Способ получения синтез-газа

Изобретение относится к процессу получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Синтез-газ получают при горении смеси углеводородного сырья с окислителем c коэффициентом избытка окислителя менее 1 при температуре менее 1400 К внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем. Ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости, или через проницаемые стенки полости, или через проницаемые стенки и дно полости, а вывод продуктов горения - через верхнее сечение полости. Смесь углеводородного сырья с окислителем или один из этих газов в полном объеме или частично перед вводом в полость нагревают за счет тепла, выделяемого продуктами горения. Матрицу дополнительно подогревают тепловым излучением, отраженным от проницаемого для продуктов горения экрана, размещенного в полости матрицы. Технический результат заключается в повышении эффективности за счет увеличения выхода синтез-газа при использовании для конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность. 1 з.п. ф-лы, 7 ил., 1 табл.

 

Изобретение относится к процессам и устройствам для получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии.

Известен способ получения синтез-газа, осуществляемый в проточном двухкамерном реакторе в турбулентном режиме при горении смеси углеводородного сырья и окислителя. Дополнительно к указанной смеси в проточный реактор подают перегретый водяной пар в количестве 5-20 мас.% по отношению к массе поданного углерода в виде углеводородного сырья. Производят воспламенение трехкомпонентной смеси в камере сгорания струей горячего газа из внешнего источника, давление в котором при воспламенении превышает давление в первой камере. Продукты сгорания из первой камеры реактора через сопло с критическим перепадом давления направляют во вторую камеру и продолжают процесс горения до содержания кислорода в продуктах горения не более 0,3 об.% /RU 2320531, C01 B3/36, 2008/.

К недостатку известного способа можно отнести его низкую эффективность, которая связана с высоким расходом окислителя и невозможностью конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность.

Наиболее близким к заявляемому является способ получения синтез-газа при горении смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1 при температуре менее 1400 К внутри одной или нескольких полостей, полностью или частично образованных материалом, проницаемым для смеси углеводородного сырья с окислителем. Причем ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости/полостей, или через проницаемые стенки полости/полостей, или через проницаемые стенки и дно полости/полостей, а вывод продуктов горения осуществляют через верхнее сечение полости/полостей /RU 2374173, C01 B3/34, 2009/. Данное техническое решение выбрано за прототип.

Прототип также характеризуется недостаточной эффективностью, связанной с большой потерей тепла с отходящими газами и, как следствие, невозможностью конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность.

Авторы решали задачу по созданию способа получения синтез-газа, лишенного указанного недостатка. Техническим результатом предлагаемого изобретения является повышение эффективности за счет повышения выхода синтез-газа и связанной с этим возможности использования для конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность.

Для решения поставленной задачи, а также для достижения заявленного технического результата предлагается способ получения синтез-газа при горении смеси углеводородного сырья с окислителем, с коэффициентом избытка окислителя менее 1, осуществляемый при температуре менее 1400 K внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем. Причем ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости, или через проницаемые стенки полости, или через проницаемые стенки и дно полости, а вывод продуктов горения - через верхнее сечение полости. Отличительной особенностью предлагаемого способа является то, что смесь углеводородного сырья с окислителем или один из этих газов в полном объеме или частично перед вводом в полость нагревают за счет тепла, выделяемого продуктами горения, а матрицу дополнительно подогревают тепловым излучением, отраженным от проницаемого для продуктов горения экрана, размещенного в полости матрицы.

Дополнительно предлагается процесс горения осуществлять в нескольких полостях.

Предварительный нагрев смеси углеводородного сырья с окислителем или одного из этих газов в полном объеме или частично перед вводом в полость за счет тепла, выделяемого продуктами горения, с дополнительным подогревом матрицы тепловым излучением, отраженным от проницаемого для продуктов горения экрана, размещенного в полости матрицы, позволяет повысить выход синтез-газа за счет расширения диапазона горения богатых смесей.

На фиг. 1 представлена схема реактора для получения синтез-газа, на фиг. 2 представлена схема установки, в которой осуществляется процесс горения в нескольких полостях, на фиг. 3 представлена схема установки, где полость полностью образована матрицей, на фиг. 4 представлена схема установки, в которой ввод углеводородного сырья производят через проницаемое дно полости, на фиг. 5 и 6 представлены схемы установок, в которых всю смесь газов перед вводом в полость нагревают, на фиг. 7 представлена схема установки, в которой смесь перед вводом в полость подогревают частично, где 1 - внешний кожух реактора, 2 - корпус реактора, 3 - матрица, 4 - проницаемый для продуктов горения экран, 5 - смеситель, 6 - отводящая трубка, 7 - теплообменник.

Способ осуществляют следующим образом. В смеситель 5 подают углеводородное сырье и воздух с коэффициентом избытка окислителя менее единицы. Полученная смесь, омывая внешний кожух реактора, охлаждает его и поступает в теплообменник 7, где нагревается за счет выделяемого продуктами горения тепла. После чего смесь поступает в матрицу, где и происходит процесс горения. Локализация фронта пламени вблизи поверхности матрицы приводит к сильному разогреву внутренней поверхности полости матрицы. Продукты горения, проходя сквозь проницаемый для них экран 4, далее направляются в отводящую трубку 6. Возникающее на разогретой поверхности матрицы радиационное излучение отражается от экрана 4 обратно на поверхность матрицы, поднимая ее температуру и температуру продуктов горения.

В таблице 1 представлены данные по режимам осуществления предлагаемого способа.

Как показали эксперименты, использование изобретения позволяет обеспечить возможность конверсии в синтез-газ низкокалорийного биогаза с содержанием СО2 до 50%. При этом продемонстрирована эффективность организации рекуперации тепла для достижения устойчивой работы реактора вплоть до значения α=0.35-0.39, т.е. предельной величины, определяющей границу сажеобразования.

1. Способ получения синтез-газа при горении смеси углеводородного сырья с окислителем c коэффициентом избытка окислителя менее 1, осуществляемый при температуре менее 1400 К внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем, причем ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости, или через проницаемые стенки полости, или через проницаемые стенки и дно полости, а вывод продуктов горения - через верхнее сечение полости, отличающийся тем, что смесь углеводородного сырья с окислителем или один из этих газов в полном объеме или частично перед вводом в полость нагревают за счет тепла, выделяемого продуктами горения, а матрицу дополнительно подогревают тепловым излучением, отраженным от проницаемого для продуктов горения экрана, размещенного в полости матрицы.

2. Способ по п. 1, отличающийся тем, что процесс горения осуществляют в нескольких полостях.



 

Похожие патенты:

Изобретение относится к устройствам для получения тепла и инфракрасного излучения и может быть использовано в различных бытовых устройствах и технологических процессах для нагрева для и сушки, в том числе с использованием низкокалорийного топлива, например, биогаза, а также для риформинга углеводородных газов.

Изобретение относится к устройству для термической обработки рулонных полос (6) с, по меньшей мере, одним излучающим трубным узлом (1), содержащим три трубы, лежащие в общей, параллельной рулонной полосе (6) осевой плоскости, а именно центральную трубу (2), подключаемую к горелке, и две внешние трубы (3), сообщенные на обоих концах с центральной трубой (2) через трубные колена (4), и с опорной шейкой (9), соединенной с обоими трубными коленами (4) между центральной трубой (2) с одной стороны и обоими внешними трубами (3) с другой стороны и расположенной на противоположенной относительно горелки стороне излучающего трубного узла.

Изобретение относится к области теплоэнергетики и может быть использовано при разработке инфракрасных нагревателей направленного действия с высокими технико-экономическими свойствами для промышленных и бытовых нужд.

Рекуператор тепла для радиационной трубчатой горелки содержит трубу горелки и выпускную трубу. Горелка установлена на входе трубы горелки.

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электростанциях, в котельных и печном хозяйстве предприятий при сжигании распыленного водоугольного топлива или пылевоздушной смеси.

Изобретение относится к беспламенному бензиновому отопителю. .

Изобретение относится к нагревателю беспламенного горения. .

Изобретение относится к пламенному нагревателю. .

Изобретение относится к пламенному нагревателю. .

Настоящее изобретение относится к способу получения олефинов, включающему: а) паровой крекинг включающего этан сырья в зоне крекинга и в условиях крекинга с получением выходящего из зоны крекинга потока, включающего по меньшей мере олефины и водород; b) конверсию оксигенированного сырья в зоне конверсии оксигената-в-олефины в присутствии катализатора с получением выходящего из зоны оксигената-в-олефины (ОТО) потока по меньшей мере из олефинов и водорода; c) объединение по меньшей мере части выходящего из зоны крекинга потока и части выходящего из зоны ОТО потока с получением объединенного выходящего потока; и d) отделение водорода от объединенного выходящего потока, причем образуется по меньшей мере часть оксигенированного сырья за счет подачи водорода, полученного на стадии d), и сырья, содержащего оксид углерода и/или диоксид углерода, в зону синтеза оксигенатов и получения оксигенатов.

Изобретение относится к способу производства водородсодержащего продукта и парового продукта и может быть использовано для производства повышенных количеств отводимого пара.

Изобретение относится к реактору для парциального окисления углеводородного сырья. Реактор включает внешний корпус со средством вывода продуктов реакции из реактора и с хотя бы одним средством ввода сырья или компонентов сырья в размещенную внутри реактора с зазором с внешним корпусом катализаторную гильзу, заполненную катализатором и включающую средства вывода продуктов из ее нижней части.

Изобретение относится к подаче тепловой энергии и может быть использовано в химической промышленности и газификации. Способ подачи тепловой энергии в систему термообработки (104) сырья включает: газификацию сухого сырья в первом реакторе (106) потоком газифицирующего газа (FGG) с получением первого газового потока (PFG); окисление во втором реакторе (108) с получением второго газового потока (DFG); активацию в третьем реакторе носителей кислорода с получением избытка тепловой энергии; подачу части тепловой энергии указанного второго газового потока (DFG) и/или избыточного тепла с активации носителей кислорода в систему (104) термообработки сырья; и повышение температуры потока газифицирующего газа (FGG) по меньшей мере одной частью избыточного тепла с активации носителей кислорода для повышения температуры указанного потока газифицирующего газа (FGG) до температуры газификации.

Изобретение относится к энергетическому оборудованию и может быть использовано для получения водорода как в стационарных установках, так и на транспорте. Генератор водорода содержит реакционный сосуд, магистраль подачи водного раствора едкого натра, магистраль выдачи водорода, а также контейнер с твердым реагентом - алюминием.

Изобретение относится к области химии и химической технологии, а именно, к процессам переработки газообразного углеводородного сырья и получения технического водорода для химической, металлургической, автомобильной, авиационной и прочих отраслей промышленности, научных исследований, точного машиностроения, приборостроения, синтеза материалов для микроэлектроники, исходного сырья для водородной энергетики и питания топливных элементов и т.д.

Изобретение может быть использовано для производства электроэнергии из сырьевого материала, содержащего углерод, более конкретно из угля и/или сухой биомассы. Способ получения электроэнергии из сырьевого материала, содержащего углерод, включает стадии газификации сухого сырьевого материала в газификационном реакторе газовым потоком, содержащим главным образом СО2, при высокой температуре с созданием первого газового потока, включающего главным образом молекулы монооксида углерода; окисления в окислительном реакторе носителями кислорода в окисленном состоянии (МеО) при высокой температуре с созданием второго газового потока, содержащего СО2, и носители кислорода в восстановленном состоянии (Ме); активации в активационном реакторе носителей кислорода в восстановленном состоянии газовым потоком активации, включающим элементы кислорода, с созданием обедненного кислородом газового потока активации; и преобразования части тепловой энергии потока активации в электроэнергию.

Изобретение относится к способу приготовления оксидно-полиметаллических катализаторов, содержащих металлы платиновой группы, для окислительно-паровой конверсии углеводородов с получением оксида углерода и водорода.

Изобретение относится к способу получения синтез-газа из углеводородного сырья в аппарате теплообменного риформинга. Аппарат включает внешнюю оболочку, множество вертикально расположенных катализаторных труб, содержащих катализатор, несущую конструкцию катализаторных труб, средства для косвенного нагрева катализаторных труб теплообменной средой, входной канал для подачи теплообменной среды, выходной канал для вывода теплообменной среды, входной канал для подачи углеводородного сырья, которое находится во взаимодействии с катализатором, выходной канал для вывода синтез-газа после прохождения через катализаторные трубы, входной канал для подачи охлаждающей среды, которая находится во взаимодействии с катализатором.

Изобретение относится к способу получения водорода низкого давления для последующего сжигания и получения водяного пара с помощью низковольтного электролиза щелочного электролита раствора солей галогенводородных кислот и их смесей постоянным током, с помощью алюминиевых электродов, с дальнейшим извлечением кислорода в отдельный накопитель из образовавшихся алюминиевых комплексов, с поддержанием состава электролита и контролем температуры и давления в электрохимической ячейке.

Изобретение относится к химической промышленности, а именно к усовершенствованию промышленного медьцинкового катализатора для низкотемпературной конверсии оксида углерода. Предложен медьцинковый катализатор, включающий оксиды меди, цинка, алюминия и дополнительное соединение кремния. Катализатор содержит соединение кремния в пересчете на оксид 0,5-5,0 мас.%, смешанное с оксидами меди и цинка. Катализатор сформирован в процессе термообработки гидроксида алюминия совместно с соединениями вышеназванных компонентов и имеет пористую структуру с общим удельным объемом пор не менее 0,25 см3/г и долей мезопор диаметром 10-40 нм более 60%, и катализатор имеет в пересчете на оксиды следующий состав, мас.%: CuO - 40,0-55,0; ZnO - 24,0-35,0; SiO2 - 0,5-5,0; AlO3 - остальное. Техническим результатом предлагаемого изобретения является создание медьцинкового катализатора, обладающего повышенной прочностью и термостабильностью. 4 з.п. ф-лы, 3 табл., 8 пр.
Наверх