Способ глубокой очистки и обеззараживания природных вод, а также вод, содержащих антропогенные и техногенные загрязнения

Изобретение относится к области очистки природных вод, включая содержащие техногенные и антропогенные загрязнения, от минеральных и органических загрязнений для питьевых и технических целей. Способ включает процессы дегазации-аэрации, химико-биологического окисления органических и неорганических веществ в аэробиофильтре и контактное фильтрование через инертную плавающую загрузку в отдельно расположенном фильтре, объединенном с аэробиофильтром системой гидроавтоматической промывки. Аэрацию и дегазацию осуществляют низконапорной вакуумно-струйной эжекцией или инжекцией и распылением струи в водовоздушной среде. Химико-биологическое окисление органических веществ производят в комбинированном плавающем гранульно-волокнистом слое, находящемся в начальный период работы частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии. Дополнительно производят коагулирование и флокулирование воды путем ввода реагентов в разные по высоте точки восходящей ветви сифона промывной воды. Производят осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через плавающую гранульную загрузку и угольно-посеребренные картриджи, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды и равномерного распределения ее по площади фильтра в режиме промывки загрузки. Техническим результатом изобретения является возможность глубокой очистки природных вод, а также вод, содержащих антропогенные и техногенные загрязнения, от природных, антропогенных и техногенных загрязнений и их обеззараживания. 5 з.п. ф-лы, 1 ил., 5 пр.

 

Изобретение относится к области очистки природных вод, а также вод, содержащих антропогенные и техногенные загрязнения, от минеральных и органических загрязнений для питьевых и технических целей.

Известен способ очистки воды, заключающийся в подаче ее в окислитель, контактировании с воздухом, поступающим от водовоздушного инжектора, с последующей обработкой воды в режиме кавитации и пропусканием ее через блок предварительной очистки и далее через блок тонкой очистки, оснащенный микропористыми картриджами из материала пространственно-глобулярной структуры (см. патент RU №41722).

Недостатком известного способа является необходимость частой замены картриджей, из-за неизбежного снижения их производительности со временем и невозможности полного восстановления их пропускной способности.

Известен способ очистки природных и сточных вод, реализуемый в биореакторе-фильтре, заключающийся в том, что на первой ступени очистки в верхней части биореактора-фильтра осуществляется окисление содержащихся в воде органических веществ, железа и марганца вакуумно-эжекционной дегазацией и аэрацией воды, а на последующей стадии осуществляется очистка воды от окисленных органических и минеральных загрязнений в расположенной ниже плавающей неоднородной гранулированной загрузке при прохождении воды через нее в направлении убывающей крупности гранул (см. патент RU 2356854).

Недостатком известного способа очистки является недостаточная эффективность глубокой доочистки воды, содержащей примеси антропогенного или техногенного происхождения, ограниченная скорость фильтрования в биореакторе при направлении фильтрационного потока сверху вниз из-за возможности расширения нижних мелкогранульных слоев плавающей загрузки и выноса в этот момент ранее задержанных в ее толще загрязнений.

Известен способ очистки воды, наиболее близкий по назначению и технологической сущности к заявленному, заключающийся в предварительной очистке воды от минеральных и растворенных органических веществ в биореакторе с волокнистой загрузкой, под которую подается воздух с противотоком поступающей воды; после предочистки вода подвергается реагентной обработке раствором коагулянта и флокулянта и доочистке на контактном фильтре с плавающей гранулированной загрузкой при восходящем направлении фильтрационного потока; очищенная вода собирается в надфильтровом пространстве, выполняющем функции резервуара чистой воды. Аэрируемый префильтр и фильтр доочистки объединены общей системой гидроавтоматической сифонной промывки загрузок (см. патент RU 2144005).

Недостатком известного способа является недостаточная эффективность предочистки воды в слое волокнистой загрузки и на контактном фильтре от растворенных солей металлов, нефтепродуктов, поверхностно-активных веществ, гуминовых комплексов, а также отсутствие системы обеззараживания очищенной воды.

Технологическим и техническим результатом предлагаемого изобретения является возможность глубокой очистки природных вод, а также вод, содержащих антропогенные и техногенные загрязнения, от природных, антропогенных и техногенных загрязнений и их обеззараживания.

В частности, заявленный способ позволяет очищать природные воды из скважин, из рек, из водохранилищ, включая воды, подвергающиеся антропогенному и техногенному влиянию, а также доочищать недостаточно очищенные хозяйственно-бытовые и производственные сточные воды, и очищать ливневые сточные воды.

Технологический и технический результат достигается тем, что в способе очистки воды, включающем процессы дегазации-аэрации, химико-биологического окисления органических веществ в аэробиофильтре и фильтрование через инертную плавающую загрузку в отдельно расположенном фильтре, объединенном с аэробиофильтром системой гидроавтоматической промывки, при этом аэрацию и дегазацию осуществляют низконапорной вакуумно-струйной эжекцией и распылением струи в водовоздушной среде, химико-биологическое окисление неорганических или органических веществ производят в комбинированном плавающем гранульно-волокнистом слое аэробиофильтра, находящемся в начальный период работы частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии; дополнительно производят коагулирование и флокулирование воды либо иную реагентную обработку, например, пермангантом калия, или перекисью водорода, или хлором, путем ввода реагентов в разные по высоте точки восходящей ветви сифона промывной воды; производят осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через плавающую гранульную загрузку, или через сорбирующую или комбинированную загрузку, и (или) угольно-посеребренные картриджи, смонтированные в верхнем слое плавающей загрузки, выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды и равномерного распределения ее по площади фильтра в режиме промывки загрузки; при этом указанные аэробиофильтр и фильтр с промывным устройством, резервуарами промывной воды и чистой воды и обеззараживающим(и) устройством(ами) могут быть как разнесены, так и объединены в общем корпусе, в зависимости от состава и степени загрязнений исходных вод.

В частности, предварительное либо полное окисление неорганических или органических веществ происходит одновременно как в водном или водовоздушном потоке, так и на гранульном полистирольном носителе, так и на размещенных в нем волокнистых нитях с распущенными к низу пучками, непрерывно обтекаемых потоком воды.

В частности, ввод реагентов осуществляют в распределители воды, смонтированные на восходящей ветви сифона на разной ее высоте, или вводят непосредственно в поток перед аэрирующим устройством, или непосредственно в поток воды в верхней или нижней части аэробиофильтра, или в поток воды между аэробиофильтром и фильтром доочистки, при этом точки ввода реагентов используются в процессе очистки в зависимости от изменений физико-химического состава исходной воды.

В частности, при очистке поверхностных вод из реки или водохранилища в периоды низких температур исходной воды используются точки ввода реагентов перед аэробиофильтром и в верхней части аэробиофильтра, а также в поток воды между аэробиофильтром и фильтром в распределитель и (или) в смеситель на восходящей ветви сифона, а в летний период используются точки ввода реагентов в нижней части аэробиофильтра или в распределителе и смесителе восходящей ветви сифона, расположенного между аэробиофильтром и фильтром.

В частности, используемые точки ввода реагентов изменяются при паводке и при его отсутствии, после штормов в водохранилищах и при других обстоятельствах изменения качества исходной воды, включая сбросы в реку или водохранилище загрязнений антропогенного происхождения.

В частности, при очистке подземных вод точки ввода реагентов изменяются при проникновении большого количества загрязняющих веществ в подземный горизонт и существенного изменения качественного состава исходной воды.

В частности, при очистке ливневых сточных вод точки ввода реагентов изменяются при поступлении большого количества взвешенных веществ и нефтепродуктов.

В частности, при доочистке недостаточно очищенных хозяйственно-бытовых и производственных сточных вод точки ввода реагентов изменяются при поступлении на очистку повышенного содержания загрязняющих веществ.

В частности, сорбционно-обеззараживающие картриджи, размещенные в верхнем слое крупнозернистой загрузки фильтра, выполняют одновременно функции сборно-распределительной системы, обеспечивающей поступление очищенной воды в расположенный над фильтром резервуар чистой воды в режиме фильтрования и обратно из него в режиме промывки загрузок.

В частности, при зарядке сифона происходит одновременная промывка очищенной водой загрузок сверху вниз сорбционных фильтров-картриджей и пенополистирольного, или волокнистого, или гранульного, или комбинированного фильтра с помощью общей системы гидравлической промывки.

В частности, зарядное устройство обеспечивает вывод аэробиофильтра и фильтра на промывку с помощью клапана в виде перевернутого стакана, частично погруженного в воду и перекрывающего нижнее выпускное отверстие нисходящей ветви сифона и прижатого к ней пружинным устройством или силой тяжести противовесов.

Сущность процесса глубокой очистки воды заключается в следующем.

Вода по трубопроводу 1 (рис. 1) поступает от насоса под давлением 0,8-1,5 атм в струйно-вакуумные эжекторы, или контраэраторы, или инжекторы 2, разбрызгивается в верхней конусной части аэробиофильтра 3, обогащаясь при этом кислородом воздуха, подсасываемого через окна 4 аэробиофильтра. То есть осуществляют аэрацию и дегазацию низконапорной вакуумно-струйной эжекцией и распылением струи в водовоздушной среде. При этом из воды одновременно удаляются растворенные в ней газы, а сама вода, отражаясь от конусной или купольной крышки аэробиофильтра, поступает сверху вниз в комбинированную грунульно-волокнистую загрузку 5, являющуюся носителем для прикрепленных микроорганизмов. Благодаря хорошо развитой поверхности вспененных гранул полистирола и волокон со временем на них образуется биологическая пленка, а при содержании в воде железа и марганца и каталитическая пленка из их окислов, в результате чего происходит окисление органических и неорганических веществ и их частичное задерживание на поверхности гранул и волокон и в межзерновом пространстве. Таким образом осуществляют химико-биологическое окисление неорганических и органических веществ в комбинированном плавающем гранульно-волокнистом слое, находящемся в начальный период работы частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии.

В частности, окисление веществ может происходить одновременно как на гранульном полистирольном носителе, так и на размещенных в нем волокнистых нитях с распущенными к низу пучками, непрерывно обтекаемых потоком воды.

Прошедшая загрузку аэробиофильтра вода собирается системой из дырчатых трубопроводов 6 и отводится за счет располагаемого напора в распределитель 7, смонтированном на восходящей ветви сифона 19, где смешивается сначала с подаваемым в него по трубе коагулянтом или другим требующимся для очистки воды реагентом, а затем в смесителе 8 с подаваемым туда флокулянтом или другим требующимся для процесса очистки реагентом. При этом возможно осуществление ввода реагентов непосредственно в поток перед аэрирующим устройством, или непосредственно в поток воды в верхней или нижней части аэробиофильтра, или в поток воды между аэробиофильтром и фильтром доочистки или в распределители воды, смонтированные на восходящей ветви сифона, на разной ее высоте, при этом точки ввода реагентов используются в процессе очистки в зависимости от изменений физико-химического состава исходной воды.

Из смесителя вода по трубопроводу 15 поступает в подфильтровое пространство 13, фильтруется через плавающую гранульную загрузку 9, доочищается и обеззараживается на угольно-сорбционных посеребренных картриджах 10 (угольно-посеребренные картриджи, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды и равномерного распределения ее по площади фильтра в режиме промывки загрузки), собирается в резервуаре чистой воды 11 и по трубопроводу 12 отводится потребителю.

В частности, сорбционно-обеззараживающие картриджи, размещенные в верхнем слое крупнозернистой загрузки фильтра, могут выполнять одновременно функции сборно-распределительной системы, обеспечивая поступление очищенной воды в расположенный над фильтром резервуар чистой воды в режиме фильтрования и обратно из него в режиме промывки загрузок.

По мере задержания загрязнений в загрузке аэробиофильтра-префильтра и фильтра уровень воды в надфильтровом пространстве аэробиофильтра возрастает. Одновременно с этим возрастает уровень воды в восходящей ветви сифона 19. При достижении заданной величины потерь напора в загрузках и уровня воды до отметки расположения верха нисходящей ветви сифона 19 вода начинает поступать в нисходящую ветвь, заполняет ее до заданного уровня. При этом за счет давления столба воды заданной высоты, превышающего противодавление, создаваемое силой Архимеда, и упругости пружины или массы противовесов стакан 14 опускается, обеспечивается срабатывание клапана 17 и зарядка сифона, после чего начинается одновременная промывка загрузок аэробиофильтра и фильтра в нисходящем потоке промывной воды из резервуара чистой воды 11 и из камеры 3.

Промывная вода с выносимыми загрязнениями отводится по трубам 15 и 16 в восходящую ветвь сифона 19, а оттуда через верх нисходящей ветви сифона и опущенный стакан 14 в канализационный лоток 18. В процессе промывки загрузка 5 аэробиофильтра и загрузка 9 фильтра расширяются, их гранулы при этом интенсивно перемешиваются, что способствует отрыву и смыву загрязнений и с поверхности гранул, и с поверхности волокон.

Промывка продолжается до снижения уровня воды в резервуаре чистой воды до отметки расположения низа трубки срыва вакуума 20 в резервуаре 11, после чего и аэробиофильтр, и фильтр переключаются автоматически в режим фильтрования.

Преимущества предложенного способа заключаются в следующем.

Объединение и последовательная реализация процессов дегазации-аэрации воды путем струйно-вакуумной эжекции или инжекции в нее воздуха и (или) других требуемых для процесса очистки реагентов; окисления и предварительного удаления растворенных органических веществ и растворенных форм железа и марганца; последовательного смешения воды после аэробиофильтра в восходящей ветви сифона системы гидроавтоматической промывки загрузок с растворами коагулянта и флокулянта или других требующихся для процесса очистки воды реагентов; контактного фильтрования воды через плавающую загрузку фильтра глубокой доочистки воды; глубокой сорбционной доочистки с одновременным обеззараживанием позволяет обеспечивать глубокую очистку как природных вод, содержащих в широком спектре природные и антропогенные примеси, включая такие как сопутствующие газы, растворенные органические вещества, соли тяжелых металлов, ПАВы, и иные техногенные и антропогенные загрязнения, так и сточных вод, включая их очистку от азотных и фосфоросодержащих микроэлементов.

Последовательная реализация этих процессов в одной комбинированной установке или сооружении большой производительности, а также реализация процессов смешения воды с растворами коагулянта и флокулянта или других требующихся для процесса очистки воды реагентов в восходящей ветви сифона автоматической системы гидравлического управления технологическими процессами позволяет сократить на 20-40% капитальные и эксплуатационные затраты, по сравнению с реализацией способов биохимической очистки, сорбционной доочистке и обеззараживания указанных вод.

Примеры применения заявленного способа очистки вод

Пример 1. В частности, с помощью заявленного способа на комбинированной установке непрерывно в течение десяти месяцев очищалась подземная вода из скважин на Архангельском водозаборе г. Ульяновск. Указанный водозабор относится к нижне-среднечетвертичному водоносному аллювиальному комплексу. В литологическом составе водовмещающих пород доминируют пески разнозернистые с гравием и галькой. Горизонт залегает на глубине от 28-62 до 100-110 м. Водообильность горизонта высокая. Дебиты скважин, оборудованных на данный горизонт, изменяются от 10 до 50 и более л/сек. Исходная вода данного водозабора характеризуется переменным составом вследствие условной защищенности водоносного горизонта. Комбинированная установка была смонтирована в составе:

- аэробиофильтр с контраэраторами и эжекторами, при этом в аэробиофильтре была загружена комбинированная гранульно-волокнистая загрузка, состоящая из плавающей пенополистирольной загрузки и волокнистых нитей с распушенными книзу пучками, обтекаемая потоком воды,

- сифон с распределителем и смесителем для ввода реагентов и с устройством одновременной гидроавтоматической промывки комбинированной установки в составе аэробиофильтра и фильтра,

- фильтр с плавающей гранульной загрузкой и с угольно-посеребренными сорбционными картриджами.

Состав исходной воды по основным качественным показателям был следующим:

Запах 2 балла;

Привкус 2 балла;

Температура 8°C;

pH 7,3;

Fe 1,9 мг/л;

Μn 0,4 мг/л;

Мутность 9,7 мг/л;

Окисляемость 2,9 мг/л;

Coli-фаги до 30.

Для очистки воды, поступающей под давлением 0,9 атм по трубопроводу 1 на вход установки, применялся кислород воздуха, поступающий в аэробиофильтр 3 через окна 4 и смешивающийся в контраэраторах 2 в верхней конусной части аэробиофильтра, в котором происходили процессы аэрации, дегазации и химико-биологического окисления загрязнений на комбинированном гранульно-волокнистом слое загрузки 5, находящейся в начальный период работы установки частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии. Прошедшая загрузку аэробиофильтра вода собиралась системой из дырчатых трубопроводов 6 и отводилась за счет располагаемого напора в распределитель 7, смонтированный на восходящей ветви сифона 19, а затем в смеситель 8, в который дополнительно осуществлялся ввод в качестве реагента перманганата калия с дозой 1,2 мг/л для удаления марганца как наиболее сложно удаляемого загрязнителя. Из смесителя вода по трубопроводу 15 поступала в подфильтровое пространство 13, фильтровалась с целью доочистки от загрязнений через плавающую гранульную загрузку 9, доочищалась и обеззараживалась на угольно-сорбционных посеребренных картриджах 10, собиралась в резервуаре чистой воды 11 и по трубопроводу 12 отводилась потребителю. Таким образом, в фильтре производился осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через плавающую гранульную загрузку 9 и угольно-посеребренные картриджи, смонтированные в верхнем слое плавающей загрузки, выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды 11 и равномерного распределения ее по площади фильтра в режиме промывки загрузок.

По мере задержания загрязнений в загрузках аэробиофильтра-префильтра и фильтра уровень воды в надфильтровом пространстве аэробиофильтра возрастал. Одновременно с этим возрастал уровень воды в восходящей ветви сифона 19. При достижении заданной величины потерь напора в загрузках и уровня воды до отметки расположения верха нисходящей ветви сифона 19 вода начинала поступать в нисходящую ветвь, заполняя ее до заданного уровня. При этом за счет давления столба воды заданной высоты, превышающего противодавление, создаваемое силой Архимеда, и массы противовесов стакан 14 опускался, обеспечивалось срабатывание клапана 17 и зарядка сифона, после чего начиналась одновременная промывка загрузок аэробиофильтра и фильтра в нисходящем потоке промывной воды из резервуара чистой воды 11 и из камеры 3, таким образом завершение фильтроцикла установки происходило автоматически.

Промывная вода с выносимыми загрязнениями отводилась по трубам 15 и 16 в восходящую ветвь сифона 19, а оттуда через верх нисходящей ветви сифона и опущенный стакан 14 в канализационный лоток 18. В процессе промывки загрузка 5 аэробиофильтра и загрузка 9 фильтра расширялись, их гранулы при этом интенсивно перемешивались, что способствовало отрыву и смыву загрязнений, и с поверхности гранул и с поверхности волокон.

Промывка продолжалась до снижения уровня воды в резервуаре чистой воды до отметки расположения низа трубки срыва вакуума 20 в резервуаре 11, после чего и аэробиофильтр, и фильтр автоматически переключались в режим фильтрования.

При этом на аэробиофильтре происходило удаление до 60% загрязнений с доочисткой до норм воды питьевого качества на фильтре.

При этом достигаемые результаты очистки воды были следующими:

Запах 0 баллов;

Привкус 1 балл;

Температура 9°C;

pH 7,2;

Fe менее 0,1 мг/л;

Μn менее 0,05 мг/л;

Мутность 0,52 мг/л;

Окисляемость 1,84 мг/л;

Coli-фаги не обнаружены.

Пример 2

Состав исходной воды из скважин на вышеописанном Архангельском водозаборе г. Ульяновск по основным качественным показателям был следующим:

Запах 3 балла;

Привкус 3 балла;

Температура 12°C;

pH 7,8;

Fe 3,94 мг/л;

Μn 0,8 мг/л;

Мутность 13,5 мг/л;

Окисляемость 3,4 мг/л,

Coli-фаги до 35.

Для очистки воды, поступающей под давлением 1,2 атм по трубопроводу 1 на вход установки, применялся кислород воздуха, поступающий в аэробиофильтр через окна 4 и смешивающийся с водой в вакуумно-струйных эжекторах 2 и в верхней конусной части аэробиофильтра 3, в котором происходили процессы аэрации, дегазации и химико-биологического окисления загрязнений на комбинированном гранульно-волокнистом слое загрузки 5, находящейся в начальный период работы установки частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии. Прошедшая загрузку аэробиофильтра вода собиралась системой дырчатых трубопроводов 6 и отводилась за счет располагаемого напора в распределитель 7, где для увеличения времени контакта осуществлялся ввод перманганата калия в распределитель 7 перед фильтрацией, с дозой 1,2 мг/л для удаления марганца, как наиболее сложно удаляемого загрязнителя. Далее вода поступала через смеситель 8 в подфильтровое пространство фильтра. В фильтре производился осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через плавающую гранульную загрузку 9 и угольно-посеребренные картриджи 10, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды 11 и равномерного распределения ее по площади фильтра в режиме промывки загрузки. При этом процессы автоматической промывки загрузок аэробиофильтра и фильтра происходили, как описано в примере 1.

При этом на аэробиофильтре происходило удаление до 60% загрязнений с доочисткой до норм воды питьевого качества на фильтре.

При этом достигаемые результаты очистки воды были следующими:

Запах 1 балл;

Привкус 1 балл;

Температура 14°C;

pH 7,6;

Fe менее 0,1 мг/л;

Μn менее 0,05 мг/л;

Мутность 0,64;

Окисляемость 1,97.

При этом в приведенных примерах 1 и 2 достигаемое качество очистки соответствует требованиям нормативов к качеству питьевой воды, при этом расход перманганата калия для окисления марганца составил 1,2 мг/л, скорости воды при очистке на аэробиофильтре 20 м/ч, а при фильтровании на фильтре 8,5 м/ч, фильтроцикл установки составил 46 часов.

Пример 3

В частности, с помощью заявленного способа на комбинированной установке, смонтированной на водоочистных головных сооружениях водозабора (ВГСВ) г. Ульяновск, непрерывно в течение девяти месяцев очищалась исходная вода из р. Волга и Куйбышевского водохранилища, характеризующаяся существенной переменностью состава исходной воды в разные периоды года. Комбинированная установка была смонтирована в составе:

- аэробиофильтр с устройствами распределения и аэрации воды, а именно с эжекторами, контраэраторами и инжекторами, при этом в аэробиофильтре была загружена комбинированная гранульно-волокнистая загрузка, состоящая из плавающей пенополистирольной загрузки и волокнистых нитей с распушенными книзу пучками, обтекаемая потоком воды,

- сифон с распределителем и смесителем для ввода реагентов и с устройством одновременной гидроавтоматической промывки комбинированной установки в составе аэробиофильтра и фильтра,

- фильтр с комбинированной загрузкой с угольно-посеребренными сорбционными и обеззараживающими картриджами.

Состав исходной воды по основным качественным показателям был следующим:

Запах 2 балла;

Привкус 2 балла;

Цветность 22 градуса;

Мутность 5,25 мг/л;

pH 7,18;

Fe 0,22 мг/л;

Μn 0,1 мг/л;

Окисляемость 4,85 мгО2/л;

Щелочность общая 3,2 мг/л;

Алюминий менее 0,04 мг/л;

Сульфаты 19,9;

Coli-фаги (БОЕ в 100 мл) до 130

Для очистки исходной воды, подаваемой под давлением 1,2 атм по трубопроводу 1, применялся кислород воздуха, поступающий через окна 4 и смешивающийся с потоком воды в контраэраторах 2, смонтированных в верхней конусной части аэробиофильтра 3, в котором происходили процессы аэрации, дегазации и химико-биологического окисления загрязнений на комбинированном гранульно-волокнистом слое загрузки 5, находящейся в начальный период работы установки частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии. Прошедшая загрузку аэробиофильтра вода собиралась системой дырчатых трубопроводов 6 и отводилась за счет располагаемого напора в распределитель 7 на восходящей ветви сифона, где дополнительно вводился коагулянт, после чего вода поступала на смеситель 8, где вводился флокулянт. Далее вода, как описано в Примере 1, поступала в фильтр, в котором производились осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через комбинированную загрузку 9 и угольно-посеребренные картриджи 10, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды 11 и равномерного распределения ее по площади фильтра в режиме промывки загрузки. При этом процессы автоматической промывки загрузок аэробиофильтра и фильтра происходили, как описано в примере 1.

При этом на аэробиофильтре происходило удаление до 45% загрязнений с доочисткой до норм воды питьевого качества на фильтре.

При этом достигаемые результаты очистки воды были следующими:

Запах 1 балл;

Привкус 1 балл;

Цветность 4,8 градуса;

Мутность менее 0,5 мг/л;

pH 6,9;

Fe менее 0,1 мг/л;

Μn менее 0,1 мг/л;

Окисляемость 2,9 мг/л;

Щелочность общая 1,9 мг/л;

Алюминий 0,08 мг/л;

Сульфаты 19,9 мг/л;

Coli-фаги (БОЕ в 100 мл) - не обнаружены.

Пример 4

Состав исходной воды по основным качественным показателям был следующим:

Запах 3 балла;

Привкус 2 балла;

Цветность 30 градусов;

Мутность 12,3 мг/л;

pH 7,3;

Fe 0,22 мг/л;

Μn 0,17 мг/л;

Окисляемость 6,7 мгО2/л;

Щелочность общая 3,4 мг/л;

Алюминий менее 0,04 мг/л;

Сульфаты 23,0 мг/л;

Coli-фаги (БОЕ в 100 мл) до 130,

Для очистки исходной воды, подаваемой под давлением 1,2 атм по трубопроводу 1, применялся кислород воздуха, поступающий через окна 4 и смешивающийся с потоком воды в низконапорных вакуумно-струйных эжекторах 2, смонтированных в верхней конусной части аэробиофильтра 3, в котором происходили процессы аэрации, дегазации и химико-биологического окисления загрязнений на комбинированном гранульно-волокнистом слое загрузки 5, находящейся в начальный период работы установки частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии. Далее вода двигалась, как описано в Примере 1. Дополнительно вводились коагулянт, подаваемый в распределитель 7, и флокулянт, подаваемый в смеситель 8. Далее вода, как описано в Примере 1, поступала в фильтр, в котором производились осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через комбинированную загрузку 9 и угольно-посеребренные картриджи 10, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды 11 и равномерного распределения ее по площади фильтра в режиме промывки загрузки. При этом процессы автоматической промывки загрузок аэробиофильтра и фильтра происходили, как описано в примере 1.

При этом на аэробиофильтре происходило удаление до 45% загрязнений с доочисткой до норм воды питьевого качества на фильтре.

При этом достигаемые результаты очистки воды были следующими:

Запах 1 балл;

Привкус 1 балл;

Цветность 8,3 градуса;

Мутность 0,51 мг/л;

pH 7,06;

Fe менее 0,1 мг/л;

Μn менее 0,1 мг/л;

Окисляемость 4,6 мг/л;

Щелочность общая 2,3 мг/л;

Алюминий 0,18 мг/л;

Сульфаты 31,5 мг/л;

Coli-фаги (БОЕ в 100 мл) - не обнаружены.

Пример 5

Состав исходной воды на ВГСВ, описанном выше, в период сильного волнения (штормовые явления) по основным качественным показателям был следующим:

Запах 3 балла;

Привкус 3 балла;

Цветность 40 градусов;

Мутность 20 мг/л;

pH 7,42;

Fe 0,24 мг/л;

Μn 0,22 мг/л;

Окисляемость 7,2 мгО2/л;

Щелочность общая 3,6 мг/л;

Алюминий менее 0,04 мг/л;

Сульфаты 25,0;

Coli-фаги (БОЕ в 100 мл) до 130.

Для очистки воды, подаваемой на установку под давлением 1,2 атм по трубопроводу 1, применялись кислород воздуха, поступающий через окна 4 в верхней конусной части 3 аэробиофильтра и смешивающийся с частью потока воды при помощи двух эжекторов, коагулянт, подаваемый с частью потока воды поступающей через один инжектор. В аэробиофильтре 3 происходили процессы аэрации, дегазации и химико-биологического окисления загрязнений на комбинированном гранульно-волокнистом слое загрузки 5, находящейся в начальный период работы установки частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии. Далее вода двигалась, как описано в Примере 1. Дополнительно в распределитель 7 подавался флокулянт. Такой алгоритм ввода реагентов для данного состава исходной воды обеспечил увеличение времени ее контакта с реагентами и более полную предочистку воды на загрузке аэробиофильтра. Далее вода, как описано в Примере 1, поступала в фильтр, в котором производились осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через комбинированную загрузку 9 и угольно-посеребренные картриджи 10, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды 11 и равномерного распределения ее по площади фильтра в режиме промывки загрузки. При этом процессы автоматической промывки загрузок аэробиофильтра и фильтра происходили, как описано в примере 1.

При этом на аэробиофильтре происходило удаление 45% загрязнений с доочисткой до норм воды питьевого качества на фильтре. При этом достигаемые результаты очистки воды были следующими:

Запах 1 балл;

Привкус 1 балл;

Цветность 13 градусов;

Мутность 0,58 мг/л;

pH от 7,2;

Fe менее 0,1 мг/л;

Μn менее 0,1 мг/л;

Окисляемость 4,6 мг/л;

Щелочность общая 2,3 мг/л;

Алюминий 0,16 мг/л;

Сульфаты 30,2 мг/л;

Coli-фаги (БОЕ в 100 мл) - не обнаружены.

При этом в приведенных примерах 3, 4 и 5 достигаемое качество очистки соответствует требованиям нормативов к качеству питьевой воды, при этом средняя доза коагулянта составила 20 мг/л, скорость воды при очистке на аэробиофильтре составила 15 м/ч, скорость на фильтре 7 м/ч, фильтроцикл составил 16 часов.

1. Способ очистки воды, включающий процессы дегазации-аэрации, химико-биологического окисления органических веществ в аэробиофильтре и контактное фильтрование через инертную плавающую загрузку в отдельно расположенном фильтре, объединенном с аэробиофильтром системой гидроавтоматической промывки, отличающийся тем, что аэрацию и дегазацию осуществляют низконапорной вакуумно-струйной эжекцией или инжекцией и распылением струи в водовоздушной среде, химико-биологическое окисление органических и неорганических веществ производят в комбинированном плавающем гранульно-волокнистом слое, находящемся в начальный период работы частично в незатопленном состоянии, а частично в затопленном псевдоожиженном состоянии; дополнительно производят коагулирование и флокулирование путем ввода реагентов в разные по высоте точки восходящей ветви сифона промывной воды или ввода непосредственно в поток перед аэрирующим устройством, или непосредственно в поток воды в верхней или нижней части аэробиофильтра, или в поток воды между аэробиофильтром и фильтром доочистки; производят осветлительно-сорбционный процесс глубокой доочистки воды и обеззараживание путем фильтрации в восходящем направлении через плавающую гранульную загрузку или через сорбирующую или комбинированную загрузку и угольно-посеребренные картриджи, смонтированные в верхнем слое плавающей загрузки и выполняющие одновременно функцию системы для сбора и отвода очищенной воды в расположенный выше резервуар чистой воды и равномерного распределения ее по площади фильтра в режиме промывки загрузки.

2. Способ по п. 1, отличающийся тем, что окисление органических веществ происходит одновременно как на гранульном полистирольном носителе, так и на размещенных в нем волокнистых нитях с распущенными к низу пучками, непрерывно обтекаемых потоком воды.

3. Способ по п. 1, отличающийся тем, что ввод реагентов осуществляют в распределители воды, смонтированные на восходящей ветви сифона, на разной ее высоте.

4. Способ по п. 1, отличающийся тем, что сорбционно-обеззараживающие картриджи, размещенные в верхнем слое крупнозернистой загрузки фильтра, выполняют одновременно функции сборно-распределительной системы, обеспечивающей поступление очищенной воды в расположенный над фильтром резервуар чистой воды в режиме фильтрования и обратно из него в режиме промывки загрузок.

5. Способ по п. 1, отличающийся тем, что при зарядке сифона происходит одновременная промывка очищенной водой загрузок сверху вниз сорбционных фильтров-картриджей и пенополистирольного фильтра с помощью общей системы гидравлической промывки.

6. Способ по п. 5, отличающийся тем, что зарядное устройство обеспечивает вывод аэробиофильтра и фильтра на промывку с помощью клапана в виде перевернутого стакана, частично погруженного в воду и перекрывающего нижнее выпускное отверстие нисходящей ветви сифона и прижатого к ней пружинным устройством или массой противовесов.



 

Похожие патенты:

Изобретение относится к биологической очистке бытовых и промышленных сточных вод и может быть использовано в индивидуальном, коммунальном хозяйствах и на промышленных предприятиях.

Изобретение относится к очистке хозяйственно-бытовых и промышленных сточных вод. Способ очистки сточных вод включает усреднение потока воды и биологическую очистку с активным илом.

Изобретение относится к водоочистным устройствам и может быть использовано для очистки сточных вод предприятий молочных заводов и фабрик, мясоперерабатывающих и рыбоперерабатывающих заводов, птицефабрик, маслозаводов, нефтеперерабатывающих заводов, предприятий по производству алкогольных и безалкогольных напитков, городских сточных вод.

Изобретение относится к области охраны окружающей среды, в частности к обезвреживанию хозяйственно-бытовых сточных вод. Сточную воду, пропущенную через первичный отстойник, аэротенки, вторичный отстойник, очищают нанокластерами оксигидрата железа (III) от тяжелых металлов в течение 60 минут в контактном резервуаре с FeS фракцией 3 мм, массой 55536,8 г с подкислением воды технической серной кислотой в количестве 0,1 л/с, после чего ее подают в горизонтальный отстойник с электродной системой, установленной по всему его объему и состоящей из 7 плоских углеграфитовых пластин длиной 30 м, толщиной 2-3 мм с расстоянием между пластинами 5 см и медных шин между пластинами, где выдерживают в течение пяти часов, воздействуя нанотоками 25 нА.

Изобретение относится к устройствам очистки поверхностного стока и может быть использовано для очистки ливневых и талых вод с территорий городов и промышленных предприятий от взвешенных веществ, нефтепродуктов, органических веществ и ионов тяжелых металлов.

Изобретение может быть использовано для глубокой очистки бытовых и производственных сточных вод на малогабаритных блокированных установках, в том числе расположенных на нефтегазодобывающих платформах, терминалах и судах.

Изобретение относится к биоэнергетике и может быть использовано качестве универсального метантенка для переработки навоза животных, птиц, бытовых и сельскохозяйственных отходов в метан и в органическое удобрение.

Изобретение относится к биологической очистке сточных вод и может быть использовано в очистных сооружениях населенных пунктов, сельскохозяйственных и промышленных предприятий.

Изобретение относится к способу и установке для предварительной обработки неочищенной воды и может найти применение для бытовых, сельскохозяйственных и промышленных нужд.

Изобретение относится к комбинированным устройствам для очистки и обеззараживания сточных вод. Устройство состоит из блока предварительной очистки, содержащего отстойник 2 и фильтр 1, блока коагуляции-флотации, содержащего высоконапорный насос 4, гидродинамический кавитатор 5, расходную емкость коагулянта 6 и флотатор-коагулятор, и блока доочистки и обеззараживания, содержащего фильтр 19 и агрегат ультрафиолетового облучения 20 с ультразвуковым излучателем.
Изобретение может быть использовано для очистки сточных вод титано-магниевого производства. Сточные воды смешивают и отделяют твердые взвеси в песколовке.
Изобретение относится к очистке сточных вод кожевенного производства. Способ включает усреднение сточных вод, смешивание их с раствором алюмосодержащего коагулянта, коррекцию рН, напорную флотацию при насыщении сточных вод воздухом и удаление флотошлама.
Изобретение может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, взвешенные вещества, масла и жиры.

Изобретение может быть использовано для очистки поверхностных сточных вод и нефтезагрязненных производственных стоков. Для осуществления способа очищаемую воду предварительно обрабатывают флокулянтом с гидрофобизирующими свойствами.

Изобретение относится к промышленной очистке и обеззараживанию воды и может быть использовано в области хозяйственно-бытового водоснабжения для удаления примесей из природных, преимущественно подземных, вод.

Изобретение относится к установкам для очистки воды. Блочно-модульная установка для очистки и подачи воды содержит блок предварительной фильтрации 1, блок основной очистки 2, блок обеззараживания и блок управления.

Изобретение может быть использовано в технологии осуществления реакции Фишера-Тропша в промышленности. Способ очистки водного потока, выходящего после реакции Фишера-Тропша, включает обработку неорганическим основанием, имеющим рКа выше или равным 6,5, и подачу его в испаритель, получают два выходящих потока - поток пара из головной части испарителя и водный поток из нижней части испарителя.
Изобретение может быть использовано в технологии изготовления искусственного грунта, применяемого в дорожно-транспортном строительстве, в качестве удобрений для придорожного озеленения, лесоразведении, рекультивации полигонов твердых бытовых отходов и полигонов промышленных отходов, для биологической рекультивации нарушенных земель.

Изобретение относится к очистке жидких стоков, содержащих органические загрязнения в промышленных, сельскохозяйственных и бытовых предприятиях. .

Изобретение относится к сельскому хозяйству и предназначено для удаления осадка из прудов-накопителей, используемых для транспортировки ила в животноводческих стоках на поля орошения, в водоохранных мероприятиях, для распределения сточных и животноводческих стоков в системе дождевания из распределительных трубопроводов.
Наверх