеводороды, связанные с цетановым числом топлива.

На Фиг.3A-3D показано моделируемое время впрыска и выделение тепла при сгорании для топлив с разными цетановыми числами.

На Фиг.4 показаны примерные выбросы твердых частиц в отработавших газах двигателя для случая без компенсации впрыска топлива для учета разных цетановых чисел топлива, с компенсацией путем регулирования начала впрыска топлива и с компенсацией путем регулирования начала впрыска топлива и давления топлива.

На Фиг.5 приведена блок-схема примерного способа компенсации на топлива, имеющие разные цетановые числа.

Осуществление изобретения

Настоящее описание относится к управлению впрыском топлива в двигателе. На Фиг.1 показан один пример форсированного двигателя с непосредственным впрыском топлива, в котором по способу на Фиг.5 могут регулировать впрыск топлива для компенсации на цетановое число топлива. На Фиг.4 показаны выгоды в части выбросов двигателя, которые можно получить благодаря способу на Фиг.5.

На Фиг.1 двигатель внутреннего сгорания 10, содержащий несколько цилиндров, один из которых показан на Фиг.1, управляется электронным контроллером двигателя 12. Двигатель 10 содержит камеру сгорания 30, стенки цилиндра 32 с расположенным в нем поршнем 36, соединенным с коленчатым валом 40. Показано, что камера сгорания 30 соединяется с впускным коллектором 44 и выпускным коллектором 48 через соответствующий впускной клапан 52 и выпускной клапан 54. Каждый клапан - впускной и выпускной - может управляться кулачком впускного клапана 51 и кулачком выпускного клапана 53. Положение кулачка впускного клапана 51 может определяться датчиком кулачка впускного клапана 55. Положение кулачка выпускного клапана 53 может определяться датчиком кулачка впускного клапана 57.

Топливная форсунка 66 показана таким образом, чтобы впрыскивать топливо непосредственно в цилиндр 30, что известно специалистам как непосредственный впрыск. Топливная форсунка 66 подает жидкое топливо пропорционально ширине импульса сигнала ШИВ (ширина импульса впрыска топлива), из контроллера 12. Топливо в топливную форсунку 66 подается топливной системой (не показана), которая включает топливный бак, топливный насос и направляющую-распределитель для топлива (не показаны). Давление топлива, подаваемое топливной системой, может устанавливаться посредством изменения положения клапана, регулирующего поток в топливный насос (не показан). Кроме того, в направляющей-распределителе для топлива для управления подачей топлива с обратной связью или возле нее может располагаться дозировочный клапан. Топливная форсунка 66 получает рабочий ток из драйвера 68, который действует по команде контроллера 12.

Показано, что впускной коллектор 44 соединяется с факультативным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для управления потоком воздуха из камеры наддува всасываемого воздуха 46. Компрессор 162 втягивает воздух из воздухозаборника 42 для подачи в камеру наддува 46. Отработавшие газы вращают турбину 164, соединенную с компрессором 162.

Горение в камере сгорания 30 начинается при автоматическом воспламенении топлива, когда на такте сжатия поршень подходит к верхней мертвой точке. В некоторых примерах в выпускной коллектор 48 до устройства снижения токсичности отработавших газов 70 может включаться универсальный или широкодиапазонный датчик кислорода в отработавших газах (UEGO) (не показан). В других примерах датчик UEGO может располагаться после одного или нескольких устройств последующей обработки отработавших газов. Кроме того, в некоторых примерах датчик UEGO может заменяться датчиком NOx.

В одном примере устройство снижения токсичности отработавших газов 70 может содержать сажевый фильтр и «кирпичи» каталитического нейтрализатора. В другом примере могут использоваться несколько устройств снижения токсичности отработавших газов, каждое с несколькими «кирпичами». В одном примере устройство снижения токсичности отработавших газов 70 может содержать окислительный нейтрализатор. В других примерах устройство снижения токсичности отработавших газов может содержать уловитель NOx в случае двигателя, работающего на бедных смесях, или устройство селективного каталитического восстановления.

Контроллер 12 показан на Фиг.1 как обычный микрокомпьютер, содержащий: микропроцессор 102, порты ввода/вывода 104, постоянное запоминающее устройство 106, запоминающее устройство с произвольной выборкой 108, энергонезависимое запоминающее устройство 110 и обычную шину данных. В дополнение к сигналам, рассмотренным ранее, контроллер 12 показан получающим различные сигналы от датчиков, подключенных к двигателю 10, включая: температуру охлаждающей жидкости двигателя (ТОЖ) от датчика температуры 112, подключенного к рукаву охлаждения 114; сигнал датчика положения 134, подключенного к педали акселератора 130 для считывания положения акселератора, регулируемого ногой 132; сигнал датчика давления 80 для считывания давления отработавших газов до турбины 164; сигнал датчика давления 82 для считывания давления отработавших газов после турбины 164; измерение давления во впускном коллекторе двигателя (АДК) от датчика давления 122, подключенного к впускному коллектору 44; сигнал датчика положения двигателя на эффекте Холла 118, считывающего положение коленчатого вала 40; измерение массового расхода воздуха, поступающего в двигатель, от датчика 120 (например, расходомера воздуха с термоэлементом); и измерение положения дроссельной заслонки от датчика 58. Для обработки контроллером 12 может считываться и барометрическое давление (датчик не показан). В одном предпочтительном аспекте настоящего изобретения датчик положения двигателя 118 за каждый оборот коленчатого вала выдает заданное количество равноотстоящих импульсов, по которому можно определить частоту вращения (ЧВ) двигателя.

В некоторых вариантах осуществления двигатель может подключаться к системе электродвигателя/аккумуляторной батареи в гибридном автомобиле. Гибридный автомобиль может иметь конструктивное параллельное исполнение, последовательное конструктивное исполнение или их вариант или сочетания.

При работе каждый цилиндр двигателя 10 обычно совершает четырехтактный цикл: этот цикл включает такт впуска, такт сжатия, такт расширения и такт выпуска. На такте впуска, как правило, выпускной клапан 54 закрывается, а впускной клапан 52 открывается. По впускному коллектору 44 в камеру сгорания 30 поступает воздух, и поршень 36 перемещается ко дну цилиндра, чтобы увеличить объем в камере сгорания 30. Положение, в котором поршень 36 находится у дна цилиндра и в конце его хода (например, когда камера сгорания 30 пребывает в состоянии своего наибольшего объема), специалисты обычно называют нижней мертвой точкой (НМТ). На такте сжатия впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 перемещается к головке цилиндра, сжимая воздух в камере сгорания 30. Точку, в которой поршень 36 находится в конце своего хода и ближайшую к головке цилиндра (например, когда камера сгорания 30 пребывает в состоянии своего наименьшего объема), специалисты обычно называют верхней мертвой точкой (ВМТ). В процессе, далее по тексту именуемом впрыском, в камеру сгорания подается топливо. В некоторых примерах в течение одного цикла цилиндра топливо может впрыскиваться в цилиндр множество раз. В процессе, далее по тексту именуемом зажиганием или воспламенением, впрыснутое топливо воспламеняется путем возгорания от сжатия или посредством такого известного средства воспламенения, как свеча зажигания (не показана), приводящим к горению. На такте расширения или на рабочем такте расширяющиеся газы толкают поршень 36 обратно к НМТ. Коленчатый вал 40 преобразует движение поршня в крутящий момент вращающегося вала. Наконец, на такте выпуска открывается выпускной клапан 54 для высвобождения сгоревшей топливной смеси в выпускной коллектор 48, и поршень возвращается в ВМТ. Следует отметить, что вышеприведенное описано просто как пример и что моменты открытия и (или) закрытия впускного и выпускного клапанов могут варьировать, чтобы обеспечить положительное или отрицательное перекрытие клапанов, позднее закрытие впускного клапана или различные иные примеры. Кроме того, в некоторых примерах может использоваться двухтактный, а не четырехтактный цикл.

Таким образом, система на Фиг.1 предусматривает систему двигателя, содержащую: двигатель, топливную форсунку непосредственного впрыска, установленную в цилиндре двигателя, топливный насос, подающий топливо под давлением в топливную форсунку непосредственного впрыска, и контроллер, причем контроллер подает команды на регулирование давления топлива, подаваемого топливным насосом в топливную форсунку непосредственного впрыска, и начала момента впрыска топлива в ответ на обратную связь на горение топливной смеси, повышение давления впрыска топлива, если момент начала впрыска топлива задерживается, давления топлива, подаваемого топливным насосом, отрегулированного в ответ на разницу между базовым моментом начала впрыска топлива и скомандованным моментом впрыска топлива. Система двигателя содержит контроллер, который выдает дополнительные команды на регулирование давления, подаваемого топливным насосом, в ответ на количество углеводородов в отработавших газах двигателя. Система двигателя содержит контроллер, который выдает дополнительные команды на регулирование давления, подаваемого топливным насосом, в ответ на количество твердых частиц в отработавших газах двигателя. Система двигателя содержит контроллер, который выдает дополнительные команды на регулирование количества рециркуляции отработавших газов, подаваемого в двигатель для регулирования фазы горения в ответ на горение топливной смеси. Система двигателя содержит контроллер, который выдает дополнительные команды на регулирование давления, подаваемого топливным насосом, в ответ на температуру двигателя. Система двигателя содержит обратную связь по горению воздушно-топливной смеси, которая обеспечивается датчиком детонации.

Фиг.2А-2С показывают влияние, которое цетановое число топлива может оказывать на работу и выбросы двигателя. В частности, представлены гистограммы, иллюстрирующие предполагаемый УКПВ 10, образование твердых частиц и NOx для двигателя, работающего с разными частотами вращения и нагрузками, когда три топлива, имеющие разные цетановые числа, сжигаются при практически одинаковых условиях горения. Следует отметить, что топлива, имеющие конкретные проиллюстрированные цетановые числа, не предназначены для ограничения объема настоящего изобретения, а включены как примеры, чтобы показать, как топлива, имеющие разные цетановые числа, могут изменять работу двигателя.

На Фиг.2А показана гистограмма УКПВ 10 для топлив, имеющие разные цетановые числа. УКПВ 10 - это угол поворота коленчатого вала двигателя после верхней мертвой точки такта сжатия, при котором из сгоревшей воздушно-топливной смеси высвободилось 10% тепла. Подобным образом, УКПВ 50 - это угол поворота коленчатого вала двигателя после такта сжатия до верхней мертвой точки, при котором из сгоревшей воздушно-топливной смеси высвободилось 50% тепла. Угол поворота коленчатого вала двигателя, при котором сжигается тепло из воздушно-топливной смеси, может влиять на величину крутящего момента, создаваемого цилиндром, а также на выбросы цилиндра. Фиг.2А показывает, как относительная величина момента УКПВ 10 меняется для разных частот вращения двигателя, нагрузок двигателя и цетановых чисел топлива.

Ось Y представляет угол поворота коленчатого вала для УКПВ 10. Точка пересечения оси Х и оси Y представляет верхнюю мертвую точку такта сжатия. Угол поворота коленчатого вала после верхней мертвой точки такта сжатия положителен и увеличивается в направлении стрелки оси Y. Угол поворота коленчатого вала до верхней мертвой точки такта сжатия отрицателен и уменьшается в направлении стрелки оси X.

Столбцы 202, 204 и 206 представляют УКПВ 10 для цетанового числа топлива 40,3 (столбец 202), цетанового числа топлива 44 (столбец 204) и цетанового числа топлива 56,9 (столбец 206) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бара среднего эффективного тормозного давления. Столбцы 208, 210 и 212 представляют УКПВ 10 для цетанового числа топлива 40,3 (столбец 208), цетанового числа топлива 44 (столбец 210) и цетанового числа топлива 56,9 (столбец 212) при частоте вращения двигателя 1500 об/мин и нагрузке 6 бар среднего эффективного тормозного давления. Столбцы 214, 216 и 218 представляют УКПВ 10 для цетанового числа топлива 40,3 (столбец 214), цетанового числа топлива 44 (столбец 216) и цетанового числа топлива 56,9 (столбец 218) при частоте вращения двигателя 2500 об/мин и нагрузке 4 бар среднего эффективного тормозного давления. Таким образом, из Фиг.2А можно видеть, что УКПВ 10 меняется от одной рабочей точки к другой и для топлив, имеющих разные цетановые числа. Следовательно, может потребоваться уменьшить изменение, которое цетановое число топлива имеет на момент УКПВ 10.

На Фиг.2В показана гистограмма твердых частиц в отработавших газах двигателя для топлив, имеющих разные цетановые числа. Фиг.2В показывает, как относительная величина удельного содержания твердых частиц в отработавших газах (в единицах измерения г/кВтч, например) варьирует для разных частот вращения двигателя, нагрузок двигателя и цетановых чисел топлива. В некоторых примерах твердые частицы в отработавших газах двигателя улавливаются в сажевом фильтре, который находится в потоках отработавших газов. Если двигатель будет создавать повышенные уровни твердых частиц, сажевый фильтр потребуется регенерировать чаще, чтобы поддерживать давление отработавших газов на требуемом уровне. Следовательно, для того чтобы уменьшить регенерацию сажевого фильтра, необходимо уменьшить количество твердых частиц в отработавших газах двигателя.

Столбцы 220, 222 и 224 представляют удельное содержание твердых частиц для цетанового числа топлива 40,3 (столбец 220), цетанового числа топлива 44 (столбец 222) и цетанового числа топлива 56,9 (столбец 224) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бар среднего эффективного тормозного давления. Столбцы 226, 228 и 230 представляют удельное содержание твердых частиц для цетанового числа топлива 40,3 (столбец 226), цетанового числа топлива 44 (столбец 228) и цетанового числа топлива 56,9 (столбец 230) при частоте вращения двигателя 1500 об/мин и нагрузке 6 бар среднего эффективного тормозного давления. Столбцы 232, 234 и 236 представляют удельное содержание твердых частиц для цетанового числа топлива 40,3 (столбец 232), цетанового числа топлива 44 (столбец 234) и цетанового числа топлива 56,9 (столбец 236) при частоте вращения двигателя 2500 об/мин и нагрузке 4 бар среднего эффективного тормозного давления. Таким образом, из Фиг.2А можно видеть, что удельное содержание твердых частиц меняется от одной рабочей точки к другой и для топлив, имеющих разные цетановые числа. Кроме того, можно видеть, что при использовании топлив с более высоким цетановым числом содержание твердых частиц отработавших газов возрастает.

На Фиг.2С показана гистограмма содержания NOx в отработавших газах двигателя для топлив, имеющие разные цетановые числа. Фиг.2С показывает, как относительная величина удельного содержания NOx (в г/кВтч, например) варьирует для разных частот вращения двигателя, нагрузок двигателя и цетановых чисел топлива. NOx может образовываться в цилиндре при повышении температуры цилиндра в присутствии избытка кислорода.

Столбцы 238, 240 и 242 представляют удельное содержание NOx для цетанового числа топлива 40,3 (столбец 238), цетанового числа топлива 44 (столбец 240) и цетанового числа топлива 56,9 (столбец 242) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бар среднего эффективного тормозного давления. Столбцы 244, 246 и 248 представляют удельное содержание NOx для цетанового числа топлива 40,3 (столбец 244), цетанового числа топлива 44 (столбец 246) и цетанового числа топлива 56,9 (столбец 248) при частоте вращения двигателя 1500 об/мин и нагрузке 6 бар среднего эффективного тормозного давления. Столбцы 250, 252 и 254 представляют удельное содержание NOx для цетанового числа топлива 40,3 (столбец 250), цетанового числа топлива 44 (столбец 252) и цетанового числа топлива 56,9 (столбец 254) при частоте вращения двигателя 2500 об/мин и нагрузке 4 бар среднего эффективного тормозного давления. Таким образом, удельное содержание NOx может варьироваться среди топлив, имеющих разные цетановые числа; однако, удельное содержание NOx при горении при низкой температуре находится на низких уровнях и, следовательно, не требует компенсации путем дополнительной подачи топлива.

На Фиг.2D, показана гистограмма содержания углеводородов (УВ) в отработавших газах двигателя для топлив, имеющие разные цетановые числа. Фиг.2D показывает, как относительная величина удельного содержания УВ (в г/кВтч, например) варьирует для разных частот вращения двигателя, нагрузок двигателя и цетановых чисел топлива. УВ могут быть результатом неполного сгорания топлива за цикл цилиндра.

Столбцы 256, 258 и 260 представляют удельное содержание УВ для цетанового числа топлива 40,3 (столбец 238), цетанового числа топлива 44 (столбец 240) и цетанового числа топлива 56,9 (столбец 242) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бар среднего эффективного тормозного давления. Столбцы 262, 264 и 268 представляют удельное содержание УВ для цетанового числа топлива 40,3 (столбец 244), цетанового числа топлива 44 (столбец 246) и цетанового числа топлива 56,9 (столбец 248) при частоте вращения двигателя 1500 об/мин и нагрузке 6 бар среднего эффективного тормозного давления. Столбцы 268, 270 и 272 представляют удельное содержание УВ для цетанового числа топлива 40,3 (столбец 250), цетанового числа топлива 44 (столбец 252) и цетанового числа топлива 56,9 (столбец 254) при частоте вращения двигателя 2500 об/мин и нагрузке 4 бар среднего эффективного тормозного давления. Таким образом, удельное содержание УВ может варьировать среди топлив, имеющих разные цетановые числа. Кроме того, можно увидеть, что при использовании топлив с более низким цетановым числом содержание УВ в отработавших газах возрастает.

На Фиг.2A-2D можно увидеть, что двигатель выгодно эксплуатировать в условиях, при которых сжигаются топлива с номинальными цетановыми числами, или близких к ним. Кроме того, можно сделать вывод, что работу двигателя можно улучшить, если сжигаются топлива, имеющие цетановые числа, выше номинальных цетановых чисел, в условиях, в которых горение аналогично горению топлив с номинальными цетановыми числами.

На Фиг.3A-3D показаны предполагаемые время впрыска и выделение тепла при горении топливной смеси при низкой температуре. В частности, выделение тепла, создаваемое при сгорании топлива, имеющего номинальное цетановое число, резко отличается от выделения тепла при сгорании топлива, имеющего более высокое цетановое число. Ось Y каждого графика представляет величину давления топлива и выделения тепла. Давление топлива и выделение тепла увеличиваются в направлении стрелки оси Y. Ось Х представляет время, и время увеличивается слева направо от фигуры в направлении стрелки оси X.

На Фиг.3А приведен график впрыска топлива и выделения тепла в цилиндре при сгорании топлива, имеющего номинальное цетановое число. Время впрыска топлива указано шириной импульса впрыска топлива 204, а давление впрыска топлива представлено высотой импульса впрыска топлива 204. При повышении давления за единицу времени впрыскивается дополнительное топливо. Таким образом, если время впрыска уменьшается, то для подачи того же количества топлива, если топливо впрыскивается в течение меньшего периода времени, давление топлива необходимо повысить. Выделение тепла при сгорании импульса впрыска топлива 204 показано кривой 202. Количество времени 206 между концом импульса впрыска топлива 204 и началом выделения тепла по кривой 202 в момент времени Т0 является положительным опережением зажигания или временем опережения. Как можно видеть по кривой 202, тепло быстро выделяется с повышенной скоростью, а затем с увеличением времени снижается. Положительные опережения зажигания необходимы, поскольку при этом можно уменьшить содержание твердых частиц при горении при низкой температуре.

На Фиг.3В приведен график впрыска топлива и выделения тепла в цилиндре при сгорании топлива, имеющего более высокое цетановое число. Подобно Фиг.3А, время впрыска топлива указано шириной импульса впрыска топлива 210, а давление впрыска топлива представлено высотой импульса впрыска топлива 210. Выделение тепла при сгорании импульса впрыска топлива 210 показано кривой 208. Обратите внимание, что время впрыска топлива и давление впрыска топлива на обеих графиках 3А и 3В одинаковы. Однако кривая выделения тепла 208 начинается в момент времени, опережающий момент времени Т0, в который начинается выделение тепла топлива, имеющего номинальное цетановое число. Следовательно, создание крутящего момента двигателя и выбросов могут изменяться при сгорании топлив, имеющих более высокие цетановые числа по сравнению с топливами, имеющими номинальное цетановое число при одинаковом времени впрыска топлива.

На Фиг.3С приведен график впрыска топлива с высоким цетановым числом с отрегулированным временем впрыска топлива и выделения тепла в цилиндре. Время впрыска топлива указано шириной импульса впрыска топлива 214, а давление впрыска топлива представлено высотой импульса впрыска топлива 214. Выделение тепла при сгорании импульса впрыска топлива 214 показано кривой 212. Обратите внимание, что время впрыска топлива запаздывает по сравнению со временем впрыска топлива на Фиг.3А и 3В. Однако давление впрыска топлива эквивалентно давлению впрыска топлива на графиках 3А и 3В. Запаздывание времени впрыска топлива смещает кривую выделения тепла 212 по сравнению со временем выделения тепла кривой 208 назад ко времени выделения тепла кривой 202, а именно к моменту времени Т0. Как результат, создание крутящего момента двигателя совпадает с созданием крутящего момента на Фиг.3А. Обратите внимание, что конец времени впрыска топлива задерживается по сравнению с началом выделения тепла в момент времени Т0. В момент окончания времени впрыска после начала выделения тепла образуется период отрицательного перекрытия 216. Если между временем впрыска и началом выделения тепла происходит отрицательное перекрытие, может возрасти образование твердых частиц. Поэтому величину отрицательного перекрытия необходимо уменьшить.

На Фиг.3D приведен график впрыска топлива с высоким цетановым числом с отрегулированным временем впрыска топлива и повышенным давлением топлива. Кроме того, на Фиг.3D приведена кривая выделения тепла 218, указывающая, когда сгорает импульс впрыска топлива 220. Подобно Фиг.3А-3С, время впрыска топлива указано шириной импульса впрыска топлива 220, а давление впрыска топлива представлено высотой импульса впрыска топлива 220. При увеличении давления импульса впрыска топлива 220 эквивалентное количество топлива впрыскивается в двигатель за меньшее время по сравнению с длительностями впрыска топлива, показанными на 3А-3С. Обратите внимание, что импульс впрыска топлива 220 заканчивается до момента времени Т0. Тепло выделяется воздушно-топливной смесью цилиндра в момент времени Т0, когда начинается горение, и конец импульса впрыска топлива 220 опережает выделение тепла. Таким образом, при задерживании начала момента впрыска топлива и повышении давления топлива из топлива, имеющего более высокое цетановое число, тепло может выделяться после конца впрыска топлива, так что крутящий момент двигателя и твердые частицы, создаваемые топливом с более высоким цетановым числом, аналогичны таковым для топлива с номинальным цетановым числом при аналогичных условиях работы двигателя.

На Фиг.4 приведена гистограмма, показывающая график удельного содержания твердых частиц и способа впрыска топлива. Количество впрыскиваемого топлива и условия работы двигателя аналогичны для всех трех групп гистограмм. Количество твердых частиц, образуемых при горении воздушно-топливной смеси, возрастает в направлении стрелки оси Y.

Первая группа столбцов, содержащая столбцы 402, 404 и 406, представляет удельное содержание твердых частиц для цетанового числа топлива 40,3 (столбец 402), цетанового числа топлива 44 (столбец 404) и цетанового числа топлива 56,9 (столбец 406) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бар среднего эффективного тормозного давления. Впрыск топлива для столбцов 402-406 осуществляется без компенсации для учета разных цетановых чисел топлива, и давление впрыска топлива равно 914 бар. Вторая группа столбцов, содержащая столбцы 408, 410 и 412, представляет удельное содержание твердых частиц для цетанового числа топлива 40,3 (столбец 408), цетанового числа топлива 44 (столбец 410) и цетанового числа топлива 56,9 (столбец 412) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бар среднего эффективного тормозного давления. Давление впрыска топлива для второй группы столбцов равно 914 бар. Впрыск топлива для столбцов 408-412 осуществляется с компенсацией на цетановое число впрыскиваемого топлива путем регулирования момента начала впрыска топлива. В частности, для топлива, имеющего более высокое цетановое число, время начала впрыска задерживается. Третья группа столбцов, содержащая столбцы 416, 418 и 420, представляют удельное содержание твердых частиц для цетанового числа топлива 40,3 (столбец 416), цетанового числа топлива 44 (столбец 418) и цетанового числа топлива 56,9 (столбец 420) при частоте вращения двигателя 1500 об/мин и нагрузке 3 бар среднего эффективного тормозного давления. Давление впрыска топлива для столбца 416 равно 750 бар, а давление впрыска топлива для столбца 420 равно 1250 бар. Таким образом, на Фиг.4 можно увидеть, что содержание твердых частиц, образуемых при сгорании топлив с более высокими цетановыми числами, можно уменьшить, если начало впрыска топлива задерживается, и давление впрыска топлива повышается. Кроме того, КПД двигателя можно повысить, если топлива с более низкими цетановыми числами сгорают при опережении начала впрыска топлива и снижении давления впрыска топлива.

На Фиг.5 приведена блок-схема примерного способа компенсации на топлива, имеющие разные цетановые числа. Способ на Фиг.5 исполняют по командам контроллера, такого, как показан на Фиг.1. Кроме того, горение при низкой температуре можно охарактеризовать как горение воздушно-топливной смеси в двигателе, в котором имеется (задержка) с конца впрыска топлива до начала горения. Способ 500 может быть особенно предпочтительным при горении при низкой температуре.

На стадии 502 способа 500 определяют условия работы двигателя. Условия работы двигателя могут включать среди прочих давление впрыска топлива, частоту вращения двигателя, нагрузку двигателя, температуру двигателя, работу двигателя с детонацией, вибрацию °двигателя и давление в цилиндрах двигателя. После определения условий работы двигателя в способе 500 переходят к стадии 504.

На стадии 504 способа 500 определяют требуемый угол поворота коленчатого вала для выбранной доли выделения тепла. В одном примере время УКПВ 10 определяют в ответ на частоту вращения двигателя и нагрузку двигателя. Например, при частоте вращения двигателя 1500 об/мин и 3 барах среднего эффективного тормозного давления, такое время УКПВ 10 как 3° поворота коленчатого вала после верхней мертвой точки такта сжатия цилиндра могут выбрать как требуемое время УКПВ 10. В еще одном примере время УКПВ 50 определяют в ответ на частоту вращения двигателя и нагрузку двигателя. В частности, время УКПВ 50 определяют для частоты вращения двигателя 2000 об/мин и 6 бар среднего эффективного тормозного давления. Таким образом, по способу 500 могут выбирать разные доли выделения тепла смесью и разные углы поворота коленчатого вала, если доля выделения тепла выделяется из сгоревшей воздушно-топливной смеси. После определения требуемого угла поворота коленчатого вала для доли выделения тепла в способе 500 переходят к стадии 506.

На стадии 506 способа 500 впрыскивают топливо в момент начала впрыска под давлением, которое определяют эмпирически, для обеспечения доли выделения тепла при угле поворота коленчатого вала, который определили на стадии 504. В одном примере способ 500 начинают впрыском топлива в момент времени и под давлением, основанном на номинальном цетановом числе. Если определяют, что доля выделения тепла при угле поворота коленчатого вала не определена на стадии 504, по способу 500 могут отрегулировать момент впрыска и давление на стадиях 510 и 512. После того как к базовому моменту и давлению впрыска добавляют регулировку топлива, топливо впрыскивают и сжигают в цилиндре двигателя. В способе 500 переходят от стадии 506 к стадии 508.

На стадии 508 способа 500 по обратной связи определяют фазу сгорания. По способу 500 фазу сгорания могут измерять по разнице угла поворота коленчатого вала между требуемым выделением тепла и фактическим выделением тепла. Например, если требуемый угол поворота коленчатого вала УКПВ 10 равен 5° от верхней мертвой точки такта сжатия, а фактический угол поворота коленчатого вала УКПВ 10 равен 8° от верхней мертвой точки такта сжатия, определяют фазу сгорания как 3° угла поворота коленчатого вала от требуемого.

Фазу горения могут определять посредством датчиков давления в цилиндрах или акселерометров двигателя (например, датчиков детонации). В первом примере максимальное давление в цилиндре является сигналом обратной связи в контроллер двигателя для регулирования начала впрыска. В некоторых примерах количество выделения тепла, которое является наиболее заметным, выбирают как основу для регулирования впрыска топлива в ответ на цетановое число топлива. Например, если УКПВ 50 определяется легче, чем УКПВ 10, регулирование момента впрыска топлива в ответ на цетановое число топлива может основываться на времени угла поворота коленчатого вала УКПВ 50.

В некоторых примерах на стадии 508 может определяться и опережение зажигания. В одном примере опережение зажигания определяется по концу впрыска топлива первого основного импульса впрыска топлива и началу выделения тепла. Время опережения может определяться от конца импульса впрыска топлива до начала выделения тепла, определенного датчиками давления в цилиндрах или датчиком детонации. По способу 500 можно определить как положительное, так и отрицательное опережение зажигания.

В других примерах вместо фазы горения можно определить количество твердых частиц, образующихся при горении воздушно-топливной смеси. Например, вместо фазы горения можно определить количество твердых частиц, вышедших из цилиндра при условии работы двигателя. Количество твердых частиц можно определить с помощью датчика твердых частиц. Если количество твердых частиц возрастает по сравнению с количеством твердых частиц, которые образовались при практически одинаковых условиях работы двигателя, можно сделать вывод, что в настоящее время сжигается топливо с более высоким цетановым числом, поскольку сжигание топлив с более высоким цетановым числом может приводить к отрицательному опережению зажигания.

В еще одном примере вместо фазы горения могут определять количество углеводородов в отработавших газах, выпущенных после сгорания воздушно-топливной смеси. Например, количество углеводородов могут определять посредством датчика углеводородов. Если количество углеводородов возрастает по сравнению с количеством углеводородов, образовавшихся при практически одинаковых условиях, можно сделать вывод, что в настоящее время сжигается топливо с более низким цетановым числом, поскольку сжигание топлив с более низким цетановым числом может приводить к большему положительному опережению зажигания.

В еще одних примерах контроллеру двигателя подают сигнал обратной связи по качеству топлива и в ответ на качество топлива, а не на выделение тепла, могут регулироваться начало впрыска и давление впрыска топлива. Например, если датчик качества топлива указывает на более высокое цетановое число, чем номинальное, время начала впрыска задерживают, а давление впрыска топлива повышают. После определения фазы горения в способе 500 переходят к стадии 510.

На стадии 510 способа 500 регулируют начало впрыска, рециркуляцию отработавших газов или температуру всасываемого воздуха для регулирования фазы горения. В некоторых примерах начало впрыска и рециркуляцию отработавших газов может регулироваться одновременно. В других примерах начало впрыска, рециркуляцию отработавших газов или температуру всасываемого воздуха могут изменять для регулирования фазы горения. В одном примере начало впрыска задерживают по сравнению с эмпирически определенным моментом в ответ на момент времени УКПВ 10, который опережает при практически одинаковых условиях работы двигателя, но если цетановое число впрыскиваемого в настоящий момент топлива выше номинального цетанового числа. В ином примере начале впрыска опережает базовый момент начала впрыска в ответ на момент времени УКПВ 10, который задерживается при практически одинаковых условиях работы двигателя, но если цетановое число впрыскиваемого в настоящий момент топлива ниже номинального цетанового числа топлива. В еще одном примере для топлив с более высоким цетановым числом регулируют первый параметр, который выбирают из группы, состоящей из начала впрыска, рециркуляции отработавших газов и температуры всасываемого воздуха. При сжигании топлива с меньшим цетановым числом, из группы, состоящей из начала впрыска, рециркуляции отработавших газов и температуры всасываемого воздуха, выбирают отличительный второй параметр (т.е. отличающийся от первого параметра).

Величина (например, угол поворота коленчатого вала в градусах) опережения или запаздывания начала впрыска может основываться на количестве образования твердых частиц, углеводородов или определенной величине фазы сгорания или в ответ на них. В ином примере регулировку момента начала впрыска берут из таблицы эмпирически определенных значений. Эта таблица индексирована по величине фазы сгорания при нынешних условиях работы двигателя. После определения регулировки начала впрыска в способе 500 переходят к стадии 512. В случае топлив с меньшим цетановым числом может уменьшаться величина рециркуляции отработавших газов или повышаться температура всасываемого воздуха. В случае топлив с более высоким цетановым числом может увеличиваться величина рециркуляции отработавших газов или снижаться температура всасываемого воздуха.

На стадии 512 способа 500 регулируют давление впрыска топлива. В одном примере, давление впрыска топлива регулируют в ответ на разницу между базовым моментом начала впрыска топлива и отрегулированным моментом впрыска топлива по следующей формуле:

ΔP_inj=f(SOI_base-SOI_act)

где ΔP_inj - изменение давления впрыска топлива в ответ на фазу сгорания топлива, имеющего цетановое число, отличающееся от топлива с номинальным цетановым числом, SOI_base - базовый момент начала впрыска топлива, в градусах угла поворота коленчатого вала и SOI_act - фактический момент начала впрыска топлива. Таким образом, в одном примере изменение давления впрыска топлива является функцией базового момента начала впрыска топлива и фактического момента начала впрыска топлива. Так, для изменения момента начала впрыска топлива с базового момента времени давление впрыска топлива могут повышать или снижать, основываясь при этом на эмпирически определенных значениях, которые определяют функцию, описывающую регулирование давления впрыска топлива. И, поскольку момент начала впрыска топлива можно регулировать, исходя из количества обнаруженных углеводородов или твердых частиц, давление впрыска можно регулировать в ответ на количество обнаруженных углеводородов или твердых частиц. Кроме того, в некоторых примерах изменение давления топлива и время впрыска можно также регулировать в ответ на температуру двигателя. Например, если установили, что в настоящее время сжигается топливо с более высоким цетановым числом, начало впрыска топлива может задерживаться, а давление впрыска топлива повышается. И давление впрыска топлива может понижаться, если температура двигателя ниже номинальной рабочей температуры прогретого двигателя. После регулирования давления топлива в ответ на изменение начала впрыска топлива с базового момента начала впрыска в способе 500 переходят к стадии 514.

В альтернативном примере давление впрыска топлива могут регулировать в ответ на запаздывание зажигания или опережение зажигания. Например, если задержка воспламенения смеси уменьшилась, в ответ на меньшую задержку воспламенения смеси могут повышать давление впрыска топлива.

На стадии 514 способа 500 определяют, свидетельствует ли сигнал обратной связи по сгоранию на топливо о низком цетановом числе. В одном примере по способу 500 оценивают, горит ли топливо с низким цетановым числом, если запаздывание зажигания увеличивается на время, превышающее базовое время опережения зажигания. Если согласно способу 500 топливо с низким цетановым числом горит, в способе 500 переходят к стадии 516. В противном случае в способе 500 идут на выход.

На стадии 516 способа 500 могут добавлять дополнительный импульс впрыска топлива. В одном примере дополнительный импульс впрыска топлива планируют, если опережение зажигания превышает заданное число градусов угла поворота коленчатого вала. Если добавляют дополнительный импульс впрыска топлива, время импульса впрыска топлива могут определять как разницу между базовым моментом начала впрыска топлива и отрегулированным моментом начала впрыска топлива. Например, если момент начала впрыска топлива опережает более чем на 5° угла поворота коленчатого вала, могут решить добавить второй импульс впрыска топлива через 10° поворота коленчатого вала после конца первого импульса впрыска топлива. В одном примере относительно времени второго импульса впрыска топлива, основанного на разнице между базовым моментом начала впрыска топлива и фактическим моментом начала впрыска топлива, могут обращаться к таблице или функции эмпирически определенных импульсов впрыска топлива.

В других примерах в базовую калибровку могут включать разнообразные впрыски в течение одного цикла цилиндра для топлива с номинальным цетановым числом. Если горит топливо с меньшим цетановым числом, в течение цикла горения цилиндра могут добавлять еще один импульс впрыска топлива, и базовые впрыски являются опережающими в цикле цилиндра. Если горит топливо с более высоким цетановым числом, в течение цикла цилиндра можно исключить один или несколько впрысков из-за времени, которое уходит на то, чтобы осуществить все впрыски до начала горения. Таким образом, количество впрысков топлива могут увеличивать или уменьшать в ответ на задержку воспламенения смеси (время, необходимое для осуществления всех впрысков для горения при низкой температуре). Кроме того, в некоторых примерах время последнего или окончательного впрыска топлива в течение цикла цилиндра могут сохранять, а время предшествующих впрысков в течение того же цикла цилиндра регулируют. После определения времени топлива в способе 500 идут на выход.

Следует отметить, что хотя способ на Фиг.5 подходит для регулирования в ответ на изменения времени и скорости выделения тепла при сгорании, связанные с цетановым числом топлива, способ на Фиг.5 подходит и для регулирования в ответ на изменения времени и скорости выделения тепла при сгорании, связанные с изменением степени сжатия от цилиндра к цилиндру неправильным распределением рециркуляции отработавших газов, погрешностями начала момента впрыска топлива, отличием температуры всасываемого воздуха от номинальной, изменением температуры двигателя по сравнению с номинальной температурой двигателя и изменением содержания кислорода во всасываемом воздухе. Таким образом, давление впрыска топлива и время начала впрыска можно регулировать в ответ на практически любой параметр горения, влияющий на время и скорость выделения тепла при сгорании.

Таким образом, способ на Фиг.5 обеспечивает способ эксплуатации двигателя, включающий следующие стадии: стадию, на которой воздушно-топливную смесь сжигают в цилиндре, в котором имеется задержка после конца впрыска топлива до начала горения, и стадию, на которой давление впрыска топлива и момент начала впрыска топлива регулируют в ответ на обратную связь по горению воздушно-топливной смеси, причем давление впрыска топлива повышают, если момент начала впрыска топлива запаздывает. Способ эксплуатации двигателя включает также стадию, на которой обеспечивают множество впрысков топлива в цилиндр в течение цикла цилиндра, практически сохраняя неизменным время окончательного впрыска из множества впрысков топлива и регулируя время, по меньшей мере, одного впрыска топлива из множества впрысков топлива в ответ на изменение выделения тепла при сгорании. В способе эксплуатации двигателя в ответ на увеличение количества твердых частиц в отработавших газах двигателя давление впрыска топлива повышают, а начало впрыска топлива делают запаздывающим. В способе эксплуатации двигателя в ответ на увеличение количества углеводородов в отработавших газах двигателя давление впрыска топлива снижают, а начало впрыска топлива делают опережающим. В способе эксплуатации двигателя обратную связь обеспечивают датчиками давления. Кроме того, способ эксплуатации двигателя включает стадию, на которой фазу сгорания регулируют до требуемой фазы сгорания посредством регулирования давления впрыска топлива и момента начала впрыска топлива. Кроме того, способ эксплуатации двигателя включает стадию, на которой регулируют рециркуляцию отработавших газов или температуру всасываемого воздуха, чтобы отрегулировать фазу сгорания до требуемой фазы сгорания.

Способ на Фиг.5 обеспечивает способ эксплуатации двигателя, включающий следующие стадии: стадию, на которой воздушно-топливную смесь сжигают, и стадию, на которой регулируют давление впрыска топлива и момент начала первого впрыска топлива в течение цикла цилиндра в ответ на обратную связь по горению воздушно-топливной смеси, причем давление впрыска топлива регулируют в ответ на разницу между базовым моментом начала впрыска топлива и скомандованным моментом впрыска топлива. В способе эксплуатации двигателя момент начала впрыска топлива делают опережающим для топлив с меньшими цетановыми числами, и момент начала впрыска топлива делают запаздывающим для топлив с более высокими цетановыми числами. В способе эксплуатации двигателя давление впрыска топлива повышают, если начало впрыска топлива делают запаздывающим, и давление впрыска топлива уменьшают, если начало впрыска топлива делают опережающим. В способе эксплуатации двигателя обратную связь обеспечивают датчиком детонации. Кроме того, способ эксплуатации двигателя включает стадию, на которой регулируют, по меньшей мере, начало второго впрыска топлива в течение цикла цилиндра в ответ на регулирование момента начала первого впрыска топлива. Кроме того, способ эксплуатации двигателя включает стадию, на которой регулируют конец второго впрыска топлива в ответ на регулирование момента начала первого впрыска топлива.

Как будет понятно специалисту, способ, описанный на Фиг.5, может представлять одну или более стратегий обработки, таких, как событийно-управляемая, по прерыванию, многозадачная, многопоточная и т.п. При этом различные проиллюстрированные стадии или функции могут выполняться в проиллюстрированной последовательности, параллельно или в некоторых случаях опускаться. Аналогичным образом, для достижения отличительных признаков и преимуществ, описанных в настоящем документе, не обязательно требуется порядок обработки, - он приведен для легкости иллюстрации и описания. Хотя это явно не показано, специалисту будет очевидно, что одна или более из проиллюстрированных стадий или функций могут выполняться повторно в зависимости от конкретной используемой стратегии обработки.

На этом описание заканчивается. Прочитавшему его специалисту обязательно придут на ум многие изменения и модификации в пределах сущности и объема изобретения. Например, настоящее изобретение могло бы с успехом использоваться в одно-, двух-, трех-, четырех-, пятицилиндровых рядных двигателях, шести-, восьми-, десяти-, двенадцати- и шестнадцатицилиндровых двигателях с V-образным расположением цилиндров, работающих на природном газе, бензине, дизельном топливе и альтернативном топливе.

1. Способ эксплуатации двигателя, в котором:
сжигают воздушно-топливную смесь в цилиндре с помощью воспламенения от сжатия, и в котором имеется задержка после конца впрыска топлива до начала горения, связанная с цетановым числом топлива, и
регулируют давление впрыска топлива и момент начала впрыска топлива в ответ на обратную связь по горению воздушно-топливной смеси, причем давление впрыска топлива повышают, если момент начала впрыска топлива запаздывает.

2. Способ эксплуатации двигателя по п. 1, в котором дополнительно обеспечивают несколько впрысков топлива в цилиндр в течение цикла цилиндра, практически сохраняя неизменным время окончательного из нескольких впрысков топлива и регулируя время по меньшей мере одного впрыска топлива из остальных впрысков топлива в зависимости от изменения выделения тепла при сгорании.

3. Способ эксплуатации двигателя по п. 1, в котором в зависимости от увеличения количества твердых частиц в отработавших газах цилиндра повышают давление впрыска топлива, а момент начала впрыска топлива делают запаздывающим.

4. Способ эксплуатации двигателя по п. 1, в котором в зависимости от увеличения количества углеводородов в отработавших газах цилиндра снижают давление впрыска топлива, а момент начала впрыска топлива делают опережающим.

5. Способ эксплуатации двигателя по п. 1, в котором обратную связь обеспечивают датчиками давления.

6. Способ эксплуатации двигателя по п. 1, в котором дополнительно устанавливают фазу сгорания до требуемой путем регулирования давления впрыска топлива и момента начала впрыска топлива.

7. Способ эксплуатации двигателя по п. 6, в котором дополнительно для регулирования фазы сгорания до требуемой фазы сгорания регулируют рециркуляцию отработавших газов или температуру всасываемого воздуха.

8. Способ эксплуатации двигателя, в котором:
сжигают воздушно-топливную смесь с помощью воспламенения от сжатия; и
регулируют давление впрыска топлива и момент начала первого впрыска топлива в течение цикла цилиндра в ответ на обратную связь по горению воздушно-топливной смеси, относящуюся к цетановому числу топлива, причем давление впрыска топлива регулируют в зависимости от разницы между базовым моментом начала впрыска топлива и заданным моментом впрыска топлива.

9. Способ эксплуатации двигателя по п. 8, в котором момент начала впрыска топлива делают опережающим, когда сжигают топлива с меньшими цетановыми числами, и момент начала впрыска топлива делают запаздывающим, когда сжигают топливо с более высокими цетановыми числами.

10. Способ эксплуатации двигателя по п. 9, в котором давление впрыска топлива повышают, если начало впрыска топлива делают запаздывающим, и давление впрыска топлива уменьшают, если начало впрыска топлива делают опережающим.



 

Похожие патенты:

Изобретение может быть использовано в системах управления и топливоподачи двигателей внутреннего сгорания. Предложены система и способы регулировки работы двигателя внутреннего сгорания на основании подвергаемых мониторингу условий (давления или светового излучения) внутри камеры сгорания двигателя.

Изобретение может быть использовано в системах управления с обратной связью для управления сгоранием в двигателях внутреннего сгорания. Система (10) двигателя внутреннего сгорания содержит многоцилиндровый двигатель (12), нагрузку (14), соединенную с двигателем посредством коленчатого вала (16), магнитный датчик (24) крутящего момента, расположенный между двигателем (12) и нагрузкой (14) и управляющий модуль (26).

Изобретение может быть использовано в дизельных двигателях. Способ балансировки цилиндров (3) дизельного двигателя (2) заключается в определении начального момента процесса сгорания в каждом цилиндре (3), сравнении определенного начального момента процесса сгорания с конкретным заданным значением, и изменении начального момента впрыска топлива в цилиндры (3), если определенный начальный момент процесса сгорания отличается от заданного значения.

Изобретение относится к системе контроля рабочих характеристик продувки для контроля технологического режима в процессе продувки большого двухтактного дизельного двигателя с прямоточной продувкой, а также к способу контроля технологического режима в процессе продувки в соответствии с частью независимых пунктов 1 и 8 формулы изобретения, предшествующей отличительной части.

Изобретение относится к устройству управления для двигателя внутреннего сгорания и предназначено для точного включения требований, связанных с различными характеристиками двигателя внутреннего сгорания, в работу исполнительных механизмов.

Изобретение относится к способу и системе управления работой моторного тормоза-замедлителя двигателя внутреннего сгорания (ДВС), предназначенного главным образом для использования в большегрузных транспортных средствах.

Изобретение относится к двигателестроению, в частности к системам и способам регулирования двигателей внутреннего сгорания. .

Изобретение относится к двигателестроению, в частности к адаптивному управлению двигателем внутреннего сгорания. .

Изобретение относится к двигателестроению. .

Изобретение относится к машиностроению, в частности к двигателестроению, и позволяет, используя цепную реакцию углерода масел с кислородом, повысить мощность, уменьшить токсичность на различных режимах работы двигателя и на холостом ходу.

Изобретение относится к двигателестроению, а именно к двигателям со сжиганием горючей смеси, а также к двигателям со сжатием воздуха и последующей подачей топлива с самовоспламенением, в частности к рабочим процессам данных двигателей.

Изобретение относится к устройствам впрыска для двигателя внутреннего сгорания, а именно для дизельного двигателя, использующего основное топливо впрыска и топливо предварительного впрыска, которое может отличаться от основного топлива впрыска.

Буна // 1472705
Изобретение относится к области гидротехнического строительства и может быть использовано для защиты от волновых разрушений берегов и откосов земляных сооружений, возводимых на эксплуатируемых водоемах.

Изобретение относится к управлению авиационных двигателей внутреннего сгорания с воспламенением от сжатия. Техническим результатом является повышение эффективности управления двигателем. Сущность изобретения заключается в том, что система имеет элемент двигателя, элемент трансмиссии и элемент воздушного винта. Система содержит один или более элементов измерения давления в камере сгорания, выполненных с возможностью измерения пикового давления в цилиндре (Pmax) в одной или более камер сжатия элемента двигателя. Причем устройство системы управления выполнено с возможностью осуществления стратегии управления в элементе двигателя на основе сравнения Pmax с заданным «нормальным» максимальным давлением в цилиндре (Pmax n). При этом стратегия управления выполнена с возможностью выполнять опережение момента времени впрыска топлива в каждой из одной или более камер сжатия элемента двигателя, если Pmax больше, чем Pmax n, для компенсации большего отставания зажигания и более высокой характеристики пикового давления в цилиндре у низкоцетанового топлива. 2 н. и 4 з.п. ф-лы, 30 ил.

Настоящее изобретение относится к машиностроению, а именно к двигателям внутреннего сгорания. Одноцилиндровая головка цилиндра (1) для установки на одной из многочисленных секций цилиндров большого двигателя внутреннего сгорания содержит корпус головки цилиндра (2), имеющий сторону газовой системы (6), сторону штанги толкателя (8), расположенную напротив стороны газовой системы (6) и круговую поверхность рубашки цилиндра (4) с центральным отверстием форсунки (10), парой входных отверстий и парой выходных отверстий. Центральное отверстие форсунки расположено в центре круговой поверхности рубашки цилиндра (4). Центральная ось проходит через центральное отверстие форсунки от стороны газовой системы (6) до стороны штанги толкателя (8). Пара выходных отверстий и пара входных отверстий расположены на противоположных сторонах по отношению к центральной оси. Центральная выемка для форсунки (18) проходит через корпус головки цилиндра (2) к центральному отверстию форсунки. Канальная система впуска газа (20) проходит от стороны газовой системы (6) через корпус головки цилиндра (2) к паре входных отверстий. Канальная система выпуска газа (22) проходит от пары выходных отверстий через корпус головки цилиндра (2) к стороне газовой системы (6). Канал штанги толкателя (28) проходит через корпус головки цилиндра (2) на стороне штанги толкателя (8). В общей сложности ровно пять отверстий для крепления цилиндра (30, 32, 34, 36, 38) проходят через корпус головки цилиндра (2) на наружной круговой области одноцилиндровой головки цилиндра (1). В общей сложности ровно пять отверстий для крепления цилиндра (30, 32, 34, 36, 38) расположены на разном расстоянии друг от друга вокруг центральной выемки для форсунки. Также раскрыты блок двигателя для большого двигателя внутреннего сгорания и большой двигатель внутреннего сгорания. Технический результат заключается в оптимизации конструкции канала циркуляции всасываемого воздуха и выхлопных газов, а также повышении жесткости конструкции. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложен ДВС, оснащенный аккумуляторной системой подачи топлива, включающей топливный насос высокого давления, гидравлический аккумулятор высокого давления, электроуправляемые форсунки 5, расположенные в цилиндрах 1 ДВС, соединенные гидравлически, электронный блок управления. В каждом цилиндре двигателя расположены, по меньшей мере, две взаимозаменяемые топливные форсунки, оснащенные распылителями, отличающимися количеством, расположением и ориентацией распыливающих отверстий. Наличие в каждом цилиндре, по меньшей мере, двух электроуправляемых форсунок с возможностью осуществлять варьирование закона подачи топлива позволяет оптимизировать характеристики распыливания топлива не только по времени цикла, но и в объеме цилиндра за счет выбора расположения форсунок для конкретной конструкции ДВС с учетом особенностей вихреобразования в цилиндре. Это расширяет возможности совершенствования рабочего процесса ДВС. 2 ил.
Наверх