Способ получения гексаферрита бария


 

C25B1/18 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2554200:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (RU)

Изобретение может быть использовано в производстве магнитных порошков, постоянных магнитов, магнитопластов, магнитных жидкостей, а также устройств магнитной записи высокой плотности. Способ получения гексаферрита бария включает получение суспензии гексаферрита бария, осаждение ее в нейтральной или слабощелочной среде, сушку. Суспензию гексаферрита бария получают электрохимическим методом путем растворения электродов из стали Ст3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе гидроксида бария и хлорида натрия. Процесс осуществляют при концентрации Ba(OH)2 7-10 мг/дм3, NaCl 3-5 мг/дм3, напряжении 8-10 B, температуре 85-90°C, плотности тока 0,11 А/см2. Изобретение позволяет упростить получение мелкодисперсного порошка гексаферрита бария. 1 табл., 1 пр.

 

Изобретение относится к технологии получения магнитотвердых материалов, которые могут быть использованы для производства магнитных порошков, постоянных магнитов, магнитопластов, магнитных жидкостей различного назначения, а также устройств магнитной записи высокой плотности.

Известен способ получения тонкодисперсного порошка гексаферрита общей формулой M(MeTi)xFe12-2xO19, где M-Ba или Sr, Me-Zn, Ni и (или) Co, x=0-2,0. Способ заключается в том, что соли металлов, входящих в состав феррита, в виде хлоридов или карбонатов измельчаются в шаровой мельнице, смешиваются с карбонатом натрия или калия, и полученная смесь подвергается термообработке при 700-1100°C. После охлаждения смесь, состоящая из феррита и хлорида щелочного металла, отмывается от последнего водой. Метод не обеспечивает воспроизводимость состава ферритовых порошков вследствие недостаточной однородности смесей веществ после механических операций измельчения и смешивания [EP 0072437 (B1) 1987-01-07].

Наиболее близким по технической сущности к заявляемому способу является способ получения порошка гексаферрита бария [Патент РФ 2026159, B22F 9/22, H01F 1/11, дата публ. 09.01.1995 г.], сущность которого заключается в том, что из растворов хлоридов ферритообразующих элементов, содержащихся в количествах, соответствующих стехиометрическому соотношению элементов в формуле феррита раствором Na2CO3, осаждаются гидроксиды карбонаты. Полное осаждение компонентов возможно только при pH 7,0-7,8. Барий осаждается в виде BaCO3 при pH 7.

Недостатком всех описанных способов является высокая сложность технологии, трудоемкость и длительность процессов.

Задачей настоящего изобретения является упрощение способа получения гексаферрита бария.

Поставленная задача решается следующим образом. Способ получения гексаферрита бария включает стадию получения суспензии гексаферрита, которую осуществляют электрохимическим методом путем растворения электродов из стали Ст3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе гидроксида бария при концентрации Ba(OH)2 - 7-10 мг/дм3 и хлорида натрия при концентрация NaCl - 3-5 мг/дм3 при напряжении 8-10 В, температуре 85-90°C и плотности тока 0,11 А/см2, осаждение полученной суспензии в нейтральной или слабощелочной среде, сушку.

Электрохимический метод отличается простотой, дешевизной аппаратурного оформления и возможностью управления интенсивностью процесса образования мелкодисперсного ферритового порошка путем изменения параметров электролиза (температура, концентрации NaCl, Ba(OH)2, напряжение).

Способ получения гексаферрита бария иллюстрируется следующим примером.

В емкость, содержащую раствор гидроксида бария (концентрация Ba(OH)2 - 7-10 мг/дм3) и хлорида натрия (концентрация NaCl - 3-5 мг/дм3), погружались электроды из Ст3, расстояние между которыми составляет 5-15 мм, температура раствора 85-90°C, подавалось напряжение 8-10 В, обеспечивающее плотность тока 0,11 А/см2. В результате электролиза в нейтральной или слабощелочной среде образуется осадок гексаферрита бария, который был идентифицирован рентгенографическим анализом и Мессбауэровской спектроскопией. Полученный гексаферрит бария обладает дисперсностью, легко стабилизируется и диспергируется. Свойства полученного порошка (ГФБ 1) приведены в таблице 1. Для сравнения в таблице приведены свойства гексаферрита бария, полученного химическим методом [Чернякова К.В. и др. Структура и магнитные свойства гексагонального феррита бария. / Вестник БГУ, сер. 2, 2008, №1, С. 9-13]. - ГФБ 2.

Таким образом, задача предлагаемого способа решена.

Главным упрощением технологии заявляемого способа получения гексаферрита бария является то, что гексаферрит бария получается одностадийно при температуре 85-90°C, в то время как при химическом осаждении процесс термообработки осажденного гексаферрита бария при температуре 1200°C является отдельной операцией и требует жаропрочной аппаратуры.

В предлагаемом способе соблюдение и изменение расстояния между электродами, регулировка напряжения, температуры, плотности тока не представляет технической сложности.

Способ получения гексаферрита бария, включающий процесс осаждения суспензии гексаферрита бария в нейтральной или слабощелочной среде, сушку образующейся суспензии, отличающийся тем, что процесс получения суспензии гексаферрита бария осуществляют электрохимическим методом путем растворения электродов из стали Ст3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе гидроксида бария (концентрация Ba(OH)2 - 7-10 мг/дм3) и хлорида натрия (концентрация NaCl - 3-5 мг/дм3) при напряжении 8-10 В, температуре 85-90°C и плотности тока 0,11 А/см2.



 

Похожие патенты:

Изобретение относится к области металлургии. Для устранения дефектов формы листа, образующихся при окончательном отжиге, и увеличения выхода годной продукции рулон листа текстурованной электротехнической стали после холодной прокатки подвергают первичному рекристаллизационному отжигу, наносят на него сепаратор отжига и проводят окончательный отжиг.

Изобретение относится к порошковой металлургии. Способ получения магнитомягкого материала для магнитопроводов реле включает приготовление шихты, содержащей железо и фосфор, ее прессование, спекание и охлаждение.

Изобретение относится к нанесению на текстурированную электротехническую полосовую сталь слоя фосфатного покрытия. В способе на электротехническую полосовую сталь наносят фосфатный раствор, содержащий по меньшей мере одно соединение хрома (III), коллоидный компонент и по меньшей мере один сложный эфир фосфорной кислоты в качестве стабилизатора (А) коллоида и/или по меньшей мере один ингибитор (В) травления, выбранный из производного тиомочевины, С2-10-алкинола, производного триазина, тиогликолевой кислоты, С1-4-алкиламина, гедрокси-С2-8-тиокарбоновой кислоты и/или полигликолевого эфира жирного спирта, в частности диэтилтиомочевины, проп-2-ин-1-ола, бутин-1,4-диола, тиогликолевой кислоты, и/или гексаметилентетрамина, причем используют фосфатный раствор, содержание шестивалентного хрома в котором меньше, чем 0,2 вес.

Изобретение относится к области металлургии, а именно к получению листов, изготовленных из сплава на основе железа, используемых для магнитных сердечников электромоторов, электрогенераторов и трансформаторов.

Изобретение относится к электротехнической листовой стали, имеющей изоляционное покрытие, характеризующееся превосходными штампуемостью, адгезионной способностью покрытия, свойством пленки покрытия после отжига, свариваемостью при проведении газовольфрамовой сварки, коррозионной стойкостью и сопротивлением прижимным полозьям даже без содержания в изоляционном покрытии какого-либо соединения хрома.

Изобретение относится к ферромагнитной порошковой композиции и способу ее получения. Предложена ферромагнитная порошковая композиция, включающая магнитно-мягкие частицы сердцевины на основе железа, имеющие насыпную плотность 3,2-3,7 г/мл, и при этом поверхность частиц сердцевины снабжена неорганическим изоляционным слоем на основе фосфора и по меньшей мере одним металлоорганическим слоем из металлоорганического соединения предложенной структуры, расположенным снаружи первого неорганического изоляционного слоя на основе фосфора.

Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин.

Изобретение относится к быстродействующему способу лазерного нанесения насечек, при котором используется установка лазерного устройства для одновременного нанесения линий насечек на верхнюю и на нижнюю поверхности полосы текстурированной кремнистой электротехнической стали, подаваемой и продвигаемой вперед по производственной линии, с помощью луча лазера непрерывного действия с высокой степенью фокусировки, при этом линии насечек, нанесенные на верхнюю поверхность, и линии насечек, нанесенные на нижнюю поверхность, имеют одинаковое расстояние между соседними линиями насечек, но смещены относительно друг друга для равномерного снижения потерь в железе.

Изобретение относится к порошковой металлургии. Способ получения ферритовых изделий включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания облучением проникающим электронным пучком с выдержкой при температуре спекания под облучением непрерывным электронным пучком.

Изобретение относится к порошковой металлургии, в частности к производству материалов для магнитопроводов электромагнитных реле. Готовят шихту, содержащую железо и фосфор, затем проводят ее прессование, спекание и охлаждение.

Изобретение относится к области наноструктурированных биосовместимых материалов, в частности к пористому кремниевому наноносителю. Способ включает следующие этапы - получение пор под действием электролиза в пластине толщиной 700-730 мкм и площадью до 32 см2 монокристаллического кремния, являющейся анодом, p-типа проводимости, легированной бором с концентрацией около 10-19 см-3, с удельным сопротивлением 3-7·10-3 Ом·см, поверхности которой ориентированы параллельно кристаллографическим плоскостям в стеклоуглеродном стакане, являющемся катодом.

Изобретение относится к области металлургии, а именно к катодным материалам на основе нанокристаллических частиц Fe-Ni. Катод для электрохимического получения водорода выполнен в виде стальной подложки с нанесенным на ее поверхность нанокомпозитным покрытием железо-никель.

Изобретение относится к катодному материалу для твердооксидного топливного элемента (ТОТЭ) на основе никельсодержащих перовскитоподобных слоистых оксидов. При этом в качестве перовскитоподобного оксида взято соединение с общей формулой Pr2-xSrxNi1-yCoyO4-z, где 0.0<x<1.0; 0.0<y<1.0; -0.25≤z≤0.25.

Изобретение относится к способу получения водорода низкого давления для последующего сжигания и получения водяного пара с помощью низковольтного электролиза щелочного электролита раствора солей галогенводородных кислот и их смесей постоянным током, с помощью алюминиевых электродов, с дальнейшим извлечением кислорода в отдельный накопитель из образовавшихся алюминиевых комплексов, с поддержанием состава электролита и контролем температуры и давления в электрохимической ячейке.

Изобретение относится к проницаемому для ионов армированному сепаратору. При этом сепаратор содержит по меньшей мере один сепарационный элемент и по существу полый обходной канал, прилегающий к указанному по меньшей мере одному сепарационному элементу, причем указанный по меньшей мере один сепарационный элемент содержит связующее и оксид или гидроксид металла, диспергированный в нем, и указанный сепарационный элемент характеризуется давлением выдавливания первого пузырька по меньшей мере 1 бар и сопротивлением при обратной промывке по меньшей мере 1 бар, причем давление выдавливания первого пузырька определяется с помощью ASTM E128 и ISO 4003.

Изобретение может быть использовано в газо- и нефтедобывающей промышленности для попутного извлечения йод-сырца из бедных по его содержанию подземных напорных вод.

Изобретение относится к электрохимическому способу получения циклогексантиола в органических растворителях. Способ включает взаимодействие циклогексена с сероводородом при атмосферном давлении, причем одностадийную реакцию циклогексена с сероводородом проводят в условиях электролиза при потенциале окисления сероводорода в органическом растворителе, в который помещают фоновый электролит, без использования катализатора или специфического реагента при температуре процесса 20-25°С.
Изобретение относится к получению ультрамикродисперсного порошка оксида никеля. Способ включает получение порошка оксида никеля из металлических никелевых электродов электролизом в щелочном растворе гидроксида натрия.

Изобретение относится к области энергетики и может быть использовано для частичного или полного замещения углеводородного топлива на различных видах транспорта, в отопительных системах жилых и производственных помещений, в генераторах производства пара и для раздельного получения чистого кислорода и водорода для производственных, медицинских и других нужд.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для подготовки нефтяного газа к потреблению. Содержащийся в нефтяном газе сероводород удаляют с использованием трех массообменных колонн, работающих по принципу противоточной циркуляции.

Изобретение может быть использовано в аналитической химии. Для выделения железа (III) из водных растворов используют в качестве первого органического реагента дифенилгуанидин (ДФГ).
Наверх