Офтальмологические линзы для предотвращения прогрессирования миопии

Офтальмологическая линза представляет собой оптическую зону, содержащую центральную зону, имеющую, по существу, постоянную положительную оптическую силу, по меньшей мере первую кольцевую зону, которая является концентрической по отношению к центральной зоне и обладает положительной продольной сферической аберрацией для предотвращения или замедления прогрессирования миопии. Линза содержит вторую кольцевую зону с оптической силой, постепенно снижающейся к периферии линзы. В линзе величина гиперкоррекции положительной оптической силы центральной зоны может находиться в диапазоне от приблизительно 0,25 до приблизительно 1,00 диоптрии. Технический результат - возможность предотвращения прогрессирования миопии с помощью мультифокальных линз. 6 н. и 11 з.п. ф-лы, 4 ил.

 

Перекрестные ссылки на смежные заявки

Настоящая заявка является продолжением заявки США № 11/751205, поданной 21 мая 2007 года, и заявляет приоритет в соответствии с разделом 35 параграфа 121 Свода законов США.

Область применения изобретения

Настоящее изобретение относится к офтальмологическим линзам. В частности, предметом настоящего изобретения являются офтальмологические линзы, предназначенные для предотвращения или замедления прогрессирования миопии.

Предпосылки создания изобретения

Миопия, или близорукость, представляет собой заболевание, которым страдают до 25% населения США, а в некоторых странах вплоть до 75% населения. При миопии форма глазного яблока становится вытянутой, и лучи света, попадающие на него, фокусируются перед сетчаткой. Общераспространенный способ лечения миопии заключается в назначении корректирующих линз. Однако обычная корректирующая линза не предотвращает прогрессирование миопии.

Было предложено несколько способов замедления прогрессирования миопии, особенно в детском возрасте. К таким способам относятся использование мультифокальных линз, использование линз, которые учитывают аберрации или обеспечивают их контроль, использование внеосевых увеличивающих линз, изменение формы роговицы, тренировка глаз, а также использование лекарственных препаратов.

Подтверждено, что недостатком использования мультифокальных линз, а также линз, имеющих аберрации, является то, что линзы ослабляют дальнее зрение пациента. Другие способы также имеют недостатки, включая дискомфорт в случае изменения формы роговицы и наличие нежелательных побочных эффектов в случае приема лекарственных препаратов.

Краткое описание чертежей

На фиг.1 показана передняя поверхность линзы, составляющей предмет настоящего изобретения.

На фиг.2 показан график оптической силы линз, используемых в качестве примера.

На фиг.3 показан график оптической силы линз, составляющих предмет настоящего изобретения.

На фиг.4 показан график оптической силы линз, составляющих предмет настоящего изобретения.

Подробное описание изобретения и предпочтительных вариантов осуществления

Настоящее изобретение предлагает офтальмологические линзы, которые, по существу, препятствуют прогрессированию миопии, а также способы их проектирования и производства. Результатом настоящего изобретения является возможность, по существу, предотвращения прогрессирования миопии с помощью мультифокальных линз, имеющих область положительной оптической силы в центре оптической зоны, окруженной по меньшей мере одной областью, обеспечивающей положительную продольную сферическую аберрацию.

Термин «офтальмологическая линза» используется для обозначения контактной, интраокулярной, имплантируемой или аналогичных линз. В предпочтительном варианте линзы, составляющие предмет настоящего изобретения, являются контактными линзами. Термин «положительная оптическая сила» используется для обозначения величины силы рефракции, требуемой для коррекции остроты дальнего зрения пользователя в необходимой степени. Термин «продольная сферическая аберрация» используется для обозначения разницы между фокусом в центре и в периферической зоне линзы, выраженной в диоптриях. Она вычисляется путем вычитания величины фокуса параксиальных лучей из величины фокуса периферийных лучей. Термин «положительная продольная сферическая аберрация» используется в том случае, когда разница между фокусом периферийных и параксиальных лучей, выраженная в диоптриях, является положительной величиной.

В первом варианте осуществления настоящего изобретения предлагаются офтальмологические линзы, которые содержат оптическую зону, содержащую, по существу, и состоящую из центральной зоны c, по существу, постоянной положительной оптической силой и по меньшей мере первой кольцевой зоны, которая является концентрической по отношению к центральной зоне и обладает положительной продольной сферической аберрацией. В альтернативном варианте осуществления может быть предусмотрена вторая кольцевая зона, которая является концентрической по отношению к первой кольцевой зоне. При этом вторая зона может обладать либо постоянной оптической силой, либо постепенно понижающейся оптической силой. В еще одном варианте осуществления предлагаются линзы с оптической зоной, по существу, состоящей из и содержащей центральную область, которая обладает, по существу, постоянной положительной оптической силой, и по меньшей мере одну область, которая является периферической по отношению к области с положительной оптической силой и обладает положительной продольной сферической аберрацией.

Согласно фиг.1, линзы 10 имеют оптическую зону 11 и неоптическую лентикулярную зону 14. Оптическая зона 11 состоит из центральной зоны 12 и периферической зоны 13. Центральная зона 12 расположена по центру оптической оси линз и имеет радиус в диапазоне приблизительно от 0,5 до 2 мм и предпочтительно приблизительно от 1 до 1,5 мм от оптического центра линзы. Оптическая сила в пределах центральной зоны 12 представляет собой, по существу, постоянную положительную оптическую силу и составляет от приблизительно +12,00 диоптрий до приблизительно -12,00 диоптрий. Вследствие добавления положительной оптической силы в периферической зоне рекомендуется провести гиперкоррекцию положительной оптической силы в центральной зоне путем усиления оптической силы, которая необходима для коррекции близорукости пользователя. Величина гиперкоррекции будет зависеть от диаметра центральной зоны 12 и величины предусмотренной положительной сферической аберрации. Однако, как правило, величина гиперкоррекции находится в диапазоне от приблизительно 0,25 до приблизительно 1,00 диоптрии.

Периферическая зона 13 обладает положительной продольной сферической аберрацией, постоянно постепенно возрастающей при перемещении от наиболее приближенной к оптическому центру линзы границы 14 до наиболее удаленной от оптического центра линзы границы 15 периферической зоны 13. Значение прироста продольной сферической аберрации в периферической зоне 13 может находиться в диапазоне от приблизительно 0,25 до приблизительно 2 диоптрий. Предпочтительное значение прироста находится в диапазоне от приблизительно 0,5 до приблизительно 1,50 диоптрий при радиусе приблизительно 2,5 мм от оптического центра линзы. Ширина периферической зоны 13 может составлять от приблизительно 0,5 до приблизительно 3,5 мм, предпочтительно от приблизительно 1 до приблизительно 2 мм.

Согласно фиг.1 между центральной зоной 12 и периферической зоной 13 находятся дискретные связи. В альтернативном варианте осуществления между, по существу, постоянной положительной оптической силой и положительной продольной сферической аберрацией отсутствуют дискретные связи, и участки, по существу, постоянной положительной оптической силы и положительной продольной сферической аберрации образуют одну зону.

При проектировании линз, составляющих предмет настоящего изобретения, положительная продольная сферическая аберрация назначается без учета аберраций глаз пользователя. В связи с этим в целях настоящего изобретения в первую очередь предпочтительно определить сферическую аберрацию линзы пользователя, а после этого определить сферическую аберрацию, которая необходима для коррекции исходной аберрации. В альтернативном варианте осуществления для сферической аберрации можно использовать усредненное значение, например 0,1 D/мм2. Сферическую аберрацию можно измерять любым известным и удобным способом, в том числе с помощью имеющегося в продаже аберрометра.

При проектировании оптической зоны линз, составляющих предмет настоящего изобретения, можно использовать любое количество математических функций, включая, помимо прочего, сферы, асферики, сплайны, конусы, многочлены и т.п. В предпочтительном варианте осуществления центральная зона предпочтительно имеет сферическую форму с плавным переходом между центральной и периферической зонами. Такой плавный переход может быть обеспечен благодаря использованию математических функций, постоянных по величине, а также их первых и вторых производных.

Одно уравнение, допустимое при проектировании оптической зоны линз, составляющих предмет настоящего изобретения, имеет следующий вид:

y = x 2 r + [ r 2 ( 1 + k ) x 2 ] (I),

где y - расстояние от центра линзы;

x - величина сагиттального параметра;

r - радиус кривизны и

k - коническая константа, k=0 для сферы, -1<k<0 для эллипса, k<-1 для гиперболы.

Для оптической зоны диаметром D с центральной сферической зоной диаметром d для -d/2<x<d/2 можно использовать коническое сечение следующего уравнения:

y = x 2 r + [ r 2 x 2 ] (II),

а для d/2<x<D/2

y = ( x d / 2 ) 2 { r + [ r 2 ( x d / 2 ) 2 ] } ( x d / 2 ) 2 ( x d / 2 ) 2 { r + [ r 2 ( 1 + k ) ( x d / 2 ) 2 ] } (III).

Сагиттальные параметры в любой точке могут быть преобразованы в радиусы. Оптическая сила в такой точке может быть вычислена по следующей формуле:

P = ( n 1 ) [ 1 r 1 2 1 r 2 2 ] (IV),

где P - оптическая сила и

n - показатель преломления материала линзы.

Участок положительной оптической силы и участок положительной продольной сферической аберрации могут располагаться, и в предпочтительном варианте располагаются, вместе либо по отдельности на передней или задней поверхностях линзы. В целях коррекции астигматизма пользователя одна поверхность линзы может обладать положительной оптической силой и положительной продольной сферической аберрацией, а другая поверхность может быть сферической, асферической или обладать оптической силой цилиндра. Специалист в данной области определит, что для вариантов осуществления контактной линзы, обладающей силой цилиндра, следует учесть необходимость использования средств стабилизации. К допустимым средствам стабилизации относятся любые известные в данной области статические и динамические средства стабилизации, в частности призматический балласт, тонкие и утолщенные зоны, выпуклости и т.п., а также комбинации таких способов.

В тех вариантах осуществления, где находятся центральная зона и по меньшей мере одна концентрическая зона, возможно наличие второй зоны, которая является концентрической по отношению к первой такой зоне. Вторая зона может обладать, по существу, постоянной оптической силой или, что предпочтительно, оптической силой, которая постепенно снижается при перемещении в направлении к периферии данной зоны. Вторая концентрическая зона может найти применение в тех линзах, пользователи которых обладают большими зрачками. К их числу относятся молодые люди, находящиеся в условиях недостаточного освещения. Вторая зона предпочтительно начинается на расстоянии радиуса приблизительно 3,5 мм и имеет ширину до радиуса приблизительно 4,5 мм. В тех вариантах осуществления, в которых оптическая сила постепенно снижается к краю зоны, конечное значение оптической силы предпочтительно составляет приблизительно половину значения оптической силы на участке зоны, наиболее приближенном к оптическому центру. Например, если положительная продольная сферическая аберрация линзы в первой концентрической зоне на расстоянии радиуса приблизительно 2,5 мм составляет 1,0 диоптрию, то оптическая сила на участке второй зоны, наиболее удаленном от оптического центра, снижена до приблизительно 0,5 диоптрий. В тех вариантах осуществления, где между постоянной положительной оптической силой и положительной продольной сферической аберрацией отсутствует дискретная связь, по краю области положительной продольной сферической аберрации может располагаться вторая область такой постоянной или постепенно снижающейся оптической силы. Добавление второй периферической зоны может иметь свои преимущества, поскольку такая зона может использоваться для снижения положительной оптической силы на периферии, тем самым снижая риск нарушения зрения вследствие положительной оптической силы в условиях недостаточного освещения.

Линзы, составляющие предмет настоящего изобретения, предпочтительно представляют собой мягкие контактные линзы, выполненные из любого материала, пригодного для изготовления таких линз. Примерами материалов, пригодных для изготовления мягких контактных линз, являются, в частности, силиконовые эластомеры, силиконсодержащие макромеры, в том числе описанные в патентах США №№ 5371147, 5314960 и 5057578, полностью включенных в настоящий документ путем ссылки, гидрогели, силиконсодержащие гидрогели и т.п., а также их комбинации. В более предпочтительном варианте поверхность выполнена из силоксана или содержит функциональную группу силоксана, включая, помимо прочего, полидиметилсилоксановые макромеры, метакрилоксипропилполиалкилсилоксаны и их смеси, силиконовый гидрогель или гидрогель, например этафилкон A.

Предпочтительным материалом для изготовления линз являются поли-2-гидроксиэтилметакрилатные полимеры. Под ними понимаются полимеры, имеющие максимальную молекулярную массу в диапазоне от приблизительно 25,000 до приблизительно 80,000 и степень полидисперсности в диапазоне от менее приблизительно 1,5 до менее приблизительно 3,5 соответственно и несущие по меньшей мере одну ковалентно связанную функциональную группу для поперечной сшивки. Данный материал описан в патенте США № 6846892, полностью включенном в настоящий документ путем ссылки. Соответствующие материалы для изготовления интраокулярных линз включают, помимо прочего, полиметилметакрилат, гидроксиэтилметакрилат, инертные прозрачные пластмассы, полимеры на основе силикона и т.п., а также их комбинации.

Для полимеризации материала линз могут применяться любые способы, включая, в частности, термическую, радиационную, химическую, электромагнитную полимеризацию и т.п., а также их комбинации. Линзу предпочтительно отливают в форме и полимеризуют с использованием ультрафиолетового излучения или полного спектра видимого излучения. В частности, точные параметры условий полимеризации материала линзы зависят от выбранного материала и изготавливаемой линзы. Способы полимеризации офтальмологических линз, в том числе контактных линз, являются широко известными. Допустимые способы рассмотрены в патенте США № 5540410, полностью включенном в настоящий документ путем ссылки.

Контактные линзы, составляющие предмет настоящего изобретения, можно изготовить любым общепринятым способом. Например, оптические зоны можно изготовить методом алмазной обточки или алмазной обточки в формах для литья, используемых для формирования линз, составляющих предмет настоящего изобретения. После этого соответствующую жидкую смолу помещают между формами для литья и сжимают, а затем отверждают до получения линз, составляющих предмет настоящего изобретения. В альтернативном варианте осуществления зону можно изготавливать методом алмазной обточки в заготовках линзы.

Суть настоящего изобретения может быть более подробно раскрыта в следующих примерах.

Примеры

Пример 1

Радиус кривизны задней поверхности линзы, составляющей предмет настоящего изобретения, составляет 8,8 мм, тогда как параметры передней поверхности рассчитываются с помощью уравнения II при k +105, r=1,1 и d=0,75 мм. Оптическая сила центральной зоны составляет -3,00 диоптрии, а значение положительной продольной сферической аберрации составляет +1 диоптрия при 5 мм. Линза изготовлена путем микрообточки медного вкладыша монокристальным алмазным резцом с последующей отливкой под давлением формы для литья линзы из вкладыша и отливкой линзы из этафилкона А в соответствии со стандартными способами изготовления линз. Сплошная линия на графике, представленном на фиг.2, соответствует профилю оптической силы оптической зоны линзы. На фиг.3 и 4 представлены профили оптической силы для альтернативных вариантов осуществления настоящего изобретения.

Сравнительный пример 1

Предлагается линза известного уровня техники, выполненная в соответствии с описанием патента США № 6045578, в которой радиус кривизны задней поверхности составляет 8,8 мм, а параметры передней поверхности рассчитываются с помощью уравнения I при k +3,5. Центральная зона оптической зоны обладает оптической силой 3,00 диоптрии и положительной продольной сферической аберрацией +1 диоптрия при 5 мм. Линза изготовлена путем микрообточки медного вкладыша монокристальным алмазным резцом с последующей отливкой под давлением формы для литья линзы из вкладыша и отливкой линзы из этафилкона А в соответствии со стандартными способами изготовления линз. Пунктирная линия на графике, представленном на фиг.2, соответствует профилю оптической силы оптической зоны линзы.

1. Офтальмологическая линза, представляющая собой оптическую зону, содержащую
центральную зону, имеющую, по существу, постоянную положительную оптическую силу,
по меньшей мере первую кольцевую зону, которая является концентрической по отношению к центральной зоне и обладает положительной продольной сферической аберрацией для предотвращения или замедления прогрессирования миопии, и
вторую кольцевую зону с оптической силой, постепенно снижающейся к периферии линзы.

2. Офтальмологическая линза по п. 1, представляющая собой контактную линзу, в которой профиль оптической силы в первой кольцевой зоне описан многочленом.

3. Офтальмологическая линза по п. 1, в которой вторая кольцевая зона является концентрической по отношению к первой кольцевой зоне.

4. Офтальмологическая линза, содержащая
оптическую зону, содержащую центральную зону, имеющую, по существу, постоянную положительную оптическую силу, и по меньшей мере первую кольцевую зону, которая является концентрической по отношению к центральной зоне и обладает положительной продольной сферической аберрацией для предотвращения или замедления прогрессирования миопии, и
по меньшей мере вторую кольцевую зону, которая является концентрической и периферической по отношению к первой кольцевой зоне, при этом вторая кольцевая зона обладает оптической силой, постепенно снижающейся к периферии линзы.

5. Офтальмологическая линза по п. 4, в которой профиль оптической силы в первой кольцевой зоне описан многочленом.

6. Офтальмологическая линза, представляющая собой оптическую зону, содержащую
центральную зону с, по существу, постоянной положительной оптической силой и
по меньшей мере первую кольцевую зону, которая является концентрической по отношению к центральной зоне и обладает положительной продольной сферической аберрацией, причем величина гиперкоррекции положительной оптической силы центральной зоны находится в диапазоне от приблизительно 0,25 до приблизительно 1,00 диоптрии.

7. Офтальмологическая линза по п. 6, в которой оптическая зона дополнительно содержит вторую кольцевую зону, которая является концентрической по отношению к первой кольцевой зоне.

8. Офтальмологическая линза по п. 7, в которой вторая кольцевая зона обладает, по существу, постоянной оптической силой.

9. Офтальмологическая линза по п. 7, в которой вторая кольцевая зона обладает постепенно снижающейся оптической силой.

10. Офтальмологическая линза, содержащая оптическую зону, имеющую
самую центральную область оптической зоны, имеющую, по существу, постоянную положительную оптическую силу, и по меньшей мере первую область, которая является периферической по отношению к области с положительной оптической силой и обладает положительной продольной сферической аберрацией.

11. Офтальмологическая линза по п. 10, представляющая собой контактную линзу.

12. Офтальмологическая линза по п. 10, в которой оптическая зона дополнительно содержит вторую область, которая является периферической по отношению к первой периферической области.

13. Офтальмологическая линза по п. 12, в которой вторая периферическая область обладает, по существу, постоянной оптической силой.

14. Офтальмологическая линза по п. 12, в которой вторая периферическая область обладает постепенно снижающейся оптической силой.

16. Способ предотвращения миопии, согласно которому используют офтальмологическую линзу по п. 1.

17. Способ предотвращения миопии, согласно которому используют офтальмологическую линзу по п. 6.



 

Похожие патенты:

Оптический прибор с изменяемым фокусным расстоянием содержит жесткий криволинейный прозрачный оптический компонент, две прозрачные растяжимые мембраны, примыкающие по периметру жесткого оптического компонента и определяющие две полости, первая полость - между жестким оптическим компонентом и первой мембраной, а вторая - между первой мембраной и второй мембраной, и резервуар, содержащий дополнительную жидкость и обеспечивающий инжекцию жидкости в полости или ее извлечение.

Мультифокальная линза с количеством главных оптических сил n>2 включает первую часть линзы, имеющую, по меньшей мере, одну первую кольцеобразную зону и, по меньшей мере, вторую часть линзы, имеющую, по меньшей мере, одну вторую кольцеобразную зону.

Глазная линза содержит основную часть линзы, углубленную часть, имеющую поверхность, которая углублена относительно поверхности основной части линзы, оптический центр и оптическую ось, проходящую через упомянутый оптический центр.

Группа изобретений относится к области медицины. Варианты внутриглазных линз содержат: оптику, имеющую переднюю поверхность и заднюю поверхность, причем оптика имеет центральную рефракционную область для обеспечения одной рефракционной фокусирующей силы, и дифракционную область, расположенную на одной из поверхностей так, чтобы обеспечивать дифракционную короткофокусную силу и дифракционную длиннофокусную силу.

Группа изобретений относится к медицинской технике. Интраокулярная линза содержит оптический элемент, содержащий переднюю поверхность, заднюю поверхность и множество дифракционных зон, расположенных на одной из упомянутых поверхностей.

Изобретение относится к области офтальмологии и направлено на создание мультифокальных контактных линз, имеющих повышенную эффективность и комфортность при их использовании, что обеспечивается за счет того, что способ формирования пары мультифокальных контактных линз содержит этап обеспечения конструкции первой линзы для доминантного глаза носителя линзы и конструкции первой линзы для недоминантного глаза носителя линзы, этап выбора первой весовой функции которой является функция первой функции чувствительности неврального контраста, применимая к конструкции линзы для доминантного глаза, и второй весовой функции, которой является функция второй функции чувствительности неврального контраста, применимая к конструкции линзы для недоминантного глаза, этап использования первой весовой функции для конструкции первой линзы и второй весовой функции для конструкции второй линзы в моделях прогнозирования характеристик для каждой из конструкций первой и второй линзы, где модель прогнозирования характеристики связывает измеренные характеристики двух или большего количества конструкций линзы со спрогнозированной характеристикой для конструкции каждой - первой и второй линзы, и этап использования результатов, полученных на предыдущих этапах, включающий вычисление спрогнозированной визуальной характеристики с использованием модели прогнозирования сначала вычислением взвешенной площади оптической передаточной функции в соответствии с уравнением, приведенным в формуле изобретения.

Изобретение относится к области офтальмологии и направлено на создание дифракционных офтальмологических линз, которые обеспечивают повышенное качество промежуточного изображения без ухудшения ближнего и дальнего зрения.
Изобретение относится к области офтальмологии и направлено на создание мультифокальных контактных линз, облегчающих усиление аккомодации глаз и использующих преимущества остаточной амплитуды аккомодации глаз, что обеспечивается за счет того, что способ конструирования мультифокальной линзы включает в себя этапы, на которых выбирают размер покоящегося зрачка, вычисляют размер зрачка при наблюдении близких объектов, выбирают отношения площади коррекции дальнего зрения к площади коррекции ближнего зрения для линзы, вычисляют значения для отношения как функцию суммарной оптической силы для наблюдения ближних и дальних объектов с использованием диаметров покоящегося и видящего вблизи зрачка и добавляют величину оптической конвергентности для линзы.

Изобретение относится к области офтальмологии и направлено на создание трифокальных интраокулярных линз, которые обеспечивают промежуточное зрение без ухудшения зрения вдали и вблизи.

Жидкостная менисковая линза содержит переднюю линзу и заднюю линзу, расположенную в непосредственной близости от передней линзы. Внутренние поверхности передней и задней линз формируют между собой полость. В полости содержится объем физиологического раствора и масла, формирующих между собой мениск. Стенка мениска сформирована в области внутренней поверхности передней линзы и содержит общую форму усеченного конуса, поперечное сечение которого является некруговым. Технический результат - создание жидкостной менисковой линзы, способной функционировать в человеческом глазу, и формировать цилиндрическую оптическую силу для коррекции астигматизма. 32 з.п. ф-лы, 8 ил.

Жидкостная менисковая линза содержит переднюю линзу и заднюю линзу, расположенную в непосредственной близости от передней линзы. Внутренние поверхности передней и задней линз формируют между собой полость. В полости содержится объем физиологического раствора и масла, формирующих между собой мениск, и стенка мениска, сформированная в области внутренней поверхности передней линзы. Стенка мениска содержит общую форму усеченного конуса с множественными зонами напряжения, сформированными в передней линзе и граничащими с мениском, сформированным между физиологическим раствором и маслом. По меньшей мере две из зон напряжения способны получать различные примененные напряжения. Технический результат - создание жидкостной менисковой линзы, способной функционировать в человеческом глазу и формировать цилиндрическую оптическую силу для коррекции астигматизма. 32 з.п. ф-лы, 10 ил.

Оптическая линза содержит переднюю линзу и заднюю линзу, размещенную в непосредственной близости к передней линзе так, что внутренние поверхности передней и задней линз формируют между собой полость. В полости содержится объем физиологического раствора и масла, образующий мениск между ними. Стенка мениска сформирована на области внутренней поверхности передней линзы, ограничивающей мениск и по которой проходит граница мениска. Стенка мениска содержит покрытие электрического изолятора, которое имеет переменную толщину по периметру стенки мениска. Первая зона стенки мениска имеет первую толщину покрытия электрического изолятора и вторая зона стенки мениска имеет вторую толщину покрытия электрического изолятора. Первая толщина покрытия электрического изолятора превышает вторую толщину покрытия электрического изолятора. Каждая из первой и второй зон граничит с мениском, сформированным между физиологическим раствором и маслом. Технический результат - возможность корректировать астигматизм за счет формирования мениска с тороидальной поверхностью. 33 з.п. ф-лы, 10 ил.

Офтальмологическая линза содержит переднюю и заднюю изогнутые линзы. Каждая из линз имеет дугообразную форму и расположена в непосредственной близости относительно другой линзы, образуя полость между ними. В полости расположен объем масла и объем физиологического раствора. По меньшей мере на одной части одной или обеих из передней и задней изогнутых линз, обращенной к полости, расположено проводящее покрытие. Линза выполнена с возможностью образования оптических структур с переменными свойствами из концентрических кольцевых секций в масле и физиологическом растворе на основе приложения электрического заряда к проводящему покрытию для изменения характеристик масла и физиологического раствора. Технический результат - создание дифракционных и рефракционных оптических структур с переменными свойствами. 13 з.п. ф-лы, 9 ил.

Оптическая линза содержит переднюю изогнутую линзу, содержащую внешнюю и внутреннюю поверхности дугообразной формы, заднюю изогнутую линзу, содержащую внутреннюю и внешнюю поверхности дугообразной формы. Между внутренними поверхностями передней и задней изогнутых линз образована полость, в которой физиологический раствор и масло формируют мениск между ними. Стенка мениска представляет собой область в полости мениска с внутренней стороны передней изогнутой линзы, по которой проходит граница жидкостного мениска, имеет общую форму усеченного конуса, по меньшей мере часть которого является выпуклой в направлении оптической оси. Технический результат - обеспечение способности жидкостной менисковой линзы функционировать в глазу и уменьшение изменения оптической силы при заданном уровне напряжения. 29 з.п. ф-лы, 10 ил.

Оптическая линза содержит переднюю изогнутую линзу, имеющую внешнюю и внутреннюю поверхности дугообразной формы, заднюю изогнутую линзу, имеющую внутреннюю и внешнюю поверхности дугообразной формы. На части внутренней поверхности передней линзы, включающей область ее периметра, расположено электропроводное покрытие. Передняя и задняя линзы скреплены между собой клеем. Между внутренними поверхностями передней и задней линз расположена полость, в которой содержатся масло и солевой раствор, образующие мениск. Стенка мениска расположена в передней линзе и определяется первым угловым изломом во внутренней поверхности передней линзы. Технический результат - использование жидкостной менисковой линзы в качестве офтальмологической линзы, например контактной или интраокулярной линзы. 21 з.п. ф-лы, 5 ил.

Оптическая линза содержит переднюю изогнутую линзу, содержащую внешнюю и внутреннюю поверхности дугообразной формы, заднюю изогнутую линзу, содержащую внутреннюю и внешнюю поверхности дугообразной формы. Задняя и передняя изогнутые линзы расположена так, что между ними формируется полость, в которой содержится объем солевого раствора и масла, образующих мениск между ними. Стенка мениска сформирована в передней и/или задней линзе, имеет, по существу, форму усеченного конуса и ограничивает мениск. Линза содержит канал, проходящий сквозь переднюю изогнутую линзу и/или заднюю изогнутую линзу, и электропроводный материал, заполняющий канал. Технический результат - создание жидкостной менисковой линзы, способной функционировать в человеческом глазу. 28 з.п. ф-лы, 10 ил.

Оптическая линза содержит переднюю и заднюю линзы, расположенные в непосредственной близости так, что внутренние поверхности передней и задней линз формируют между собой полость, объем физиологического раствора и масла, содержащихся в полости и образующих между собой мениск, и стенку мениска, сформированную на внутренней поверхности передней линзы в пределах полости, вдоль которой перемещается край мениска. Стенка мениска содержит микроканалы. Технический результат - уменьшение времени восстановления в обесточенном положении насчет наличия микроканалов. 31 з.п. ф-лы, 8 ил.

Оптическая линза содержит переднюю и заднюю линзы, расположенные в непосредственной близости так, что внутренние поверхности передней и задней линз формируют между собой полость, объем физиологического раствора и масла, содержащихся в полости и образующих между собой мениск, и стенку мениска, сформированную на области с внутренней стороны передней и/или задней линзы в упомянутой полости, вдоль которой перемещается мениск. Стенка мениска содержит общую форму из нескольких сегментов тора, выпуклую по направлению к оптической оси, сформированной в одной или обеих из передней и задней линз, и с неоднородностью между сегментами. Технический результат - улучшение контроля движения мениска за счет наличия на стенке мениска сегментов тора и неоднородностей между ними, влияющих на движение мениска. 27 з.п. ф-лы, 11 ил.

Прогрессивная офтальмологическая линза содержит переднюю и заднюю поверхности. Каждая точка каждой поверхности имеет высоту, среднее значение сферы и значение цилиндра. Передняя поверхность линзы содержит зону зрения на большое расстояние, содержащую базовую точку (FV) зрения на большое расстояние; зону зрения на малое расстояние, содержащую базовую точку (NV) зрения на малое расстояние; основной меридиан (32). Передняя поверхность является регрессивной и имеет нормированное значение (GradSPH) градиента сферы, равное менее 7,50×10-1 мм-1 в любой точке в центральной части линзы, содержащей часть основного меридиана, базовую точку (FV) зрения на большое расстояние и базовую точку (NV) зрения на малое расстояние; нормированное значение (GradCYL) градиента цилиндра, равное менее 1,45 мм-1 в любой точке в центральной части линзы. Технический результат - облегчение изготовления прогрессивной офтальмологической линзы при одновременном сохранении оптических качеств линзы. 7 н. и 2 з.п. ф-лы, 83 ил., 3 табл.
Наверх