Водородный газотурбинный двигатель



Водородный газотурбинный двигатель
Водородный газотурбинный двигатель
Водородный газотурбинный двигатель
Водородный газотурбинный двигатель

 


Владельцы патента RU 2554392:

Болотин Николай Борисович (RU)

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный газотурбинный двигатель содержит воздухозаборник, корпус, компрессор с ротором компрессора, имеющим вал, основную камеру сгорания, установленную за компрессором и соединенную с ним воздушным трактом, и сверхзвуковое реактивное сопло. Между компрессором и камерой сгорания внутри воздушного тракта, соединяющего компрессор и камеру сгорания, установлена водородная турбина, которая имеет входной и выходной коллекторы. За камерой сгорания установлен теплообменник, вход которого соединен с топливопроводом, а выход - с входным коллектором водородной турбины. Выходной коллектор водородной турбины соединен трубопроводом с основной камерой сгорания. На выходе из теплообменника установлен второй компрессор, между которым и сверхзвуковым реактивным соплом установлена форсажная камера. Водородная турбина и второй компрессор связаны с валом ротора компрессора. Изобретение направлено на повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к двигателестроению, конкретно к авиационным двигателям для сверхзвуковых и гиперзвуковых самолетов.

Известен водородный газотурбинный двигатель по патенту РФ на изобретение №2029118, МПК F02C 3/04, опубл. 20.05.1995 г., со вспомогательным контуром, работающим на водороде, во вспомогательный контур введен дополнительный воздушный тракт, связывающий выход из свободного компрессора со вспомогательной камерой. Водород в контуре двигателя играет роль хладагента. Для охлаждения турбины основного контура используется воздух высокого давления, который после охлаждения турбины подается в камеру сгорания промежуточного перегрева, куда поступает одновременно перешедший в газообразное состояние сжиженный воздух.

Недостаток - низкие удельные характеристики двигателя вследствие малой степени сжатия воздуха в компрессоре.

Известен водородный газотурбинный двигатель по патенту РФ на изобретение №2320889, МПК F02K 3/04, опубл. 27.03.2008 г., который содержит вентилятор, высоконапорный скоростной компрессор, мультипликатор, пароводяной нагреватель (генератор пара), форсажную камеру, турбодетандер с тепломассообменным аппаратом. Двигатель также имеет трехступенчатую активно-реактивную турбину, у которой третья ступень радиально-осевая, проточная часть которой переходит в критическое сверхзвуковое сечение сопла Лаваля, окруженное аккумулятором пара. Высоконапорный скоростной компрессор выполнен комбинированным со степенью повышения давления, равной 60. Двигатель рассчитан на тягу не менее 150 тонн с расходом воздуха через первый контур 600 кг/с, через второй контур - 1200 кг/с, температурой газа пред турбиной 2000 К. Вентилятор имеет наружный диаметр лопастей первого ряда 4000 мм. Внутри корпуса сопла Лаваля установлены форсунки подачи атомарного водорода для дожигания несгоревшего окислителя. Диски высоконапорного скоростного компрессора выполнены комбинированными - к осевым ступеням добавлены центробежные нагнетающие. Сопло Лаваля снабжено центральным телом, через отверстия которого подается паровоздушная смесь, создающая внешнюю упругую «оболочку-подушку», что позволяет изменять площадь проходного критического сечения сопла Лаваля.

Недостатки - низкий уровень силы тяги, относительно низкие удельные параметры, например удельный расход топлива, недостаточная степень сжатия компрессора.

Низкие удельные параметры объясняются тем, что создать компрессор со степенью сжатия более 30…40 невозможно, из-за того, что температура воздуха на выходе из него превысит 800°C. Кроме того, энергетического потенциала газовой турбины недостаточно для привода более мощного компрессора из -за ограничении температуры газов на выходе из турбины диапазоном 1700…1800°К в первую очередь из-за снижения ресурса рабочих лопаток газовой турбины. Рабочие лопатки газовой турбины находятся на большом диаметре, вращаются с огромными окружными скоростями, следовательно, на них действуют значительные центробежные нагрузки. Прочностные свойства материалов при увеличении температуры ухудшаются.

Известен водородный газотурбинный двигатель по патенту FR №2687433, МПК F02R 3/12, опубл. 20.08.1992 г., прототип.

Этот водородный газотурбинный двигатель содержит воздухозаборник, корпус, компрессор с ротором компрессора, имеющим вал, основную камеру сгорания, установленную за компрессором и соединенную с ним воздушным трактом, и сверхзвуковое реактивное сопло, тем, что между компрессором и камерой сгорания внутри воздушного тракта, соединяющего компрессор и камеру сгорания, установлена водородная турбина, которая имеет входной и выходной коллекторы, а за камерой сгорания установлен теплообменник, вход которого соединен с топливопроводом, а выход - с входным коллектором водородной турбины, выходной коллектор водородной турбины соединен трубопроводом с основной камерой сгорания, на выходе из теплообменника установлен второй компрессор, между которым и сверхзвуковым реактивным соплом установлена форсажная камер.

Недостаток - низкие энергетические возможности водородного газотурбинного двигателя на гиперзвуковых скоростях из-за неиспользования мощности водородной турбины.

Задачи создания изобретения: повышение энергетических показателей водородного газотурбинного двигателя на гиперзвуковых скоростях.

Достигнутые технические результаты: повышение энергетических показателей на гиперзвуковых скоростях: степени сжатия компрессора, силы тяги двигателя и его удельных характеристик.

Решение указанных задач достигнуто в водородном газотурбинном двигателе, содержащем воздухозаборник, корпус, компрессор с ротором компрессора, имеющим вал, основную камеру сгорания, установленную за компрессором и соединенную с ним воздушным трактом, и сверхзвуковое реактивное сопло, при этом между компрессором и камерой сгорания внутри воздушного тракта, соединяющего компрессор и камеру сгорания, установлена водородная турбина, которая имеет входной и выходной коллекторы, а за камерой сгорания установлен теплообменник, вход которого соединен с топливопроводом, а выход - с входным коллектором водородной турбины, выходной коллектор водородной турбины соединен трубопроводом с основной камерой сгорания, на выходе из теплообменника установлен второй компрессор, между которым и сверхзвуковым реактивным соплом установлена форсажная камера, тем, что водородная турбина и второй компрессор связаны с валом ротора компрессора.

Реактивное сопло может быть выполнено сверхзвуковым. Воздухозаборник может быть выполнен охлаждаемым топливом. Реактивное сопло может быть выполнено охлаждаемым топливом.

Сущность изобретения поясняется на фиг. 1…4, где:

на фиг. 1 приведена схема водородного газотурбинного двигателя,

на фиг. 2 приведена схема воздухозаборника,

на фиг. 3 приведен ротор водородной турбины,

на фиг. 4 приведено сверхзвуковое реактивное сопло.

Предложенное техническое решение (фиг. 1…4) содержит воздухозаборник 1, корпус 2 компрессор 3, воздушный тракт 4, основную камеру сгорания 5 теплообменник 6, второй компрессор 7, форсажную камеру 8 и реактивное сопло 9. Реактивное сопло 9 предпочтительно выполнить сверхзвуковым. Компрессор 3 содержит статор 10 и ротор 11. Основная камера сгорания 5 содержит жаровую трубу 12 и форсунки 13. Второй компрессор 7 содержит статор 14 и ротор 15. Форсажная камера 8 имеет форсажный коллектор 16. Общим для двигателя является вал 17, соединяющий роторы 11 и 15 компрессоров 3 и 7 и установленный на опорах 18 и 19. Внутри воздушного тракта 4 концентрично валу 17 установлена водородная турбина 20, работающая на перегретом водороде. Водородная турбина 20 имеет наружный диаметр меньше внутреннего диаметра воздушного тракта 4, чтобы его не загромождать. Кроме того, малые диаметральные габариты водородной турбины 20 уменьшают центробежнве нагрузки на ее вращающиеся детали. Водородная турбина 20 содержит статор 21, ротор 22, входной и выходной коллекторы, соответственно 23 и 24 (фиг. 1 и 3). На фиг. 3 приведена более подробно конструкция ротора 22 водородной турбины 20. Ротор 22 содержит корпус 25 в вилле полого усеченного корпуса 26, к которому присоединены торцовые стенки 27 и 28, имеющие соосные шлицевые втулки 29 и 30. Шлицевые втулки 29 и 30 контактируют со шлицами 31 и 32, выполненными на валу 17. На корпусе 25 установлены рабочие лопатки 33.

Водородный газотурбинный двигатель (фиг. 1) содержит систему топливоподачи, имеющую бак 35, для хранения водорода, топливопровод низкого давления 36, подключенный к выходу из бака 35. К топливопроводу низкого давления 36 присоединены основной и форсажный топливопроводы 37 и 38.

Основной топливопровод 37 содержит насос 39, регулятор расхода 40 и отсечной клапан 41. Трубопроводы перепуска 42 и 43 соединяют соответственно теплообменник 6 с входным коллектром 23 водородной турбины 20 и выходной коллектор 24 с основной камерой сгорания 5. Форсажный топливопровод 38 содержит насос 44, регулятор расхода 45 и отсечной клапан 46, установленный перед форсажным коллектором 16.

Возможно выполнение воздухозаборника 1 охлаждаемым топливом (фиг. 2), для этого его корпус 47 выполнен с кольцевой полостью 48, к которой присоединены основной топливопровод 37 и трубопровод 49, соединяющий кольцевую полость 48 с входом в теплообменник 6.

Возможно применение охлаждаемого топливом (водородом) реактивного сопла 9 (фиг. 4). Для этого выполнены наружная и внутренние стенки 50 и 51 с зазором 52 между ними. На наружной стенке 50 установлены входной и выходной коллекторы 53 и 54. К входному коллектору 53 подсоединен форсажный топливопровод 38, а к выходному коллектору 54 - трубопровод 55, выход которого соединен с форсажным коллектором 16.

РАБОТА ДВИГАТЕЛЯ

При работе водородного газотурбинного двигателя осуществляют его запуск путем подачи электроэнергии на стартер от внешнего источника энергии (на фиг. 1…4 стартер и источник энергии не показаны). Потом включают насос 39 и водород из бака 35 по основному топливопроводу 37 подается в теплообменник 6, потом во входной коллектор 23 водородной турбины 20, из выходного коллектора 24 по трубопроводу перепуска 43 в формунки 13 основной камеры сгорания 5, где воспламеняется при помощи электрозапальника (на фиг. 1…4 электрозапальник не показан). Ротор 22 водородной турбины 20 раскручивается и раскручивает через вал 17 роторы 11 и 15 компрессоров 3 и 7. Компрессор 3 обеспечивает степень сжатия до 30…40, при этом температура воздуха на его выходе может достичь 800К. При сгорании топлива в основной камере сгорания 5 температура выхлопных газов повышается до 1800…2000°С. В теплообменнике 8 продукты сгорания охлаждаются до 300К. Это технически осуществимо из-за высокой теплоемкости водорода и его хороших показателей теплоотдачи. Второй компрессор 7 дополнительно сжимает поток выхлопных газов, создает в форсажной камере сгорания 8 высокое давление, что обеспечивает эффективную работу сопла 9, в том числе сверхзвукового.

При необходимости форсирования открывают отсечной клапан 46 и водород по форсажному топливопроводу 38 подается в форсажный коллектор 16, где воспламеняется и выхлопные газы истекают из реактивного сопла 9, создавая значительную тягу, соизмеримую с силой тяги жидкостного ракетного двигателя - ЖРД такой же размерности. Применение теплообменника 6, как отмечалось ранее, позволит снизить температуру выхлопных газов с 1800…2000К до температуры 300К перед вторым компрессором 7, что позволит второму компрессору 7 обеспечить сжатие продуктов сгорания до 100…150 кгс/см2, т.е. до давления, соизмеримого с давлением в современных ЖРД. Без предварительного охлаждения второй компрессор 7 был бы в принципе неработоспособен. Высокое давление в форсажной камере 18 позволяет обеспечить истечение продуктов сгорания из реактивного сопл 9 со сверхзвуковыми скоростями, тем самым создать большую реактивную тягу. Очень высокая сила тяги при малых габаритах двигателя позволяет достичь летательным аппаратам, оборудованным таким двигателем, скоростей M=5…10 и значительно повысить высотность работы двигателя.

Выполнение водородной турбины 20 и второго компрессора 7, связанных с валом 17 ротора 11 компрессора 3 позволило повысить энергетические показатели на гиперзвуковых режимах: степени сжатия компрессора, силы тяги двигателя и его удельных характеристик. Это объясняется тем, что основную нагрузку для привода второго компрессора 7 берет на себя водородная турбина 20, имеющая особенно высокую мощность на гиперзвуковых скоростях.

Регулирования силы тяги на бесфорсажном режиме осуществляется регулятором расхода 40, на форсажном режиме - регулятором расхода 45.

При останове водородного газотурбинного двигателя все операции осуществляются в обратной последовательности, т.е. закрывают отсечные клапаны 41 и 46.

Применение изобретения позволило:

1. За счет выполнение водородной турбины и второго компрессора, связанных с валом ротора компрессора, позволило повысить энергетические показатели на гиперзвуковых режимах: степени сжатия компрессора, силы тяги двигателя и его удельных характеристик.

2. Повысить степень сжатия компрессоров газотурбинного двигателя за счет применения двух компрессоров и турбины, работающей на водороде, и охлаждения продуктов сгорания перед вторым компрессором. Водородная турбина имеет небольшие диаметральные габариты, поэтому на ее рабочие лопатки действуют меньшие центробежные силы. Применение в качестве рабочего тела чистого водорода значительно увеличивает энергетический потенциал этого рабочего тела. Кроме того, водород может быть подогрет практически до любой температуры, которая ограничивается только прочностью рабочих лопаток водородной турбины, работающей в более легких условиях, чем рабочие лопатки газовой турбины.

3. Обеспечить достижение самолетами, оборудованными этими двигателями, гиперзкуковых скоростей M=5…0.

4. Повысить высотность двигателя.

5. Увеличить надежность двигателя.

1. Водородный газотурбинный двигатель, содержащий воздухозаборник, корпус, компрессор с ротором компрессора, имеющим вал, основную камеру сгорания, установленную за компрессором и соединенную с ним воздушным трактом, и сверхзвуковое реактивное сопло, отличающийся тем, что между компрессором и камерой сгорания внутри воздушного тракта, соединяющего компрессор и камеру сгорания, установлена водородная турбина, которая имеет входной и выходной коллекторы, а за камерой сгорания установлен теплообменник, вход которого соединен с топливопроводом, а выход - с входным коллектором водородной турбины, выходной коллектор водородной турбины соединен трубопроводом с основной камерой сгорания, на выходе из теплообменника установлен второй компрессор, между которым и сверхзвуковым реактивным соплом установлена форсажная камера, при этом водородная турбина и второй компрессор связаны с валом ротора компрессора.

2. Водородный газотурбинный двигатель по п. 1, отличающийся тем, что реактивное сопло выполнено сверхзвуковым.

3. Водородный газотурбинный двигатель по п. 1 или 2, отличающийся тем, что воздухозаборник выполнен охлаждаемым топливом.

4. Водородный газотурбинный двигатель по п. 1, отличающийся тем, что реактивное сопло выполнено охлаждаемым топливом.



 

Похожие патенты:

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания.
Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Задачи создания изобретения: повышение энергетических возможностей газотурбинного двигателя. Достигнутые технические результаты: повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик. Решение указанных задач достигнуто в водородном газотурбинном двигателе, содержащем воздухозаборник, корпус, компрессор с ротором компрессора, имеющим вал, камеру сгорания, установленную за компрессором и соединенную с ним воздушным трактом, и реактивное сопло, тем, что между компрессором и камерой сгорания внутри воздушного тракта, соединяющего компрессор и камеру сгорания, установлена водородная биротативная турбина, которая имеет внешний и внутренний роторы, входной и выходной коллекторы и второй вал, соединенный с внешним ротором, внутренний ротор соединен с валом ротора компрессора, а за камерой сгорания установлен теплообменник, вход которого соединен с топливопроводом, а выход - с входным коллектором турбины, выходной коллектор этой турбины соединен трубопроводом с основной камерой сгорания, на выходе из теплообменника установлен второй компрессор, при этом биротативная водородная турбина и второй компрессор соединены вторым валом.

В гиперзвуковом двигателе, содержащем камеру сгорания, топливо после топливного насоса и перед подачей в камеру сгорания нагревается выше температуры самовоспламенения.

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к области авиационной и ракетной техники и может быть использовано при разработке силовой установки самолета и других летательных аппаратов с воздушно-реактивными двигателями.

Трехкомпонентный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, два компрессора, камеру сгорания, по меньшей мере две газовые турбины, по меньшей мере два вала, соединяющих компрессоры и газовые турбины, реактивное сопло и систему подачи водородного топлива. Между компрессорами установлен, по меньшей мере, один водородно-воздушный теплообменник, подключенный к системе подачи водородного топлива. Двигатель также выполнен с системой подачи углеводородного топлива и системой подачи жидкого кислорода. Камера сгорания содержит три группы форсунок. Изобретение направлено на повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик. 2 з.п. ф-лы, 5 ил.

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Воздушно-реактивный двигатель содержит воздухозаборник, корпус, компрессор с ротором компрессора и камеру сгорания, газовую турбину, вал, соединяющий компрессор и газовую турбину, и реактивное сопло. За компрессором выполнен воздушный тракт, в котором установлен первый водородовоздушный теплообменник. Внутри воздушного тракта коаксиально валу установлена водородная турбина, которая имеет входной и выходной коллекторы. Входной коллектор соединен с выходом из теплообменника, а выходной - с камерой сгорания. За воздушным трактом установлены компрессор среднего давления и компрессор высокого давления, между которыми установлен второй водородовоздушный теплообменник. Перед газовой турбиной установлена газовая турбина высокого давления. Водородная турбина и компрессор среднего давления соединены вторым валом, установленным коаксиально первому, а компрессор высокого давления соединен с турбиной высокого давления третьим валом. Изобретение позволяет повысить энергетические возможности газотурбинного двигателя, повысить степеньи сжатия компрессора, увеличить силу тяги двигателя и улучшить его удельные характеристики.1 з.п. ф-лы, 4 ил.

Двухтопливный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором и группой форсунок, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи углеводородного топлива в камеру сгорания. Группа форсунок установлена за компрессором и соединена с ним воздушным трактом. Двигатель оборудован системой подачи водорода. В камере сгорания выполнена вторая группа форсунок, соединенная с вторым топливным коллектором. Корпус камеры сгорания выполнен в виде теплообменника кольцевой формы с входным и выходным коллекторами. Входной коллектор соединен с системой подачи водорода, а выходной коллектор соединен с вторым топливным коллектором. Турбина, установленная непосредственно после камеры сгорания, выполнена охлаждаемой и содержит сопловой аппарат с полостью, которая отверстиями соединена с внешним каналом. Турбина содержит рабочие лопатки, установленные на диске. Рабочие лопатки выполнены также охлаждаемыми. Полость соплового аппарата соединена каналами с аппаратом закрутки, предназначенным для подачи охлаждающего воздуха к диску и рабочим лопаткам. Изобретение повышает энергетические возможности газотурбинного двигателя, степень сжатия компрессора, увеличивает силу тяги двигателя и улучшает его удельные характеристики. 1 з.п. ф-лы, 2 ил.

Изобретение относится к двигателестроению, в том числе к авиационным двигателям, и может найти применение в гиперзвуковых самолетах или для ракетно-космических систем, способных совершать пилотируемый полет в атмосфере, например, возвращаемой ступени ракеты-носителя. Газотурбинный авиационный двигатель содержит корпус, компрессор, турбину, реактивное сопло и основную камеру сгорания, соединенную воздушным трактом с компрессором. Вне корпуса установлен газогенератор, к входу которого присоединены трубопроводы окислителя и горючего, а к выходу - газовод, соединенный с воздушным трактом. Изобретение направлено на обеспечение высотного запуска двигателя и увеличение его форсажной тяги, особенно на больших высотах полета. 2 н. и 10 з. п. ф-лы, 17 ил.

Воздушно-реактивный двигатель содержит кожух с передним воздухозаборником и задним выпускным отверстием, формирующий внутреннее пространство для воздушного потока внутренней стенкой, расположенной внутри кожуха, центральный рассекатель воздушного потока и камеру сгорания. Центральный рассекатель воздушного потока имеет переднюю часть и заднюю часть, расположен во внутреннем пространстве кожуха и соединен с внутренними стенками кожуха опорными стойками. Внутреннее пространство кожуха обеспечивает прохождение воздушного потока между внутренними стенками кожуха и внешними стенками центрального рассекателя воздушного потока, в результате чего формируется кольцевая зона для прохождения потока, зона Вентури потока сгорания, прилегающая к задней части центрального рассекателя воздушного потока, и задняя выпускная часть кожуха. Камера сгорания расположена снаружи камеры основного воздушного потока, под углом к ней, рядом с задней частью центрального рассекателя воздушного потока и с зоной Вентури потока сгорания. Камера сгорания соединена с отсеком запаса пакетов высокоэнергетического топлива, расположенного в центральном рассекателе воздушного потока. Пакеты высокоэнергетического топлива выполнены с возможностью воспламеняться в камере сгорания для получения прямой тяги двигателя в результате сгорания одной или нескольких высокоэнергетических наночастиц в пакете высокоэнергетического топлива и преобразования водного раствора в этом пакете, в результате чего создается положительный воздушный поток через внутреннее пространство кожуха, и сгоревшее топливо с ускорением выбрасывается во внутреннее пространство кожуха воздушного потока под острым углом. Изобретение направлено на создание легкого устройства и способа для получения тяги, не создающего вращающегося момента и вибрации, для обеспечения движения летательного аппарата. 3 н. и 18 з.п. ф-лы, 6 ил.

Самолёт с газотурбинной силовой установкой содержит маршевую газотурбинную силовую установку, включающую не менее двух двигателей. Каждый из двигателей выполнен в виде выделенного корневого газотурбинного двигателя, содержащего внешний обтекатель, компрессор, камеру сгорания и турбину, приводящую компрессор, и расположенные отдельно от выделенного корневого газотурбинного двигателя движительные устройства. Выход компрессора каждого двигателя выполнен с кольцевым отборником для отбора воздуха для движителей таким образом, что часть воздуха, вырабатываемая компрессором, подводится в камеру сгорания и турбину и используется для привода компрессора. Другая часть оставшегося воздуха высокого давления поступает в трубопровод питания движительных устройств и другие системы и оборудование, обеспечивающие его функционирование. Выделенные корневые двигатели установлены на пилонах под крылом, а движительные устройства, выполненные в виде вихревых эжекторных движителей, установлены на верхней поверхности крыла. Кольцевой отборник каждого двигателя подсоединен к патрубку, установленному в пилоне и другим концом подсоединенному к трубопроводу для питания движительных устройств, установленному в переднем отсеке крыла. Каждый из патрубков, соединяющий кольцевой отборник двигателя с трубопроводом, снабжен обратным клапаном, предотвращающим подачу сжатого воздуха в отказавший двигатель. Достигается снижение расхода топлива, снижение шума, снижение массы и упрощение конструкции, повышается безопасность полётов. 4 ил.

Изобретение относится к области авиации и может быть использовано в двигателестроении летательных аппаратов. Прямоточный воздушно-реактивный двигатель содержит основной воздухозаборник, основную камеру сгорания, камеру переменного сечения, смесительную камеру, основное сопло, основной инжектор топлива, устройство инициирования пульсирующего режима горения. Прямоточный воздушно-реактивный двигатель дополнительно содержит серию мини воздушно-реактивных двигателей, каждый из которых снабжен воздухозаборником, камерой переменного сечения, инжектором топлива и камерой сгорания. Мини-двигатели примыкают к внутренним стенкам камеры переменного сечения, расположены вдоль спирали и ориентированы вдоль этой же спирали. Мини-двигатели расположены в три продольных ряда. Изобретение направлено на повышение стабильности работы, особенно на дозвуковых скоростях, повышение коэффициента тяги двигателя, повышение эффективности. 4 з.п. ф-лы, 3 ил.

Комбинированный турбопрямоточный реактивный двигатель содержит наружный корпус, центральное тело, воздуховод, по меньшей мере, первую ступень воздушного компрессора, турбонасос и дозвуковую турбину. Центральное тело соединено с наружным корпусом конструктивными связями и образует с ним входной канал для воздуха. Первая ступень воздушного компрессора содержит первую турбину, расположенную в центральном теле, и первый ротор с лопатками, которые расположены в воздуховоде и могут избирательно приводиться посредством первой турбины для функционирования в режиме турбореактивного двигателя и переводиться во флюгерное положение для функционирования в режиме прямоточного реактивного двигателя. Турбонасос содержит насос, питаемый жидким водородом из водородного бака для ввода водорода в нагреватель, расположенный в наружном корпусе позади центрального тела. Дозвуковая турбина привода насоса получает водород, собранный на выходе нагревателя и частично расширившийся. Частично расширившийся в дозвуковой турбине водород передается на первую турбину, представляющую собой сверхзвуковую турбину, для функционирования в режиме турбореактивного двигателя. Выходящий из первой сверхзвуковой турбины водород далее собирается в первых трубопроводах внутри центрального тела для отправки в камеру сгорания, образованную внутри корпуса позади центрального тела. Частично расширившийся в дозвуковой турбине водород отправляется непосредственно в камеру сгорания с помощью топливных форсунок для функционирования в режиме прямоточного реактивного двигателя. Изобретение позволяет избежать использования жидкого кислорода и создать компактный двигатель более простой конструкции со сниженной массой и улучшенными рабочими характеристиками. 6 з.п. ф-лы, 7 ил.
Наверх