Способ измерения температуры


 


Владельцы патента RU 2554324:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВПО "МГТУ") (RU)

Изобретение относится к области термометрии и может быть использовано для осуществления мониторинга измерения температуры в труднодоступных местах и в средах. Согласно заявленному способу используют термопару 1 с твердой оболочкой 2 на рабочем спае 3, выполненную из плавкого вещества, с температурой плавления, соответствующей условию:

tпл.п.в=(0,0001-0,6)tпл.ис.ср,

где tпл.п.в - температура плавления плавкого вещества оболочки, °C;

tпл.ис.cp - температура плавления исследуемой среды, °C.

При этом в формовочную смесь литейной формы вводят термопару 1 с оболочкой 2 в зону замера температуры чугуна отливки до контакта поверхности оболочки 2 с поверхностью исследуемой среды, а съем информации ведут в процессе монотонного изменения физического состояния исследуемой среды. Технический результат - повышение точности измерения температуры. 1 ил.

 

Изобретение относится к области температурных измерений и может быть использовано в металлургии для осуществления мониторинга измерения температуры, преимущественно в труднодоступных местах и в средах, например в литейных формах, механизмах нагрева и других агрегатах.

Известен способ измерения температуры движущихся механизмов, заключающийся в размещении на механизме датчика температуры в виде трубчатого индикатора с введенным в его полость твердым телом и плавким веществом и в последующем съеме информации при выходе температуры за заданные пределы по изменению параметров вибрации корпуса механизма при расплавлении плавкого вещества (см. а.с. СССР №1190212, G01K 13/04).

Недостатком известного способа является низкая точность измерения температуры за счет того, что съем информации при нагревании движущихся механизмов осуществляется косвенным методом и начинается только при определенной для плавкого вещества температуре, которая соответствует предельно допустимым значениям для данного механизма. При этом на точность измерения температуры влияют такие факторы, как момент перехода плавкого вещества из твердого состояния в жидкое, начало перемещения твердого тела и соударение его с трубчатым индикатором.

Наиболее близким аналогом к заявленному объекту является способ измерения температуры агрессивной среды с помощью термопары в защитном керамическом наконечнике, включающий ввод термопары в контролируемую среду и съем информации измерения температуры в ней. При этом в наконечнике создают атмосферу инертного газа, давление которого поддерживают не менее 1,2 от давления агрессивной среды, а измерение температуры ведут в охлаждающих газах (см. а.с. СССР №1515069, G01K 7/04 1/10).

Недостатком известного способа является низкая точность измерения температуры за счет того, что в процессе измерения температуры происходит изменение геометрических параметров исследуемой среды, что приводит к образованию между ней и керамической оболочкой термопары воздушных зазоров, значительно увеличивающих тепловое сопротивление. Кроме того, увеличивается инертность термопары за счет использования керамической оболочки.

Задача, решаемая изобретением, заключается в повышении точности измерения температуры в исследуемой среде.

Технический результат, обеспечивающий решение поставленной задачи, заключается в создании гарантированного качественного контакта поверхности оболочки термопары с поверхностью исследуемой среды в зоне измерения температуры, способствующего снижению теплового сопротивления путем предотвращения возникновения между ними воздушных зазоров, а также обеспечивающего уменьшение инерционности замера температуры в процессе монотонного измерения физического состояния исследуемой среды.

Поставленная задача решается тем, что в известном способе измерения температуры, включающем ввод термопары с твердой оболочкой на рабочем спае в зону замера температуры исследуемой среды и последующий съем информации изменения температуры в указанной среде, согласно изобретению, твердую оболочку на рабочем спае термопары выполняют из плавкого вещества, температуру плавления которого выбирают из условия:

tпл.п.в=(0,0001-0,6)tпл.ис.ср,

где tпл.п.в - температура плавления плавкого вещества оболочки, °C;

tпл.ис.ср - температура плавления исследуемой среды, °C;

ввод указанной термопары в зону замера температуры исследуемой среды осуществляют до контакта поверхности твердой оболочки с поверхностью исследуемой среды, а съем информации изменения температуры ведут в процессе монотонного изменения физического состояния исследуемой среды.

Выбор температур плавления плавкого вещества (tпл.п.в) за пределами заявляемого диапазона, соответствующего (0,0001-0,6) температуры плавления исследуемой среды (tпл.ис.cp), является нецелесообразным, так как изготовление твердой оболочки на рабочем спае термопары из вещества с tпл.п.в<0,0001tпл.ис.cp технологически невозможна, а твердая оболочка на рабочем спае термопары из вещества с tпл.п.в>0,6tпл.ис.ср требует увеличения времени на расплав ее материала при взаимодействии с исследуемой средой, что приводит к увеличению погрешности измерения. Следовательно, наилучший результат, обеспечивающий высокую точность измерения температуры исследуемой среды, достигается выбором плавкого вещества оболочки термопары с температурой плавления, соответствующей заявляемому условию, так как при этом обеспечивается гарантированно качественный контакт поверхности расплавленного материала оболочки термопары с поверхностью исследуемой средой.

Сущность заявленного изобретения поясняется чертежом, где приведен фрагмент литейной формы с размещением в ней термопары с твердой оболочкой в зоне контакта с исследуемой средой.

Способ измерения температуры в литейной форме при изготовлении отливки осуществляется следующим образом.

Предварительно изготавливают термопару 1 с твердой оболочкой 2 из плавкого вещества, расположенной на рабочем спае 3. Для этого в полость отдельной литейной формы (на чертеже не показано) заводят термопару 1 и заливают указанную полость расплавом плавкого вещества, температура которого должна соответствовать заявляемому условию:

tпл.п.в=(0,0001-0,6)tпл.ис.ср,

где tпл.п.в - температура плавления плавкого вещества оболочки, °C;

tпл.ис.ср - температура плавления исследуемой среды, °C.

Так как при изготовлении отливки в литейной форме в качестве исследуемой среды является жидкий чугун с температурой плавления tпл.ис.ср=1200°C, то в качестве плавкого вещества для изготовления оболочки 2 термопары 1 выбирают материал, например свинец с температурой плавления tпл.п.в=347°C, потому что соотношение tпл.п.в/tпл.ис.ср=347/1200=0,29.

Из этого следует, что температура плавления свинца попадает в диапазон заявляемого условия tпл.п.в=(0,0001-0,6)tпл.ис.ср, а, следовательно, свинец может быть использован для изготовления оболочки 2 термопары 1.

Заявляемый способ также может быть использован для измерения температуры и в других исследуемых средах, например в олове, в алюминии, в меди и других, при этом в каждом конкретном случае температуру плавления плавкого вещества (tпл.п.в) для оболочки термопары выбирают из ряда материалов, температура которых соответствует заявляемому условию. Так, при измерении температуры в олове в качестве плавкого материала может быть использован, например, сплав натрия с калием.

Изготовленную термопару 1 с оболочкой 2 из свинца вводят в формовочную смесь 4 литейной формы, используемую при изготовлении отливки 5, так чтобы поверхность твердой оболочки 2 располагалась на границе контакта с поверхностью изготавливаемой отливки 5 из чугуна.

Затем в литейную форму заливают расплавленный чугун при температуре 1200°C. Так как температура чугуна выше температуры плавления оболочки из свинца, то происходит мгновенное расплавление последней за счет передачи тепла твердеющей корки 6 отливки 5 оболочке 2 термопары 1. При этом расплавленный свинец гарантированно образует качественный контакт с поверхностью исследуемой среды, т.е. чугуна отливки 5, за счет заполнения макронеровностей поверхности отливки расплавом свинца, предотвращая образование воздушных зазоров в зоне замера температуры исследуемой среды, а следовательно, значительно снижает тепловое сопротивление. Съем информации изменения температуры в отливке 5 ведут в процессе изменения ее физического состояния, а именно в процессе монотонного охлаждения чугуна отливки 5. В результате такого измерения температуры обеспечивается интенсификация теплообмена между исследуемой средой 5 и термопарой 1, а также снижается инерционность замера температуры. Все это приводит к повышению точности и достоверности результатов измерения температуры в отливке 5.

Таким образом, полученный массив данных изменения температуры отливки по заявляемому способу позволяет вести мониторинг тепловых условий формирования указанной литой детали в процессе ее изготовления с высокой точностью и достоверностью.

Способ измерения температуры, включающий ввод термопары с твердой оболочкой на рабочем спае в зону замера температуры исследуемой среды и последующий съем информации изменения температуры в указанной среде, отличающийся тем, что твердую оболочку на рабочем спае термопары выполняют из плавкого вещества, температуру плавления которого выбирают из условия
tпл.п.в=(0,0001-0,6)tпл.ис.ср,
где tпл.п.в - температура плавления плавкого вещества оболочки, °C;
tпл.ис.cp - температура плавления исследуемой среды, °C;
ввод указанной термопары в зону замера температуры исследуемой среды осуществляют до контакта поверхности твердой оболочки с поверхностью исследуемой среды, а съем информации изменения температуры ведут в процессе монотонного изменения физического состояния исследуемой среды.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для проведения температурных измерений. Устройство для измерения температуры содержит мост, собранный на резисторах R1, R2, R3, R4, питаемый от источника стабилизированного напряжения Uстаб (точки b, c).

Изобретение относится к измерительной технике и может быть использовано в процессе измерения температуры объекта. Заявлен электрический штекерный соединитель для контактирования с ответным штекерным соединителем и для электрического подключения по меньшей мере одного первого и одного второго проводника термоэлемента, включающий по меньшей мере одно проводящее электрический ток первое и второе контактное средство.
Изобретение относится к области термометрии и может быть использовано для изготовления термопар. Согласно заявленному способу перед изготовлением термопары готовят два проводника из разных сплавов диаметром 0,3 мм.

Изобретение относится к области измерительной техники и может быть использовано при проведении термометрических измерений. Заявлены термоэлектрическая система, способ гашения колебаний термоэлектрической системы и компрессор, содержащий указанную термоэлектрическую систему.

Изобретение относится к области температурных измерений и может быть использовано при наземных испытаниях элементов летательных аппаратов. Устройство для измерения разности температур содержит два встречно включенных термоприемника 1 и 2, находящихся при температурах t1 и t2 в контролируемой среде, усилитель 3, делитель напряжения 4 из последовательно соединенных резисторов 5-9.

Изобретение относится к области температурных измерений и может быть использовано для определения скорости изменения температуры среды. Частотно-импульсный измеритель скорости изменения температуры содержит дифференциальную термопару 1 из термопар 2 и 3 с различными постоянными времени, усилитель 4, электронный ключ 5 с запоминающей емкостью 6 на выходе.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство содержит термопару в металлическом корпусе, рабочий спай которой расположен внутри защитного наконечника, выступающего за пределы корпуса.

Группа изобретений относится к передатчикам параметров процесса, используемым в системах управления технологическими процессами и мониторинга. Передатчик (10) параметров процесса для измерения температуры производственного процесса включает в себя первый электрический соединитель (1), сконфигурированный с возможностью соединения с первым проводом термопары, при этом первый электрический соединитель (1) включает в себя первый электрод (1A) и второй электрод (1B).

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации или закалке.

Изобретение относится к измерительной технике и может быть использовано в устройствах для проведения длительного и непрерывного измерения температуры газовой или жидкой среды, в том числе агрессивной, а также при отсутствии возможности периодической поверки или замены измерительной части устройства.

Изобретение относится к детектированию температуры теплового излучения фронта ударной волны и может быть использовано для изучения быстропротекающих процессов при изучении конденсированных материалов и свойств взрывчатых веществ.

Изобретение относится к термометру сопротивления с по меньшей мере одним, зависящим от температуры электрическим элементом (1) сопротивления, который имеет по меньшей мере два соединительных контакта (8), основу (3), на которой элемент сопротивления имеет возможность закрепления таким образом, что он имеет возможность вхождения в хороший термический контакт с предметом, температура которого должна быть измерена, и с электрическими подводящими проводами (2, 5), которые предусмотрены для соединений электрических соединительных контактов (8) элемента сопротивления с измерительным прибором.

Изобретение относится к области биомедицинских термометров и предназначено для использования в качестве колпачка датчика ушного термометра. .

Изобретение относится к области измерения температуры поверхности. .

Изобретение относится к области измерения температуры поверхности. .

Изобретение относится к области измерения температуры поверхности. .

Изобретение относится к области измерения температуры поверхности. .

Изобретение относится к устройствам для измерения температуры, в частности для измерения температуры в реакторах. .

Изобретение относится к области термометрии и может быть использовано при измерении температуры внутри объекта, в частности при измерении температуры внутри продуктов питания, преимущественно при термообработке продуктов, например при их копчении.

Изобретение относится к области термометрии и может быть использовано в процессе измерения температуры текучей среды в технологическом процессе. Предложена сенсорная трубка (12) для защиты датчика (13), введенного в движущуюся технологическую текучую среду. Сенсорная трубка (12) включает в себя участок (16) контакта с технологической текучей средой для установки в технологической емкости и удлиненный участок, проходящий от участка (16) контакта с технологической текучей средой до герметично закрытого конца (22). Удлиненный участок включает в себя скрученный участок (20), имеющий продольную ось. Участок (16) контакта с технологической текучей средой и удлиненный участок образуют канал (36) для датчика, выполненный с возможностью размещения в нем датчика (13). Скрученный участок (20) имеет поперечное сечение, которое включает в себя по меньшей мере три стенки одинакового размера, которые образуют многоугольник, и в котором стенки образуют спирали вдоль продольной оси скрученного участка. Технический результат - повышение прочностных и рабочих характеристик устройства. 3 н. и 17 з.п. ф-лы, 7 ил.
Наверх