Адсорбер



Адсорбер
Адсорбер
Адсорбер
Адсорбер
Адсорбер
Адсорбер
Адсорбер

 


Владельцы патента RU 2554588:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный открытый университет" (RU)

Изобретение относится к технике очистки газов адсорбентами, а именно к газоочистному оборудованию, и может найти применение в химической, металлургической и других отраслях промышленности для очистки газовых смесей. Технической задачей предлагаемого изобретения является снижение энергоемкости путем сокращения энергозатрат на десорбцию за счет использования теплоты адсорбции, аккумулируемой корпусом в процессе осушки газа, с последующим применением ее для поддержания нормированной температуры регенерирующего воздуха. Технический результат достигается тем, что адсорбер включает вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на секции с образованием чередующихся в шахматном порядке конфузоров и диффузоров, верхние и нижние решетки и патрубки отвода и подвода газа, при этом патрубок подвода газа представляет собой суживающийся усеченный конус, на внутренней поверхности которого имеются винтообразные продольно расположенные канавки, причем канавки конструктивно выполнены в виде ласточкина хвоста, при этом по направлению от большего основания патрубка подвода газа к меньшему его основанию равномерно на горизонтальном уровне между винтообразными продольно расположенными канавками размещены выпускные окна, имеющие одинаковый диаметр на одном горизонтальном уровне и возрастающий на последующих горизонтальных уровнях по мере движения очищаемого газа от большего основания патрубка подвода газа к его меньшему основанию, при этом верхняя решетка выполнена разъемной и состоит из неподвижной верхней части с подвижной нижней частью, причем связь между неподвижной верхней и подвижной нижней частями выполнена гибкой в виде пружин, периферийно укрепленных между ними, а отверстия в верхней решетке выполнены в виде телескопических цилиндров, при этом внутренние диаметры цилиндров верхней части в 2,0-2,5 раза превышают внешние диаметры цилиндров нижней части верхней решетки, причем внутренняя поверхность вертикального корпуса покрыта теплоизоляционным и теплоаккумулирующим слоем, выполненным в виде пучков вытянутых волокон из базальта, расположенного от патрубка подвода до патрубка отвода газа. 7 ил.

 

Изобретение относится к технике очистки газов адсорбентами, а именно к газоочистному оборудованию, и может найти применение в химической, металлургической и других отраслях промышленности для очистки газовых смесей.

Известен адсорбер (см. патент РФ №2146167, МПК B01D 53/04, опубл. 10.03.2000), включающий вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на секции с образованием чередующихся в шахматном порядке конфузоров и диффузоров, верхние и нижние решетки и патрубки отвода и подвода газа, при этом патрубок подвода газа представляет собой суживающийся усеченный конус, на внутренней поверхности которого имеются винтообразные продольно расположенные канавки, причем канавки конструктивно выполнены в виде ласточкина хвоста, при этом по направлению от большего основания патрубка подвода газа к меньшему его основанию равномерно на горизонтальном уровне между винтообразными продольно расположенными канавками размещены выпускные окна, имеющие одинаковый диаметр на одном горизонтальном уровне и возрастающий на последующих горизонтальных уровнях по мере движения очищаемого газа от большего основания патрубка подвода газа к его меньшему основанию.

Недостатком является ухудшение качества очистки адсорбента при длительной эксплуатации, обусловленное разрушением зерен адсорбирующего вещества из-за непрерывного их трения между собой, так и о стенки зигзагообразных перегородок при подаче газа в адсорбер снизу вверх. В результате по мере разрушения путем измельчения зерен адсорбирующего вещества высота засыпки уменьшается, что приводит к более интенсивному перемещению в вертикальном направлении зерен адсорбирующего вещества с последующим измельчением, а это в конечном итоге ухудшает поглощающую способность адсорбера в целом.

Известен адсорбер (см. патент РФ №2460574, МПК B01D 53/04, опубл. 10.09.2012), включающий вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на секции с образованием чередующихся в шахматном порядке конфузоров и диффузоров, верхние и нижние решетки и патрубки отвода и подвода газа, при этом патрубок подвода газа представляет собой суживающийся усеченный конус, на внутренней поверхности которого имеются винтообразные продольно расположенные канавки, причем канавки конструктивно выполнены в виде ласточкина хвоста, при этом по направлению от большего основания патрубка подвода газа к меньшему его основанию равномерно на горизонтальном уровне между винтообразными продольно расположенными канавками размещены выпускные окна, имеющие одинаковый диаметр на одном горизонтальном уровне и возрастающий на последующих горизонтальных уровнях по мере движения очищаемого газа от большего основания патрубка подвода газа к меньшему основанию, при этом верхняя решетка выполнена разъемной и состоит из неподвижной верхней части с подвижной нижней частью, причем связь между неподвижной верхней и подвижной нижней частями выполнена гибкой в виде пружин, периферийно укрепленных между ними, а отверстия в верхней решетке выполнены в виде телескопических цилиндров, при этом внутренние диаметры цилиндров верхней части в 2,0-2,5 раза превышают внешние диаметры цилиндров нижней части верхней решетки.

Недостатком является энергоемкость процесса осушки газа, обусловленная необходимостью выполнения десорбции путем поддержания высокой температуры регенерирующего воздуха или значительного расхода ранее осушенного воздуха на удаление накопленной влаги из массы адсорбирующего вещества.

Технической задачей предлагаемого изобретения является снижение энергоемкости путем сокращения энергозатрат на десорбцию за счет использования теплоты адсорбции, аккумулируемой корпусом в процессе осушки газа, с последующим применением ее для поддержания нормированной температуры регенерирующего воздуха.

Технический результат достигается тем, что адсорбер включает вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на секции с образованием чередующихся в шахматном порядке конфузоров и диффузоров, верхние и нижние решетки и патрубки отвода и подвода газа, при этом патрубок подвода газа представляет собой суживающийся усеченный конус, на внутренней поверхности которого имеются винтообразные продольно расположенные канавки, причем канавки конструктивно выполнены в виде ласточкина хвоста, при этом по направлению от большего основания патрубка подвода газа к меньшему его основанию равномерно на горизонтальном уровне между винтообразными продольно расположенными канавками размещены выпускные окна, имеющие одинаковый диаметр на одном горизонтальном уровне и возрастающий на последующих горизонтальных уровнях по мере движения очищаемого газа от большего основания патрубка подвода газа к его меньшему основанию, при этом верхняя решетка выполнена разъемной и состоит из неподвижной верхней части с подвижной нижней частью, причем связь между неподвижной верхней и подвижной нижней частями выполнена гибкой в виде пружин, периферийно укрепленных между ними, а отверстия в верхней решетке выполнены в виде телескопических цилиндров, при этом внутренние диаметры цилиндров верхней части в 2,0-2,5 раза превышают внешние диаметры цилиндров нижней части верхней решетки, причем внутренняя поверхность вертикального корпуса покрыта теплоизоляционным и теплоаккумулирующим слоем, выполненным в виде пучков вытянутых волокон из базальта, расположенных от патрубка подвода до патрубка отвода газа.

На фиг. 1 изображен внешний вид адсорбера, на фиг. 2 - патрубок подвода в виде суживающегося усеченного конуса, на фиг. 3 - развертка внутренней патрубка подвода газа, на фиг. 4 - горизонтальные уровни в виде концентрических окружностей размещения выпускных окон, на фиг. 5 - сечение винтообразной продольно расположенной канавки в виде ласточкина хвоста, на фиг.6 - сечение верхней решетки, состоящей из неподвижной и подвижной нижней частей, на фиг. 7 - сечение корпуса адсорбера с внутренней поверхностью, покрытой теплоизоляционным и теплоаккумулирующим слоем.

Адсорбер (фиг. 1) включает вертикальный корпус 1, боковые стенки 2 которого выполнены зигзагообразными, установленные в нем секционные перегородки 3 выполнены перфорированными и зигзагообразными и образуют в каждой секции 4 диффузоры 5 и конфузоры 6, расположенные относительно соседних секций в шахматном порядке. Секции снабжены верхней выходной 7 и нижней входной 8 решетками. Отвод очищенного газа осуществляется через патрубок вывода 9, а ввод очищенного газа через патрубок 10, выполненный в виде суживающего усеченного конуса.

На внутренней поверхности патрубка ввода газа 10 (фиг. 2 и 3) имеются винтообразные продольно расположенные канавки 11, между которыми по направлению от большего основания 12 патрубка ввода газа 10 к меньшему его основанию 13 на различных горизонтальных уровнях по периметру в виде концентрических окружностей 4, 15, 16 (фиг. 4) выполнены выпускные окна 17, 18, 19 (фиг. 2, 3, 4).

Выпускные окна 17 имеют одинаковый диаметр на одном горизонтальном уровне по периметру в виде концентрической окружности 14, выпускные окна 18 имеют одинаковый, но несколько больший, чем окна 17, диаметр на одном горизонтальном уровне по периметру в виде концентрической окружности 15. Та же самая пропорциональность наблюдается с окнами 19 на окружности 16.

При этом винтообразные продольно расположенные канавки 11 выполнены в виде ласточкина хвоста (фиг. 5).

Верхняя выходная 7 решетка (фиг. 6) состоит из неподвижной 20 части жестко укрепленной к внутренней поверхности 21 патрубка 9, например, посредством упоров или резьбовым соединением, и подвижной нижней 22 части. Связь между неподвижной верхней 20 и подвижной нижней 22 частями верхней выходной 7 решетки выполнена гибкой в виде пружин 23, периферийно укрепленных между ними. Отверстия 24 в верхней выходной 7 части решетки выполнены в виде телескопических 25 цилиндров, при этом внутренние диаметры цилиндров 26 верхней 20 части в 2,0-2,5 раза превышают внешние диаметры цилиндров 27 нижней 22 части верхней выходной 7 решетки. Неподвижная верхняя часть 20 укреплена к внутренней поверхности 21 патрубка 9 посредством упоров-выступов 28 или резьбовым соединением.

Внутренняя поверхность 29 боковой стенки 2 вертикального корпуса 1 покрыта теплоизоляционным и теплоаккумулирующим слоем 30, выполненным в виде пучков вытянутых волокон из базальта 31, расположенных от патрубка подвода 10 до патрубка отвода 9 газа.

Адсорбер работает следующим образом.

Известно, что процесс очистки газа в адсорбере осуществляется с поглощением поверхностью адсорбирующего вещества паров воды и/или масла и выделением теплоты адсорбции, которая рассеивается через боковые стенки корпуса 1 в окружающую среду. При этом по мере загрязнения адсорбирующего вещества качество очистки газа резко ухудшается, что требует десорбции адсорбирующего вещества, которая осуществляется, например, регенерирующим потоком газа или воздуха, нагретого до температуры 200-220°C, или потоком ранее очищенного в адсорбере газа. Это приводит к значительным энергозатратам адсорбционной очистки газа.

В предлагаемом изобретении для снижения энергозатрат при эксплуатации адсорбера используется теплота адсорбции путем ее аккумулирования и последующей передачи регенерирующему потоку для поддержания его нормированной температуры по высоте корпуса.

По мере перемещения очищаемого газа в корпусе 1 слой адсорбирующего вещества поглощает пары воды и/или масла и выделяет теплоту адсорбции, которая теплопроводностью передается теплоизолирующему и теплоаккумулирующему слою 30, устраняя потери теплоты через боковые стенки 2 корпуса 1. Выполнение теплоизолирующего и теплоаккумулирующего слоя 30 в виде пучков вытянутых волокон из базальта 31 с толщиной волокон 8-20 мкм (см., например, Дубровский В.А., Малахова М.Ф., Рычко В.А. Волокнистые материалы из базальта. Киев: Техника, 1971, с.6-8), расположенного от патрубка подвода 10 до патрубка отвода 9 газа, способствует тому, что в соответствии с изотермой адсорбции (см., например, Серпионова Е.Н. Промышленная адсорбция газов и паров. М.: Высш. шк. 1969, 388 с.) процесс аккумулирования теплоты осуществляется по длине пучка вытянутых волокон из базальта 31 по мере прохождения очищаемого потока газа снизу вверх. При этом толщина пучка вытянутых волокон из базальта 31 определяется в зависимости от цикла адсорбции, который может продолжаться от 1-2 до 8-12 часов. После окончания процесса очистки газа, когда теплота адсорбции саккумулировалась на уровне верхней входной 7 решетки, т.е. в конечной точке пучка вытянутых волокон из базальта 31, адсорбер переводится в режим десорбции и поток газа или воздуха с нормированной регенерирующей температурой поступает в корпус 1, где охлаждается (в соответствии с изотермой адсорбции) по мере удаления загрязнений путем испарения поглощенной воды и/или масла с последующих слоев адсорбирующего вещества, снижая эффективность десорбции.

В предлагаемом техническом решении снижение энергозатрат на дополнительный нагрев регенерирующего потока для поддержания его нормированной температуры по всей высоте адсорбера при десорбции адсорбирующего вещества осуществляется за счет теплоты адсорбции, накопленной в теплоизолирующем и теплоаккумулирующем слое 30, выполненном в виде пучков вытянутых волокон из базальта 31.

При засыпке нового, ранее не находящегося в эксплуатации адсорбирующего вещества, например силикагеля КСМ-5, в секции 4 вертикального корпуса 1 верхняя выходная 7 решетка устанавливается таким образом, что ее верхняя 20 часть жестко укрепляется к внутренней поверхности 21 патрубка 9, например, посредством упоров 28 или резьбового соединения, а нижняя 22 часть свободно соприкасается с сыпучим материалом адсорбирующего вещества с усилием, равным величине сжатия пружины 23 в соответствии с условием, определяемым отсутствием «витания» зерен адсорбирующего вещества под действием восходящего (направленного снизу вверх) потока очищаемого газа, т.е. поступающего из секций 4 к верхней выходной 7 решетке, но не вызывающих уплотняющих усилий, препятствующих перемешиванию слоев адсорбирующего вещества в процессе адсорбции.

Газ, подлежащий очистке, подается через патрубок ввода газа 10 в корпус 1 адсорбера. В результате уменьшения проходного сечения патрубка ввода газа 10, выполненного в виде суживающего усеченного конуса с находящимися на внутренней его поверхности винтообразными продольно расположенными канавками 11, происходит возрастание скорости движущегося очищаемого газа. Периферийные слои очищаемого газа, перемещаясь по винтообразным, продольно расположенным канавкам 11, закручиваются, что приводит при движении очищаемого газа от большего 12 к меньшему 13 основанию патрубка ввода газа 10 к вращению всей массы очищаемого газа.

По мере вращения газа в патрубке ввода газа 10 осуществляется выпуск его через выпускные окна 17, 18 и 19. Известно, что скорость движения вращающегося очищаемого газа за счет сужения патрубка ввода газа 10, выполненного в виде суживающего усеченного конуса, увеличивается по мере перехода потока с уровней концентрических окружностей 14 к 15, с 15 к 16. Поэтому возрастание диаметра выпускных окон 18 относительно окон 17 и окон 19 относительно окон 18 приводит к рациональному перераспределению очищаемого газа, поступающего на нижнюю входную решетку 8.

Равномерная эпюра скоростей газового потока в поперечном сечении корпуса 1 адсорбера на выходе из нижней входной решетки 8 поддерживается за счет живого сечения выпускных окон 17, 18 и 19, что особенно важно для периферийной зоны корпуса 1 адсорбера, где порозность слоя адсорбента выше, чем в его центральной части.

Одновременно повышение расхода очищаемого газа через центральную часть адсорбера приводит к эжектированию газа из пристенной зоны корпуса 1, вследствие чего эффективность процесса осушки повышается как за счет равномерного насыщения слоя адсорбента по сечению корпуса 1, так и за счет повышения степени очистки газа.

Очищаемый газ с оптимальной эпюрой скоростей после нижней входной решетки 8, обеспечивающей рациональный контакт с адсорбером по поперечному сечению корпуса 1, поступает в секции 4 и, проходя последовательно участки диффузоров 5 и конфузоров 6, непрерывно меняет свою скорость, что приводит к турбулизации потока и повышению массообмена, а также к перераспределению в секциях 4 давления газа. Это выравнивает гидравлическое сопротивление газа в секциях 4 и обеспечивает равномерное омывание газом всего объема адсорбента. Очищенный газ из секций 4 поступает в телескопические 25 цилиндрические отверстия 24 и через патрубок 9 - к потребителю.

По мере перемещения потока газа при осуществлении процесса очистки зерна адсорбента в результате трения в псевдосжиженном состоянии разрушаются, и объем при вертикальной засыпке в корпус 1 адсорбирующего вещества уменьшается, т.е. появляется воздушная прослойка между верхним слоем адсорбента и верхней выходной 7 решеткой. Тогда отдельные зерна адсорбента под действием движущегося снизу вверх потока очищаемого газа в секциях 4 отрываются от верхнего слоя насыпной массы и с возрастающим усилием ударяются о верхнюю выходную 7 решетку (см., например, Седов Л.И. Механика сплошных сред. М.: Наука 1990, 537 с.), что интенсифицирует их дальнейшее разрушение и, соответственно, приводит к последующему уменьшению объема адсорбирующего вещества. Следовательно, сокращается полезная поглощательная поверхность зерен адсорбента и всей адсорбирующей массы в корпусе 1 в целом, а это, как известно, снижает качество адсорбционной очистки газа.

В предлагаемом техническом решении по мере уменьшения объема адсорбирующего вещества в корпусе 1, т.е. снижения его высоты в секциях 4, пружины 23 растягиваются, перемещая вниз нижнюю часть 22 верхней выходной 7 решетки, чем и поддерживается заданное уплотнение адсорбирующего вещества, т.е. устраняется образование воздушной прослойки перед верхней выходной 7 решеткой.

Отверстия 24 в верхней выходной 7 решетке выполнены в виде полых телескопических цилиндров 25, при этом полый цилиндр 27 нижней части 22 верхней выходной 7 решетки выходит при перемещении вниз нижней части 22 из полого цилиндра 26. При этом внутренние диаметры цилиндров 26 верхней 22 части в 2-2,5 раза превышают внешние диаметры цилиндров 27 нижней 22 части верхней выходной 7 решетки, данное соотношение приводит к тому, что очищенный газ на выходе из полых цилиндров 27, внезапно расширяясь, резко снижает свою скорость и температуру (эффект Джоуля-Томсона, см., например, Нащокин В.В. Техническая термодинамика и теплопередача. М., 1980, 469 с.). Это позволяет также нормализовать поступление очищенного газа через патрубок 9 к потребителю как по давлению, так и температуре.

Оригинальность предлагаемого технического решения заключается в том, что выполнение теплоизоляционного и теплоизолирующего слоя, покрывающего внутреннюю поверхность корпуса и расположенного от патрубка подвода к патрубку отвода газа, в виде пучков вытянутых волокон из базальта обеспечивает снижение энергозатрат при эксплуатации адсорбера за счет использования теплоты адсорбции при регенерации адсорбирующего вещества.

Адсорбер, включающий вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на секции с образованием чередующихся в шахматном порядке конфузоров и диффузоров, верхние и нижние решетки и патрубки отвода и подвода газа, при этом патрубок подвода газа представляет собой суживающийся усеченный конус, на внутренней поверхности которого имеются винтообразные продольно расположенные канавки, причем канавки конструктивно выполнены в виде ласточкина хвоста, при этом по направлению от большего основания патрубка подвода газа к меньшему его основанию равномерно на горизонтальном уровне между винтообразными продольно расположенными канавками размещены выпускные окна, имеющие одинаковый диаметр на одном горизонтальном уровне и возрастающий на последующих горизонтальных уровнях по мере движения очищаемого газа от большего основания патрубка подвода газа к его меньшему основанию, при этом верхняя решетка выполнена разъемной и состоит из неподвижной верхней части с подвижной нижней частью, причем связь между неподвижной верхней и подвижной нижней частями выполнена гибкой в виде пружин, периферийно укрепленных между ними, а отверстия в верхней решетке выполнены в виде телескопических цилиндров, при этом внутренние диаметры цилиндров верхней части в 2,0-2,5 раза превышают внешние диаметры цилиндров нижней части верхней решетки, отличающийся тем, что внутренняя поверхность вертикального корпуса покрыта теплоизоляционным и теплоаккумулирующим слоем, выполненным в виде пучков вытянутых волокон из базальта, расположенных от патрубка подвода до патрубка отвода газа.



 

Похожие патенты:

Изобретение относится к устройству для удаления влаги из газовых сред. Адсорбционный осушитель содержит две секции, объединенные в один аппарат посредством общего корпуса и связанные между собой распределительными обвязками для газовых потоков, верхние входные и нижние выходные камеры с патрубками для осушаемого и осушенного газа и единые магистрали для теплоносителя.

Группа изобретений относится к способу отделения вредных веществ из газового потока и касается способа удаления вредных веществ из диоксида углерода и устройства для его осуществления.

Изобретение относится к способу компримирования и адсорбционной осушки газов и может найти применение в различных отраслях промышленности для получения глубоко осушенного сжатого газа.

При осуществлении обогащения горючего газа для ограничения разрушения/измельчения адсорбента без увеличения периода времени, требуемого для стадии выравнивания давления, стадия выравнивания давления осуществляется с установкой открытого клапана V4 открывания/закрывания канала выравнивания давления, введенного в канал L4 выравнивания давления, после выполнения стадии адсорбции в первой адсорбционной башне U1 и после выполнения стадии десорбции во второй адсорбционной башне U2, соединенной/связанной с первой адсорбционной башней каналом L4 выравнивания давления.

Предложена абсорбционная колонна, наполненная адсорбентом, средство подачи/вывода для подачи исходного газа, содержащего горючий газ и воздух, средство сбора для десорбции горючего газа, адсорбированного адсорбентом, и сбора десорбированного газа, средство управления для последовательного осуществления процесса адсорбции горючего газа и процесса десорбции горючего газа, датчик для детектирования концентрации горючего газа в исходном газе и секция установки рабочих условий для изменения момента завершения адсорбции для средства управления с завершением процесса адсорбции на основе концентрации горючего газа, продетектированной датчиком.

Изобретение относится к способу компримирования и адсорбционной осушки газов и может найти применение в промышленности для получения сжатого осушенного газа. Способ включает компримирование газа в многоступенчатом компрессоре совместно с газом регенерации, рециркулируемым на одну из ступеней компримирования, с получением компрессата, пропускание части компрессата в качестве десорбирующего агента через адсорбер, находящийся на первом этапе регенерации, который затем смешивают с остальной частью компрессата, смесь охлаждают, сепарируют и отправляют на осушку в адсорбер, находящийся в стадии адсорбции, с получением осушенного сжатого газа, основную часть которого направляют потребителю, а другую часть дросселируют и подают в адсорбер, находящийся на втором этапе регенерации, с получением газа регенерации.

Адсорбер // 2547115
Изобретение относится к устройствам для разделения газов адсорбцией. Адсорбер для разделения газов с использованием метода короткоцикловой безнагревной адсорбции содержит корпус с помещенным в нем адсорбирующим блоком и штуцерами для подвода и отвода разделяемого газа и отбора целевого компонента.

Изобретение относится к пористому кристаллическому материалу. Материал имеет тетраэдрический каркас, включающий общую структуру М1-IM-М2, где М1 является металлом, имеющим первую валентность, М2 является металлом, имеющим другую валентность, отличную от указанной первой валентности, и IM является имидазолатным или замещенным имидазолатным связывающим фрагментом.

Группа изобретений относится к адсорбентам для удаления углеводородов из выхлопных газов автомобиля в период холодного запуска двигателя внутреннего сгорания. Адсорбент представляет собой цеолит типа ZSM-5 или типа BETA, в который введен щелочной металл, выбранный из группы К, Na, Li или их смесь при определённом соотношении компонентов.

Изобретение относится к системе обогащения горючего газа, способной улучшить показатели экономии электроэнергии с учетом срока службы средства всасывания, где система обогащения горючего газа включает адсорбционную установку, наполненную адсорбентом, для селективной адсорбции горючего газа; средство подачи исходного газа, способное подавать исходный газ, содержащий горючий газ, в адсорбционную установку из наружной области; средство всасывания, способное всасывать газ из внутренней части адсорбционной установки, и средство управления для выполнения процесса адсорбции и процесса десорбции, при этом средство управления обеспечивает работу средства всасывания так, что сила всасывания средства всасывания, когда не протекает процесс десорбции, меньше, чем сила всасывания средства всасывания, когда процесс десорбции протекает.

Адсорберная емкость для адсорбции газообразных загрязнений из газового потока, включающая вертикальную стеночную перегородку, размещенную на внутренней поверхности стенки абсорберной емкости, и опору слоя, размещенную ниже вертикальной стеночной перегородки и прикрепленную к внутренней поверхности стенки адсорберной емкости для поддерживания адсорбентного материала, где адсорбентный материал удерживается внутри опорой слоя, стенкой адсорберной емкости и вертикальной стеночной перегородкой таким образом, что по меньшей мере 90% объема, созданного между вертикальной стеночной перегородкой и внутренней поверхностью адсорберной емкости, не содержат адсорбентный материал. 2 н. и 14 з.п. ф-лы, 9 ил.

Изобретение относится к системе для получения кислорода в учреждении, содержащей по меньшей мере одно устройство для получения медицинского воздуха, блок адсорбции с перепадом давления, который служит для получения потока кислорода, и учреждение, содержащее сеть трубопроводов для медицинского воздуха и вакуумную систему, причем по меньшей мере одно устройство для получения медицинского воздуха присоединено к сети трубопроводов для медицинского воздуха, при этом по меньшей мере первая часть потока получаемого медицинского воздуха подается из по меньшей мере одного устройства для получения медицинского воздуха к сети трубопроводов для медицинского воздуха. При этом по меньшей мере одно устройство для получения медицинского воздуха присоединено к блоку адсорбции с перепадом давления, при этом по меньшей мере вторая часть потока получаемого медицинского воздуха подается в качестве исходного газа в блок адсорбции с перепадом давления, причем блок адсорбции с перепадом давления и вакуумная система соединены между собой, при этом обеспечивается регенерация адсорбера или адсорберов блока адсорбции с перепадом давления с помощью вакуумной системы. Также изобретение относится к способу работы системы и способу ее монтажа. Использование настоящего изобретения позволяет использовать имеющуюся инфраструктуру медицинского учреждения. 3 н. и 20 з.п. ф-лы, 1 ил.

Изобретение относится к способу адсорбционной осушки газов и может найти применение в нефтегазовой и других отраслях промышленности для осушки горючих газов. Способ включает адсорбционную осушку предварительно очищенного осушаемого газа при температуре адсорбции, регенерацию адсорбента путем косвенного нагрева адсорбента до температуры регенерации теплоносителем, последующий отдув паров воды из свободного пространства адсорбера частью осушенного газа, а также охлаждение регенерированного адсорбента до температуры адсорбции воздухом. При этом в качестве теплоносителя используют продукты окисления газа регенерации воздухом. Изобретение обеспечивает простую и эффективную осушку газа. 4 з. п. ф - лы, 1 ил.

Изобретение относится к адсорбционной осушке газов и может найти применение в различных отраслях промышленности для осушки газа до температуры точки росы минус 70°C и ниже. Способ включает компримирование осушаемого газа и осушку компрессата путем охлаждения в условиях дефлегмации с получением конденсата и газа дефлегмации и пропускания через адсорбент с получением осушенного сжатого газа и последующую регенерацию адсорбента. При этом газ дефлегмации осушают в установке, включающей три адсорбера, в каждом из которых находится слой адсорбента, для чего газ дефлегмации подвергают осушке в первом адсорбере и глубокой осушке во втором адсорбере, а регенерацию адсорбента осуществляют в третьем адсорбере, причем адсорберы циклически переключают. Изобретение обеспечивает эффективную осушку газа и снижение объема загрузки адсорбента. 1 ил.

Изобретение относится к способам адсорбционной осушки и может найти применение в нефтегазовой и других отраслях промышленности для осушки горючих газов. Способ включает адсорбционную осушку отсепарированного газа, регенерацию адсорбента путем продувки нагретым газом, для чего снижают давление до давления ниже давления адсорбции с получением редуцированного газа, продувают адсорбент первой частью газа окисления с получением первого продувочного газа, затем продувают адсорбент второй частью газа окисления, после продувают редуцированным газом с получением второго продувочного газа, поднимают давление до давления адсорбции и охлаждают адсорбент путем продувки осушенного газа, которую затем смешивают с остальной частью осушенного газа, при этом смесь первого и второго продувочных газов подвергают каталитическому окислению кислородсодержащим газом с получением газа окисления, который разделяют на две части и направляют на продувку адсорбента. Изобретение обеспечивает снижение энергоемкости, а также повышение пожаровзрывобезопасности и экологической безопасности. 3 з.п. ф-лы, 1 ил.

Изобретение относится к технике и технологии подготовки газа и может быть использовано в технологических процессах низкотемпературной переработки газа с целью получения сжиженного природного газа (СПГ) и позволяет расширить диапазон применения установки за счет обеспечения подготовки углеводородного газа для комплексных технологических линий по сжижению природного газа при повышении эффективной работы адсорбционного блока как по осушке газа, так и по его очистке от вредных примесей, в том числе от ртути, и при полной утилизации отработанного газа регенерации. Установка включает линию подачи компримированного сырьевого газа, входной сепаратор сырьевого газа, имеющий линии вывода отсепарированного газа и вывода вредных примесей, адсорбционный блок, содержащий по крайней мере три параллельно соединенных адсорбера, заполненных адсорбентом, с трубопроводной обвязкой с запорной арматурой и имеющий линию подачи газа, линию отвода газа через фильтр на низкотемпературную переработку, а также линию подвода газа регенерации с системой нагрева газа регенерации и системой газа охлаждения и линию отвода отработанного газа регенерации. Установка также содержит блок охлаждения и сепарации отработанного газа регенерации с линией выхода воды и линией отвода отсепарированного отработанного газа регенерации, блок мембранного разделения газа регенерации с линией выхода газа, не проникшего через мембрану, и линией выхода газовой смеси, проникшей через мембрану. Линия вывода отсепарированного газа из входного сепаратора сырьевого газа соединена с дополнительно установленным блоком аминовой очистки газа от CO2 и метанола, имеющим линию выхода CO2 и линию выхода очищенного газа, соединенную через установленный теплообменник-холодильник с сепаратором подготовки газа для осушки, имеющим линию выхода воды и линию выхода газа, соединенную с адсорбционным блоком. Каждый адсорбер адсорбционного блока выполнен с комбинированным слоем адсорбентов, первым по ходу подачи углеводородного газа в адсорбере расположен слой регенерируемых молекулярных сит, обеспечивающий поглощение CO2, воды, метанола, а затем расположен слой регенерируемого адсорбента, обеспечивающий очистку газа от ртути. Линия отвода отсепарированного отработанного газа регенерации из блока охлаждения и сепарации отработанного газа регенерации соединена с блоком мембранного разделения газа регенерации, причем линия вывода газовой смеси, проникшей через мембрану, соединена с топливной сетью, а линия выхода газа, не проникшего через мембрану, соединена с установленным узлом адсорбционной нерегенеративной очистки газа регенерации от ртути, имеющим линию вывода осушенного и очищенного газа регенерации, соединенную через фильтр с потребителем на собственные нужды или через компрессор с линией вывода отсепарированного газа входного сепаратора сырьевого газа или с линией выхода очищенного газа. Установка снабжена трубопроводными линиями, соединяющими оборудование, и запорно-регулирующей арматурой. 2 ил.

Изобретение относится к способам адсорбционной осушки газов. Способ включает компримирование предварительно очищенного сырого газа с получением компрессата, охлаждение компрессата до температуры адсорбции сторонним теплоносителем, по меньшей мере, частью редуцированного осушенного газа, сепарацию компрессата с получением конденсата и газа сепарации, адсорбционную осушку компрессата и регенерацию адсорбента, при этом осушенный газ редуцируют до давления использования, нагревают компрессатом и подают потребителю. Изобретение обеспечивает эффективную осушку газа и снижение объема загрузки адсорбента. 2 н. и 2 з.п ф-лы, 2 ил.

Изобретение относится к оборудованию для адсорбционной очистки газов от примесей, в частности, углеводородных газов от воды, углекислого газа, сероводорода и других компонентов, и может быть использовано в нефтеперерабатывающей, газоперерабатывающей, химической и других отраслях промышленности. Адсорбер для очистки газов включает цилиндрический корпус с верхним и нижним днищами, один или несколько слоев адсорбента, нижнюю и верхнюю распределительные решетки, каждая из которых укладывается на опорные колосниковые решетки, штуцера ввода очищаемого газа и вывода очищенного газа, штуцера ввода и вывода газа регенерации, системы установки датчиков температуры и давления, люки для загрузки и выгрузки адсорбента, люки-лазы, нижняя распределительная решетка под первым по ходу потока очищаемого сырья слоем адсорбента выполнена либо из горизонтально расположенной сетки Джонсона, либо из сплошного или перфорированного листа с круглыми отверстиями, кромки которых сопряжены с вертикальными стаканами из сетки Джонсона, верхняя распределительная решетка над последним по ходу потока очищаемого сырья слоем адсорбента выполнена из горизонтально расположенной сетки Джонсона или сплошного или перфорированного листа с круглыми отверстиями, кромки которых сопряжены с вертикальными стаканами из сетки Джонсона. 8 з.п. ф-лы, 3 ил.

Сорбционный аппарат для очистки газа состоит из вертикальной проточной колонны с газонепроницаемой стенкой, фильтров на входе и выходе колонны и дезинтегратора, производящего реакционный порошок в среде очищаемого газа при температуре окружения, то есть без принудительного нагрева или охлаждения. Способ сорбционной очистки проточного газа с использованием реакционного сорбирующего материала и сорбционного аппарата, в котором реакционный порошок получают по мере надобности механическим измельчением слитка с монолитной структурой в среде очищаемого газа. Состав сорбирующего материала отвечает эвтектике на основе реакционного металла Me или интерметаллическому соединению MenM с относительно низкой точкой плавления, где M есть второй металл, а n≥1. 5 з.п. ф-лы, 3 ил.

Предложены способ и установка получения сжиженного природного газа из подаваемого природного газа, содержащего углеводороды C5-C7 и углеводороды C8 или выше. Причем указанный способ включает стадии: контактирования первого адсорбента, который предпочтительно адсорбирует углеводороды C8 или выше, с подаваемым природным газом, для получения обедненного C8 потока природного газа; контактирования второго адсорбента, отличающегося от первого адсорбента и предпочтительно адсорбирующего углеводороды C5-C7, с обедненным C8 потоком природного газа, для получения обедненного C5-C8 потока природного газа, при этом второй адсорбент имеет более высокую селективность и емкость адсорбции углеводородов C5-C7, чем первый адсорбент; и сжижения обедненного C5-C8 потока природного газа в ступени сжижения. Использование настоящего изобретения позволяет избежать чрезмерной регенерации адсорбентов. 2 н. и 8 з.п. ф-лы, 2 табл., 5 ил.
Наверх