Летательный аппарат

Изобретение относится к летательным аппаратам. Летательный аппарат содержит корпус, двигательную установку, включающую закрепленные вокруг корпуса в продольном направлении реактивные сопла, и интерцепторы, каждый из которых установлен на периферии соответствующего реактивного сопла за его срезом на поворотной оси, сообщенной с реверсным приводом. Реактивные сопла размещены на корпусе в количестве не менее трех пар. По одному интерцептору размещено в трех парах между реактивными соплами. Реверсный привод каждой поворотной оси выполнен с возможностью периодического введения интерцептора в газовую струю каждого реактивного сопла соответствующей пары. Изобретение направлено на уменьшение количества интерцепторов и их приводов. 7 ил.

 

Изобретение относится к летательным аппаратом (ЛА), использующим для управления движением реактивную силу струи двигательной установки.

Известны ЛА, снабженные устройствами воздействия на струю газов реактивного сопла двигательной установки (И.Х. Фахрутдинов, А.В. Котельников, "Конструкция и проектирование ракетных двигателей твердого топлива". М.: Машиностроение, 1987 г., стр.215-253). ЛА с наиболее простым устройством управления движением, принятый за прототип и представленный на стр.236-239, рис.9.30а и 9.31б, содержит корпус, включающий двигательную установку с закрепленным вдоль корпуса реактивным соплом, а также интерцепторы, по периферии вокруг реактивного сопла за его срезом. Каждый интерцептор установлен на поворотной оси, сообщенной с реверсным приводом. Интерцептор вводится в газовую струю периодически, на время создания управляющего усилия. Для управления ЛА по трем каналам (тангаж, рыскание и крен) используют восемь интерцепторов, расположенных вне реактивного сопла по его периферии. Четыре интерцептора, расположенные попарно противоположно, обеспечивают управление ЛА по курсу и тангажу, а остальные четыре, также расположенные попарно противоположно, используются для управления по крену, при этом плоскости их поверхностей, направленные навстречу потоку газов в струе, скошены под углом к оси, с попарно противоположным направлением угла скоса. Для создания управляющего момента по крену достаточен небольшой угол скоса (1-2°). Известное устройство может быть реализовано и при наличии в двигательной установке нескольких реактивных сопел, закрепленных вокруг корпуса в продольном направлении с интерцепторами, установленными на периферии соответствующего реактивного сопла.

Существенными признаками прототипа, совпадающими с предлагаемым устройством? являются следующие: летательный аппарат, содержащий корпус, двигательную установку, включающую закрепленные вокруг корпуса в продольном направлении реактивные сопла, и интерцепторы, каждый из которых установлен на периферии соответствующего реактивного сопла за его срезом, на поворотной оси, сообщенной с реверсным приводом.

В прототипе для управления движением ЛА используется восемь интерцепторов и восемь приводов для их вращения, что усложняет систему управления. Кроме того, для создания управляющего момента по крену площадь поверхности четырех интерцепторов используется с эффективностью 1,7-3,5% (пропорционально тангенсу угла скоса их поверхности), что увеличивает затраты энергии двигательной установки на управление по крену ЛА.

Техническим результатом, на решение которого направлено изобретение, является уменьшение количества интерцепторов и их приводов и увеличение эффективности управления интерцепторами по крену ЛА.

Для решения поставленной задачи в летательном аппарате, содержащем корпус, двигательную установку, включающую закрепленные вокруг корпуса в продольном направлении реактивные сопла, и интерцепторы, каждый из которых установлен на периферии соответствующего реактивного сопла за его срезом, на поворотной оси, сообщенной с реверсным приводом, реактивные сопла размещены на корпусе попарно, на небольшом расстоянии друг от друга в паре, в количестве не менее трех пар, при этом по одному интерцептору размещено по меньшей мере в трех парах между реактивными соплами, а реверсный привод каждой поворотной оси выполнен с возможностью периодического введения интерцептора в газовую струю каждого реактивного сопла соответствующей пары.

Отличительными признаками предлагаемого устройства является то, что реактивные сопла размещены на корпусе попарно, на небольшом расстоянии друг от друга в паре, в количестве не менее трех пар, при этом по одному интерцептору размещено по меньшей мере в трех парах между реактивными соплами, а реверсный привод каждой поворотной оси выполнен с возможностью периодического введения интерцептора в газовую струю каждого реактивного сопла соответствующей пары.

Благодаря наличию указанных отличительных признаков в совокупности с известными достигается следующий технический результат: для управления движением ЛА достаточно трех интерцепторов и трех реверсных приводов, при этом уменьшаются затраты энергии на управление по крену.

Предложенное техническое решение может найти применение в космической и авиационной технике при полетах с большой скоростью, когда управление движением ЛА посредством отклонения аэродинамических поверхностей в обтекающем потоке воздуха невозможно или малоэффективно.

Сущность предлагаемого решения поясняется чертежами.

На фиг.1 представлено расположение трех пар реактивных сопел на корпусе ЛА.

На фиг.2 и 3 представлено положение интерцепторов при управлении движением ЛА по каналу рыскания в левую и правую сторону, соответственно.

На фиг.4 и 5 представлено положение интерцепторов при управлении движением ЛА по каналу тангажа на кабрирование (набор высоты) и на пикирование (уменьшение высоты полета), соответственно.

На фиг.6 и 7 представлено положение интерцепторов при управлении движением ЛА по каналу крена, по часовой стрелке и против часовой стрелки, соответственно.

Представленное на чертежах устройство содержит три пары реактивных сопел, соответственно, 1 и 2, 3 и 4, 5 и 6, которые закреплены снаружи вдоль корпуса 7 ЛА, с близким расположением сопел в каждой паре. Вдоль корпуса 7 между реактивными соплами в каждой паре 1 и 2, 3 и 4, 5 и 6 закреплена поворотная ось, соответственно, 8-10, соединенная с реверсным приводом, соответственно, 11-13, и снабженная интерцептором, соответственно, 14-16, выступающим за срез реактивных сопел пары, соответственно 1 и 2, 3 и 4, 5 и 6. Реверсные приводы 11-13 выполнены с возможностью введения интерцептора, соответственно, 14-16 в любую газовую струю реактивного сопла пары, соответственно, 1 и 2, 3 и 4, 5 и 6. Корпус 7 содержит систему 17 управления, сообщенную с приводами 11-13. Устройство работает следующим образом.

Для изменения движения ЛА по каналу рыскания, налево от направления движения корпуса 7 (фиг.2, левый поворот), система 17 (фиг.1) управления задействует реверсный привод 11 для вращения оси 8 по часовой стрелке, а реверсные приводы 12 и 13 для вращения осей 9 и 10 против часовой стрелки. При этом установленный на оси 8 интерцептор 14 вводится в газовую струю за срезом реактивного сопла 2 (фиг.2), а интерцепторы 15 и 16, установленные на осях 9 и 10, вводятся в газовые струи за срезом реактивных сопел 3 и 5, соответственно. На участках стенок реактивных сопел 2, 3 и 5 перед поверхностями стенок интерцепторов, соответственно 14, 15 и 16, образуются зоны повышенного давления за счет торможения газового потока, формируя силу F14, действующую на стенку реактивного сопла 2 и через его крепление (на чертежах не показано) на заднюю часть корпуса 7 направо от направления его движения, и момент силы F14 относительно продольной оси корпуса 7, направленный на вращение корпуса 7 по часовой стрелке. Аналогично формируются сила F15, действующая на стенку реактивного сопла 3, и сила F16, действующая на стенку реактивного сопла 5. При этом приводы 12 и 13 поворачивают оси 9 и 10 на меньший угол, по сравнению с углом поворота оси 8 приводом 11, таким образом, чтобы сумма сил F15 и F16 равнялась силе F14. В результате силы F15 и F16, создают момент вращения корпуса 7 против часовой стрелки, компенсирующий момент вращения корпуса 7 силой F14, и под действием силы F14 и проекции сил F15 и F16 на горизонтальную ось корпус 7 поворачивался относительно оси, перпендикулярной его продольной оси и проходящей через центр тяжести (ЛА) с направлением носовой части корпуса 7 налево от направления движения, при этом корпус 7 ЛА совершает маневр по каналу рыскания в левую сторону без вращения вокруг своей оси. Изменение движения ЛА по каналу рыскания, направо от направления движения корпуса 7, фиг.3, осуществляется аналогично. Отличие заключается в том, что система 17 управления задействует привод 11 для вращения оси 8 против часовой стрелки и интерцептор 14 погружается в газовую струю реактивного сопла 1, а приводы 12 и 13 задействуются для вращения осей, соответственно 9 и 10 по часовой стрелке, обеспечивая погружение интерцепторов 15 и 16 в газовые струи реактивных сопел, соответственно 4 и 6. При этом соотношение сил F14, F15 и F16 сохраняется, а их направление меняется на противоположное, обеспечивая маневр корпуса 7 ЛА по каналу рыскания, направо от направления его движения и без вращения вокруг его продольной оси. Для изменения движения ЛА по каналу тангажа вверх от направления движения корпуса 7 (набор высоты) приводы 12 и 13 (фиг.1) поворачивают оси, соответственно, 9 (фиг.4) против часовой стрелки, а 10 по часовой стрелке, на одинаковый угол, обеспечивая погружение интерцепторов 15 и 16 в газовые струи реактивных сопел, соответственно, 3 и 6, с формированием сил F15 и F16, направленных вниз, с наклоном к вертикальной плоскости симметрии корпуса 7. Силы F15 и F16 раскладываются на боковые составляющие F15-1 и F16-1, уравновешивающие друг друга, и вертикальные составляющие F15-2 и F16-2, которые поворачивают корпус 7 в вертикальной плоскости вокруг горизонтальной оси, проходящей через центр тяжести ЛА, с увеличением тангажа (угла наклона продольной оси корпуса 7 к горизонту). Уменьшение угла тангажа осуществляется аналогично. Отличие заключается в том, что система 17 управления ЛА задействует приводы 12 и 13 для вращения осей, соответственно, 9 по часовой стрелке, и 10 против часовой стрелки, при этом интерцепторы 15 и 16 погружаются в газовые струи реактивных сопел, соответственно, 4 и 5 (фиг.5), силы F15 и F16 меняют свое направление на противоположные, а их вертикальные составляющие F15-2 и F16-2 обеспечивают поворот корпуса 7 в вертикальной плоскости относительно горизонтальной оси, проходящей через центр тяжести корпуса 7, с уменьшением угла тангажа. Для случая крепления реактивных сопел 1-6 и поворотных осей 8-10 в передней части корпуса (на чертежах не показано) управление по рысканию и тангажу осуществляется аналогично, при этом направление вращения осей 9, 10 приводами 11-13 меняется на противоположное описанному выше. Для управления по каналу крена с поворотом корпуса 7 вокруг продольной оси по часовой стрелке, система 17 (фиг.1) управления задействует приводы 11-13, для поворота осей, соответственно, 8-10 по (фиг.6) часовой стрелке на одинаковый угол, при этом интерцепторы 14-16 погружаются в газовые струи реактивных сопел, соответственно, 2, 4 и 6, с формированием сил, соответственно F14-F16, их равнодействующая сила (векторная сумма равна нулю), а действующий на корпус 7 момент вращения, относительно его продольной оси, равный сумме произведений величины каждой силы на кратчайшее расстояние от линии ее действия до продольной оси корпуса 7, поворачивает корпус 7 вокруг его продольной оси по часовой стрелке. Управление по каналу крена с поворотом корпуса 7 вокруг продольной оси против часовой стрелки осуществляется аналогично. Отличие заключается в том, что система 17 (фиг.1) управления ЛА задействует приводы 11-13 для поворота осей, соответственно, 8-10 (фиг.7) против часовой стрелки на одинаковый угол, при этом интерцепторы 14-16 погружаются в газовые струи реактивных сопел, соответственно, 1, 3 и 5, с формированием сил F14-F16, направленных в противоположную сторону, и действующий на корпус 7 момент сил поворачивает его вокруг продольной оси против часовой стрелки. Возможны также и более сложные варианты управления движением ЛА, представляющие собой комбинацию описанных вариантов, например поворот корпуса 7 по каналу рыскания с поворотом по каналу крена, с набором высоты или снижением, при этом система 17 управления ЛА варьирует углами поворота интерцепторов 14-16 и периодом (импульсом) их введения в газовые струи реактивных сопел 1-6, обеспечивая необходимое движение ЛА. Пары реактивных сопел 1 и 2, 3 и 4, 5 и 6 могут располагаться на корпусе 7 как на одинаковом расстоянии друг от друга, так и на различных расстояниях. Отличие заключается в том, что при одинаковом расположении пар реактивных сопел 1 и 2, 3 и 4, 5 и 6 с одинаковым расстоянием друг от друга система 17 управления ЛА использует более простые алгоритмические зависимости управления интерцепторами 14-16, а при различных расстояниях между парами реактивных сопел 1 и 2, 3 и 4, 5 и 6 система 17 управления, с учетом различия во влиянии на движение ЛА различных интерцепторов 14-16, в зависимости их расположения, должна обеспечивать управлении интерцепторами 14-16 по более сложным алгоритмическим зависимостям.

Летательный аппарат, содержащий корпус, двигательную установку, включающую закрепленные вокруг корпуса в продольном направлении реактивные сопла, и интерцепторы, каждый из которых установлен на периферии соответствующего реактивного сопла за его срезом, на поворотной оси, сообщенной с реверсным приводом, отличающийся тем, что реактивные сопла размещены на корпусе попарно, на небольшом расстоянии друг от друга в паре, в количестве не менее трех пар, при этом по одному интерцептору размещено по меньшей мере в трех парах между реактивными соплами, а реверсный привод каждой поворотной оси выполнен с возможностью периодического введения интерцептора в газовую струю каждого реактивного сопла соответствующей пары.



 

Похожие патенты:

Сверхзвуковой самолет содержит фюзеляж, крыло с передним наплывом, расположенную над хвостовой частью фюзеляжа силовую установку, снабженную мотогондолой с турбореактивными двигателями и двумя сверхзвуковыми воздухозаборниками с прямоугольной формой поперечного сечения.

Изобретение относится к сверхскоростному воздушному судну, а также к способу воздушного передвижения при помощи сверхскоростного воздушного судна. Воздушное судно движется при помощи системы двигателей, состоящей из турбореактивных двигателей (ТВ1, ТВ2), прямоточных воздушно-реактивных двигателей (ST1, ST2) и ракетного двигателя, которому можно придавать обтекаемую форму закрыванием для снижения лобового сопротивления в фазе полета на крейсерской скорости.

Летательный аппарат состоит из корпуса и двигателя с выхлопным соплом. Корпус включает отсек для укладки парашюта и механизм выброса парашюта, который имеет вход, соединенный с выходом блока управления выбросом парашюта, и связь с подвижной пластиной, связанной с приводом, вход которого соединен с выходом блока управления приводом.

Изобретение относится к области самолетов. Хвостовая часть широкофюзеляжного самолета содержит каркас с обшивкой, оперение с двумя килями и общим крылом, реактивный двигатель, установленный между килями с возвышением над обшивкой каркаса, и кожух.

Изобретение относится к области летательных аппаратов. Фюзеляж летательного аппарата содержит носовую часть с кабиной управления и передним шасси, серединную часть с элементами крепления крыльев, хвостовую часть с реактивным двигателем и оперением.

Изобретение относится к области авиации. Способ увеличения подъемной силы крыла самолета основан на создании над верхними плоскостями потока воздуха за счет использования на верхних плоскостях жалюзи, устроенных так, что воздушные полости внутри крыла сообщаются через синхронно с жалюзи управляемыми заслонками со всасывающими полостями турбореактивных двигателей, которые поток воздуха просасывают через жалюзи, создавая при неподвижном самолете над крыльями подвижную воздушную массу.

Беспилотный летательный аппарат содержит корпус с боковыми воздухозаборными устройствами с воздуховодными каналами и двигательную установку, состоящую из бака с жидким топливом и прямоточного воздушно-реактивного двигателя, включающего камеру сгорания, сообщенную с воздуховодными каналами, стабилизаторы пламени, устанавливаемые в камере сгорания с механизмами установки.

Изобретение относится к области авиации, более конкретно к самолету, который (1) содержит фюзеляж (2) удлиненной формы вдоль продольной оси Х самолета и, по меньшей мере, одно крыло (3), закрепленное на фюзеляже между передним концом и задним концом (25) фюзеляжа.

Изобретение относится к административным сверхзвуковым самолетам. Летательный аппарат содержит крыло, сопряженное с фюзеляжем, носовая и центральная части которого выполнены с округлой формой поперечного сечения, а хвостовая часть снабжена силовой установкой с двумя воздухозаборниками и мотогондолой, расположенной за углублением, которое ограничено расположенными последовательно друг за другом первой и второй парами плоских площадок.

Изобретение относится к области авиации. Стартовый ускоритель самолета представляет баллон с краном, наполненный водой и сжатым воздухом.

Устройство для управления самолетом, состоящее из задатчика крена, сигнал с которого поступает на сумматоры, на которые также поступает общий сигнал от системы управления вектором тяги, а сигналы с этих сумматоров усиливаются усилителями, с входов которых поступают на исполнительные механизмы сопел.

Изобретение относится к машиностроению. .

Изобретение относится к летательным аппаратам вертикального взлета и посадки. .

Изобретение относится к области авиации. .

Изобретение относится к области авиастроения и предназначено для защиты реактивных авиационных двигателей, находящихся в работе, от попадания внутрь них птиц во время движения самолета.

Изобретение относится к области авиации. .

Изобретение относится к авиационно-космической технике, а именно к конструкции несущего блока летательного аппарата. .

Изобретение относится к летательным аппаратам, транспортируемым другими летательными аппаратами. .

Способ и устройство увеличения аэродинамической подъемной силы самолета с силовой установкой, имеющей сопло, расположенное у задней кромки крыла. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, используют нижнюю внешнюю поверхность сопла, где устанавливают по меньшей мере один аэродинамический щиток, который отклоняют в воздушный поток вокруг самолета. Группа изобретений направлена на снижение аэродинамического сопротивления от вихреобразования. 2 н. и 3 з.п. ф-лы, 5 ил.
Наверх