Дифракционный способ измерения угловых перемещений и устройство для его осуществления



Дифракционный способ измерения угловых перемещений и устройство для его осуществления
Дифракционный способ измерения угловых перемещений и устройство для его осуществления

 


Владельцы патента RU 2554598:

федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (RU)

Изобретение относится к области измерительной техники, а именно к оптическим устройствам для измерения малых угловых перемещений объекта. Дифракционный способ измерения угловых перемещений состоит в том, что объект с установленным на нем отражателем освещают излучением лазера и направляют излучение через щель, формируя за ней дифракционную картину Фраунгофера. Выделяя из этой картины второй щелью или дифракционной решеткой фрагмент, содержащий линии инверсии фазы разных порядков, получают интерференционные полосы, по которым определяют угловое положение объекта. Устройство для контроля угловых перемещений, реализующее предлагаемый способ, содержит оптически связанные и последовательно размещенные лазерный источник, устройство формирования пучка, вспомогательное зеркало, светоделитель, установленный на объекте измерения отражатель, две щели, развернутые на угол α относительно друг друга, и фотоприемник. При этом вторая щель выделяет фрагмент дифракционной картины с линиями инверсии фазы разных порядков. Технический результат - увеличение точности и диапазона угловых измерений, а также упрощение конструкции и юстировки устройства, их реализующего. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области измерительной техники, а именно к оптическим устройствам для измерения малых угловых перемещений объекта.

Известны способы для измерения плоских углов, реализуемые с помощью автоколлиматоров (патент RU №2353960, МПК G02B 27/30, дата приоритета 19.11.2007 г., опубликован 27.04.2009 г.), состоящие из источника излучения, конденсора, марки, светоделителя, объектива, автоколлимационного зеркала и приемника излучения. Сущность автоколлимационного способа измерения заключается в том, что при повороте автоколлимационного зеркала, сопряженного с исследуемым объектом, происходит смещение изображения марки на приемнике, по величине которого определяется угол поворота объекта. Недостатком автоколлимационного метода является ограничение его разрешения разрешающей способностью объектива автоколлиматора. Сами автоколлиматоры имеют существенные габариты и сложную конструкцию.

Известны способы измерения малых угловых перемещений с помощью интерферометров (патент USA №4746217 от 24.05.1988; Z.Т. Ge, M. Takeda. A high precision 2-D angle measurement // Proc. SPIE. Vol.4778 (2002), p.277-287), которые, как правило, состоят из лазерного источника излучения, формирователя лазерного пучка, светоделителя, эталонного неподвижного зеркала, подвижного зеркала и блока регистрации интерференционной картины. Сущность интерференционного способа измерения угловых перемещений заключается в том, что при повороте подвижного зеркала изменяется разность хода в плечах интерферометра, в результате происходит смещение интерференционных полос. Недостатком интерференционных способов является трудность учета влияния на результат измерения ряда факторов, приводящих к изменению разности хода в ветвях интерферометра: вибрации, температурного расширения элементов конструкции интерферометра, изменения показателя преломления окружающей среды и т.д. Сами интерферометры имеют сложную конструкцию, требующую, при проведении высокоточных измерений, применения ряда дополнительных устройств для мониторинга положения узлов интерферометра и окружающей среды.

По совокупности признаков наиболее близким аналогом как по способу измерения угловых перемещений, так и по схеме измерительного устройства, принимаемым за прототип, является дифракционный способ измерения угловых перемещений и устройство, его реализующее (В.Н. Назаров, А.Е. Линьков. Дифракционные методы контроля геометрических параметров и пространственного положения объектов // Оптический журнал. 2002. Т.69. №2. С.76-81). Особенностью данного способа является использование линий инверсии фазы дифракционной картины - совокупности точек, в которых амплитуда дифракционной картины меняет знак. Сущность способа заключается в том, что щель освещают пучком когерентного излучения, и за ней в области дифракции Фраунгофера формируется дифракционная картина. В плоскость формирования дифракционной картины устанавливается вторая щель, центр которой совмещается с одной из линий инверсии фазы дифракционной картины. При выполнении этого условия за второй щелью в области дифракции Френеля формируется дифракционная картина с двумя максимумами одинаковой интенсивности. Если угол падения пучка на первую щель меняется, то линия инверсии фазы первичной дифракционной картины смещается относительно центра второй щели, и во вторичной дифракционной картине происходит перераспределение интенсивности в ее главных максимумах. Определив разность интенсивностей в максимумах, можно определить смещение линии инверсии. Дифракционный измеритель угловых перемещений состоит из лазерного источника излучения, устройства формирования пучка, светоделителя, поворотного зеркала, двух размещенных последовательно щелей, края которых параллельны друг другу, и приемника. Излучение лазера корректируется устройством формирования пучка с целью задания необходимого диаметра пучка и его расходимости и направляется на зеркало. Отразившись от него, лазерный пучок дифрагирует на щелях и формирует на секторном фотоприемнике дифракционную картину Френеля, по разности интенсивностей в максимумах которой можно определить угловые перемещения зеркала.

Данный способ позволяет проводить измерения с погрешностью до ±0.2 угл. сек, а схема, его реализующая, является конструктивно простой и содержит минимум оптических деталей. Недостатком указанного способа является малый диапазон измерений (±40 угл. сек) из-за нелинейности выходного сигнала при больших смещениях линии инверсии. Точность ограничивается тем, что в качестве измеряемого параметра выступает разностный сигнал, который трудно измерить с погрешностью меньшей, чем 0.1%. Недостатком измерительного устройства, реализующего данный способ, является очень жесткий допуск на расстояние между приемником и второй щелью и сложность наведения на линии инверсии фазы.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение качества угловых измерений и упрощение устройства, их реализующего.

Технический результат, полученный при решении поставленной задачи, выражается в увеличении точности и диапазона угловых измерений предлагаемым дифракционным способом, а также в упрощении конструкции и юстировки устройства, его реализующего.

Указанный технический результат достигается за счет того, что в предлагаемом дифракционном способе измерения угловых перемещений объекта, заключающегося в том, что объект с установленным на нем отражателем освещают излучением лазера и направляют излучение через щель, ширина которой удовлетворяет условию формирования ею дифракционной картины Фраунгофера a l λ , где l - расстояние до плоскости формирования дифракционной картины, λ - длина волны излучения лазера, в результате выделения из этой дифракционной картины, установленной в месте ее формирования второй щелью, фрагмента, содержащего линию инверсии фазы, получают за этой щелью на расстоянии z=db/λ, где d - ширина пиксела ПЗС приемника, b - ширина второй щели, распределение световой интенсивности, новым является то, что выделение осуществляется второй щелью, установленной так, что выделяемый фрагмент содержит линии инверсии фазы разных порядков, в результате получают интерференционную картину в виде полос, по положению которых определяют угол поворота объекта.

Выделение фрагмента дифракционной картины, содержащего линии инверсии фазы разных порядков также может быть осуществлено с помощью синусоидальной амплитудной дифракционной решетки с шагом t=λl/a, что позволяет увеличить контраст полос интерференционной картины.

Указанный технический результат достигается за счет того, что в устройстве для контроля угловых перемещений, содержащем оптически связанные и последовательно размещенные по ходу распространения излучения лазерный источник излучения, устройство формирования пучка, светоделитель, отражатель, закрепленный на поверхности контролируемого объекта, первую щель шириной a≤D/2, где D - диаметр падающего на щель лазерного пучка, формирующую дифракционную картину Фраунгофера на расстоянии l≥а 2/λ, где λ, - длина волны излучения лазера, вторую щель, установленную на расстоянии l за первой щелью, ширина которой должна удовлетворять условию b<λ1/а, и фотоприемник, отличающееся тем, что щели развернуты на угол 0.5≤α≤2 угл. град. относительно друг друга в плоскости, перпендикулярной направлению распространения излучения, а вторая щель установлена так, что выделяет фрагмент дифракционной картины с линиями инверсии фазы разных порядков.

Сущность предлагаемого дифракционного способа измерения заключается в том, что в плоскости регистрации формируется не ассиметричная дифракционная картина, а система интерференционных полос, смещение которых связано с углом поворота объекта зависимостью, близкой к линейной. Для формирования интерференционных полос нужно, чтобы ось второй щели пересекала несколько линий инверсии фазы первичной дифракционной картины, для чего требуется ее развернуть. Это возможно выполнить разворотом первой щели на угол α. Если выполняется условие l≥а 2/λ, где l - расстояние между щелями, а - ширина первой щели, λ - длина волны излучения, то расстояние между линиями инверсии фазы S1 первичной дифракционной картины определяется из выражения S1=λl/а.

При отсутствии между щелями фурье-обьектива для дифракционной картины не будет выполняться теорема о трансляции сигнала, и она будет разворачиваться на тот же угол, что и щель. Для того чтобы щель могла пересечь несколько линий инверсии фазы дифракционной картины, необходимо чтобы последняя имела значительный размер, что достигается увеличением диаметра освещающего пучка.

Разворот первичной дифракционной картины приводит к амплитудно-фазовой модуляции сигнала на входе второй щели, ширина которой b не должна превышать расстояние между линиями инверсии фазы S1, и к появлению дополнительной системы интерференционных полос во вторичной дифракционной картине с периодом, определяемым из выражения S2=S1/tg(α). Координатам минимумов этих полос соответствуют координаты пересечения оси второй щели с линиями инверсии фазы первичной дифракционной картины. Распределение интенсивности в дополнительной системе полос описывается выражением I ( y " ) = I 0 " sin ( π y " / S 2 ) 2 / ( π y " / S 2 ) 2 , а их ширина определяется значением угла α и периодом первичных полос S1 и не зависит от расстояния между второй щелью и приемником.

Смещение первичной дифракционной картины на расстояние ΔS1 приводит к смещению интерференционных полос на ΔS2=ΔS1/tg(α). При малых углах α коэффициент преобразования перемещения Г=l/tg(α) достигает значения 100÷120.

Сущность изобретения поясняется рисунками, где на Фиг.1 представлена схема формирования интерференционных полос за второй щелью, а на Фиг.2 схематично изображено предлагаемое устройство для измерения угловых перемещений.

Из Фиг.1 следует, что при развороте дифракционных полос 2 шириной S1 в плоскости щели 1 за последней формируется интерференционная картина 3, полосы которой имеют ширину S2 и ориентированы перпендикулярно полосам первичной дифракционной картины. Минимумы интерференционной картины соответствуют точкам пересечения центра щели и линии инверсии фазы n-го порядка.

Предлагаемое устройство для измерения угловых перемещений (Фиг.2) содержит оптически связанные и последовательно размещенные лазерный источник 1, телескопическую систему 2, вспомогательное зеркало 3, светоделитель 4, установленный на объекте измерения отражатель 5, щели 6 и 7, ПЗС линейку 8. При этом щели 6 и 7 развернуты под углом α относительно друг друга в плоскости, перпендикулярной направлению распространения излучения.

Устройство работает следующим образом. Лазерный пучок от источника 1 расширяется телескопической системой 2 и с помощью зеркала 3 и светоделителя 4 направляется на отражатель 5. Отраженный пучок дифрагирует на первой щели 6 и формирует дифракционную картину в плоскости второй щели 7. Пересечение второй щелью линий инверсии фазы дифракционной картины приводит к формированию в плоскости установки фотоприемника интерференционных полос. При повороте объекта на угол φ первичная дифракционная картина смещается на расстояние ΔS1=2tg(φ)l, a интерференционные полосы во вторичной картине - на расстояние ΔS2=2tg(φ)l/tg(α)≈2lφ/α. Смещение полос регистрируется ПЗС приемником 8, установленным в области главного максимума вторичной дифракционной картины на расстоянии z=db/λ, где d - ширина пиксела ПЗС приемника, от второй щели. Так, при развороте зеркала на 1 угл. сек при l=150 мм и α=2 град смещение интерференционной полосы составит 43 мкм, что значительно превышает размер пиксела современных ПЗС. Угол поворота отражателя связан со смещением интерференционной картины выражением φ=λ,М/2a, где М=ΔS2/S2 - смещение интерференционной картины в полосах.

Достоинствами предложенного устройства по сравнению с аналогом являются:

Отсутствие необходимости перед началом измерений совмещать центр второй щели с одной из линий инверсии фазы дифракционной картины;

Отсутствует необходимость точной установки приемника относительно второй щели;

Возможность проведения абсолютных измерений благодаря наличию в интерференционной картине центральной полосы удвоенной ширины.

Предлагаемый способ позволяет уменьшить погрешность измерений до ±0.1 угл. сек и увеличить диапазон измерений до ±2 град. Увеличение точности обусловлено тем, что регистрируется смещение интерференционной полосы, а не разность интенсивностей в максимумах дифракционной картины. Увеличение диапазона измерения обусловлено отсутствием нелинейной зависимости между смещением линий инверсии фазы и смещением интерференционной полосы.

Результаты экспериментальной апробации подтверждают работоспособность предлагаемого способа и достижимость технического результата.

1. Дифракционный способ измерения угловых перемещений объекта, заключающийся в том, что объект с установленным на нем отражателем освещают излучением лазера и направляют излучение через щель, ширина которой удовлетворяет условию формирования дифракционной картины Фраунгофера a l λ , где l - расстояние до плоскости формирования дифракционной картины, λ - длина волны излучения лазера, в результате выделения из этой дифракционной картины, установленной в месте ее формирования второй щелью, фрагмента, содержащего линию инверсии фазы, получают за этой щелью на расстоянии z=db/λ, где d - ширина пиксела ПЗС приемника, b - ширина второй щели, распределение световой интенсивности, отличающееся тем, что выделение осуществляется второй щелью так, что выделяется фрагмент, содержащий линии инверсии фазы разных порядков, в результате получают интерференционную картину в виде полос, по положению которых определяют угол поворота объекта.

2. Дифракционный способ измерения угловых перемещений объекта по п.1, отличающийся тем, что выделение фрагмента дифракционной картины осуществляется с помощью синусоидальной амплитудной дифракционной решетки.

3. Устройство для контроля угловых перемещений, содержащее оптически связанные и последовательно размещенные по ходу распространения излучения лазерный источник излучения, устройство формирования пучка, светоделитель, отражатель, закрепленный на поверхности контролируемого объекта, первую щель шириной а≤D/2, где D - диаметр падающего на щель лазерного пучка, формирующую дифракционную картину Фраунгофера на расстоянии l≥а 2/λ, где λ - длина волны излучения лазера, вторую щель, установленную на расстоянии l за первой щелью, ширина которой должна удовлетворять условию b<λl/а, и фотоприемник, отличающееся тем, что щели развернуты на угол 0.5≤α≤2 угл. град. относительно друг друга в плоскости, перпендикулярной направлению распространения излучения, а вторая щель установлена так, что выделяет фрагмент дифракционной картины с линиями инверсии фазы разных порядков.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано в геодезии, строительстве, горном деле. Устройство содержит закрепленные на оси фланец и лимб, два отсчетных канала, устройство цифровой обработки и усреднения данных отсчетных каналов, цифровой индикатор.

Изобретение относится к способам и устройствам для измерения углов в машиностроении, а также к приборам навигации космических аппаратов. Способ повышения разрешающей способности измерения угловых координат светящегося ориентира по величинам сигналов и порядковым номерам фоточувствительных элементов, расположенных симметрично с заданным угловым шагом относительно некоторой оси, заключается в увеличении скорости изменения сигнала по углу указанных фоточувствительных элементов.

Автоколлиматор может использоваться для измерения углов поворота относительно двух осей, ортогональных оптической оси объектива автоколлиматора, с использованием одной ПЗС-линейки.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в оптико-электронных приборах (ОЭП) ориентации по звездам, содержащих матричный фотоприемник с накоплением заряда.

Устройство предназначено для контроля формы и взаимного расположения поверхностей крупногабаритных изделий и передачи направления на расстояниях до 100 метров и более.

Изобретение относится к неразрушающим способам измерения угла, крутки нити. В способе производят анализ угловой диаграммы распределения светового потока в дифракционной картине, наблюдаемой от исследуемого материала при освещении поверхности нити параллельным пучком монохроматического когерентного света с круговым сечением, причем о величине искомого угла крутки судят по углу, измеренному между направлением на максимум в угловой диаграмме светового потока в дифракционной картине, и перпендикуляром к нити, проведенном в плоскости картины из ее центра.

Изобретение относится к устройствам для выверки и, в частности, к устройствам, которые могут быть использованы для выверки буровых установок с обеспечением правильного азимута бурения.

Способ включает использование двух автоколлимационных теодолитов и многогранной зеркальной призмы, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения.

Изобретение относится к области геодезии, в частности к высокоточным измерениям для определения критических деформаций. Предложен способ высокоточных измерений инженерных объектов сканирующими лазерными системами (ЛИС) с применением программного обеспечения управления и обработки результатов по двум координатам в реальном масштабе времени и устройство для его осуществления.

Способ реализуется с помощью устройства, содержащего поворотный столик, автоколлиматор, визирная ось которого перпендикулярна оси поворота столика, контролируемую правильную многогранную призму, ось которой соосна оси поворота столика.

Изобретение относится к области оптоэлектроники, а более конкретно к оптико-электронным системам, и может быть использовано в углоизмерительных приборах, предпочтительно в приборах ориентации космических аппаратов. Сущность изобретения состоит в том, что в углоизмерительном приборе, содержащем объектив, матричный приемник излучения с вычислительным блоком (МПИ) и канал геометрического эталона (КГЭ), состоящий из оптически сопряженных с объективом осветительного блока, имеющего три источника света, расположенных под углом 120° друг к другу, коллиматорного блока, включающего в себя три входные и три выходные точечные диафрагмы, и зеркально-призменного блока, образующего с нанесенными на него диафрагмами коллиматора моноблок, жестко соединенный с опорной плоскостью углоизмерительного прибора и выполненный в виде равнобедренной шестигранной усеченной пирамиды, соседние ребра которой расположены под углом 120° друг к другу, а одно из оснований которой обращено к объективу, в нем входные и выходные точечные диафрагмы расположены на боковых поверхностях зеркально-призменного блока, дополнительно снабженного тремя уголковыми отражателями, установленными за соответствующей выходной точечной диафрагмой с обеспечением ввода излучения во входной зрачок объектива посредством отражения от обращенного к нему меньшего основания зеркально-призменного блока, при этом указанные точечные диафрагмы размещены так, что ось выходного пучка направлена под прямым углом к боковой поверхности зеркально-призменного блока. Технический результат выражается в повышении точности прибора при одновременном упрощении оптической системы объектива и уменьшении его габаритно-массовых характеристик. 8 ил.

Изобретение относится к оптоволоконной оптике и может быть использовано для измерения угла отклонения поверхности контролируемых объектов от базового уровня, профиля и кривизны поверхностей деталей в машиностроении. Устройство содержит источник излучения, V-образную световодную систему, два компаратора, фотоприемник, оптическую насадку в виде цилиндра. Каждый из последовательно введенных в насадку световодов обеспечивает функционирование устройства в своем конкретном диапазоне угловых положений, которые последовательно перекрывают требуемый рабочий диапазон измерения углового положения контролируемой поверхности. Технический результат - расширение рабочего диапазона угловых положений контролируемых поверхностей объектов. 5 ил.

Изобретение относится к способу и устройству для сохранения геодезического направления относительно истинного меридиана. Решение основано на том, что две оптические системы, содержащие отражающие поверхности, размещены на независимых плоскостях, имеющих общую вертикальную ось вращения, и связанных оптическим лучом в единое целое. При этом на одной из плоскостей установлен ретроотражатель, который обеспечивает возможность получения и контроля сохранённого геодезического направления. Реализация способа и настройка устройства при сохранении или восстановлении направления обеспечивается путём вращения двух плоскостей относительно друг друга для обеспечения прохождения луча от лазера, установленного в одной из оптических систем, по заранее определённому оптическому пути. Решение позволяет воспроизводить сохраняемое геодезическое направление как в условиях стационарного размещения, так и размещение на местности при минимальных усилиях. 2 н. и 3 з.п. ф-лы., 18 ил., приложение.

Настоящая группа изобретений относится к контрольно-измерительной технике и может быть использована для контроля железнодорожного пути, в частности для определения отклонения железнодорожного пути от проектного положения. Способ контроля положения железнодорожного пути заключается в том, что с помощью приемно-анализирующих систем получают два изображения пространства, прилегающего к пути. С помощью блока обработки и управления осуществляют детектирование реперной марки на полученных изображениях и определение координат контрольных элементов реперной марки, предварительно измерив взаимное пространственное расположение контрольных элементов. Затем определяют величины смещений контрольных элементов относительно базовой точки приборной системы координат в вертикальном, продольном и поперечном направлениях, определяют углы поворота реперной марки вокруг вертикальной и продольной осей, а также измеряют угол поворота системы вокруг поперечной оси. Совокупность полученных значений смещений каждого контрольного элемента относительно базовой точки приборной системы координат сравнивают с предварительно измеренным взаимным пространственным расположением элементов массива. На основании результатов этого сравнения определяют величины смещений реперной марки в вертикальном, продольном и поперечном направлениях. Производят корректировку полученных величин смещений с учетом полученных значений углов поворота и определяют положение пути. В результате уменьшается погрешность определения положения железнодорожного пути. 2 н.п. ф-лы, 1 ил.

Предложен способ определения углов установки колес транспортного средства, которое содержит, по меньшей мере, одну колесную ось (12, 13, 14), имеющую конец оси с, по меньшей мере, одним колесным элементом (2а-b, 3а-b, 4а-b) на соответствующей продольной стороне транспортного средства. Способ содержит этапы определения отклонения от перпендикулярности колесной оси по отношению к продольной геометрической осевой линии транспортного средства. Также предложена система для выполнения способа. Достигается создание таких способа и системы, которые позволяют с большей легкостью определять отклонения от перпендикулярности колесных осей транспортного средства. Также достигается создание таких способа и системы, которые позволяют определять отклонение от перпендикулярности и другие угловые параметры установки колес быстро и с высокой точностью. Также достигается создание таких способа и системы, с помощью которых отклонение от перпендикулярности колесной оси может быть определено без необходимости прикрепления сеток или других реперных приспособлений к корпусу или шасси транспортного средства. 2 н. и 11 з. п. ф-лы, 3 ил.

Изобретение относится к устройству для контроля погрешности преобразования угла поворота вала в код. Устройство содержит образцовый преобразователь поворота вала в код, блок сопряжения контролируемого и образцового преобразователей, состоящий из узла жесткого соединения валов образцового и контролируемого преобразователей, узла для ограничения поворота корпуса контролируемого или образцового преобразователей с установленным на нем автоколлимационным зеркалом, угловое положение которого измеряется цифровым автоколлиматором. Выход автоколлиматора и выходы контролируемого и образцового преобразователей через электронный блок связаны с персональным компьютером. Узел ограничения поворота корпуса контролируемого или образцового преобразователей обеспечивает корпусу все степени свободы подвижности за исключением разворота вокруг оси собственного вала и может быть выполнен в виде параллелограммного механизма со сферическими шарнирами. Технический результат - обеспечение возможности увеличения числа контролируемых положений преобразователя.

Изобретение относится к оптическому стенду измерения горизонтального угла. Система содержит автоколлиматор, оптически связанный с базовым отражателем, и контролируемые элементы с зеркальными поверхностями, которые оптически связаны с пентагональными отражателями. Контролируемые элементы установлены на одной платформе и расположены на разных по вертикали уровнях относительно неподвижного базового отражателя, на значительном расстоянии друг от друга. Автоколлиматор оптически связан с контролируемыми элементами при помощи пентагональных отражателей. Перед зеркальными поверхностями контролируемых элементов установлены клиновые компенсаторы. Технический результат - обеспечение возможности измерения с высокой точностью углов между контролируемыми элементами, установленными на значительном расстоянии друг от друга на одной платформе, имеющей возможность наклонов в двух взаимоперпендикулярных плоскостях, и неподвижным отражателем. 3 ил.

Изобретение относится к области измерительной техник и может быть использовано в углоизмерительных устройствах. Датчик угла поворота содержит осветитель с маской, измерительный блок, включающий многоплощадочное фотоприемное устройство (МФПУ), оптически сопряженное с маской, и светоделитель, расположенный между объективом и МФПУ. При этом маска установлена перед светоделителем в фокальной плоскости объектива, МФПУ подключено к электронному блоку, а устройство также содержит контролируемый объект, установленный с возможностью поворота относительно измерительного блока. Причем на контролируемом объекте закреплен дополнительный оптический элемент, выполненный в виде двойного зеркала с прямым углом между его зеркалами, обращенного к объективу. Ребро между зеркалами двойного зеркала перпендикулярно оптической оси объектива, а ось поворота контролируемого объекта и плоскость симметрии двойного зеркала параллельны оптической оси объектива. Технический результат - повышение точности измерения угла поворота контролируемого объекта. 8 ил.
Устройство состоит из измерительной рамки с цифровыми, угловыми и линейными значениями, лазерного прибора, который проецирует на нее крестообразный лазерный луч, держателей, которые удерживают лазерный прибор и измерительную рамку на соответствующем колесе, поворотных подставок для свободного поворота и скольжения регулируемых колес и блокиратора руля, который удерживает руль в неподвижном положении. Лазерный прибор, прикрепленный держателем к регулируемому колесу, посылает крестообразный лазерный луч, параллельный и перпендикулярный плоскости данного колеса, на измерительную рамку, вертикальную и горизонтальную плоскости земли, прикрепленную аналогичным держателем к другому колесу, находящемуся в одной плоскости с регулируемым. Проецируемый на измерительной рамке лазерный луч показывает вертикальное и горизонтальное отклонение плоскости регулируемого колеса от необходимых значений, которое устраняется путем регулировки регулируемого колеса до совмещения вертикальной и горизонтальной линий лазерного луча с необходимыми значениями на рамке. Технический результат - упрощение и удешевление регулировочного устройства и процесса регулировки развала схождения колес у автомобилей.

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим. При этом формируют два дополнительных световых потока на границах раздела смежных квадрантов фотоприемника и модулируют ортогональными функциями. Выделяют сигналы от каждого светового потока с каждого квадранта. Формируют из выделенных сигналов разностные сигналы, пропорциональные разности электрических сигналов от каждого светового потока от каждой пары смежных квадрантов. По разности разностных сигналов каждой пары противоположных смежных квадрантов судят о перемещении, а по сумме всех разностных сигналов судят об угле скручивания. Технический результат - упрощение способа и повышение точности измерения. 2 н. и 1 з.п. ф-лы, 2 ил.
Наверх