Полупроводниковый преобразователь давления

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах. Полупроводниковый преобразователь давления содержит мембрану с утолщенным периферийным основанием. Мембрана имеет толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика. Тензорезисторы объединены с помощью проводников, имеющих соединенные с ними металлизированные контактные площадки, в мостовую измерительную схему. Мембрана содержит профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров. Кроме того, преобразователь содержит дополнительно сформированный слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны и равный по толщине и свойствам слою диэлектрика, закрепленному на мембране со стороны тензорезисторов. Техническим результатом изобретения является повышение надежности преобразователя, повышение прочности мембраны и повышение стабильности параметров при повышенных температурах. 1 ил.

 

Предлагаемое техническое решение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Известны преобразователь давления и способ его изготовления, характеризующиеся тем, что мембрана со слоем диэлектрика, на которой сформированы тензорезисторы, легирована бором до того же уровня концентрации, что и тензорезисторы, при этом толщина мембраны под слоем диэлектрика равна толщине тензорезисторов [1].

Недостатками данного преобразователя является низкая чувствительность к измерению малых давлений при сохранении собственной резонансной частоты, низкая прочность мембраны, высокий уровень погрешностей измерений в интервале температур от минус 100 до 600°C.

Наиболее близким по технической сущности к изобретению является преобразователь давления и способ его изготовления, содержащий мембрану с утолщенным периферийным основанием, выполненную из кремния и легированную бором до концентрации не менее 5·1019 см-3, имеющую толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика, выполненных из кремния, легированного бором до того же уровня концентрации, что и мембрана, объединенных с помощью проводников в мостовую измерительную схему и имеющих соединенные с ними металлизированные контактные площадки, причем мостовая измерительная схема содержит терморезистор, выполненный из кремния, а мембрана содержит профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров, при этом поверхности тензорезисторов и терморезистора покрыты слоем двуокиси кремния [2].

Недостатками прототипа являются низкая надежность, низкая прочность мембраны, высокая дополнительная температурная погрешность преобразователя из-за высоких механических напряжений, обусловленных различием свойств кремния, из которого выполнена мембрана, и слоя диэлектрика, изолирующего тензорезисторы от мембраны. Например, коэффициент термического расширения двуокиси кремния (как наиболее типичного диэлектрика) равен K S i O 2 = 0,5 10 6 K 1 , а кремния kSi=4,5·10-6K-1 [3, 4]. То есть коэффициенты термического расширения двух слоев отличаются друг от друга приблизительно в 10 раз. Учитывая, что слои занимают эквивалентную площадь и непосредственно соприкасаются друг с другом, в данном преобразователе давления при работе в широком диапазоне температур (от минус 70 до 600°C) будут иметь место значительные механические напряжения, вызванные, помимо различия коэффициентов термического расширения двуокиси кремния и кремния, усадочными явлениями материалов этих слоев, несовершенством проведения технологических процессов, неоднородностью пластической деформации, несоответствием параметров решетки слоев и т.д. [5]. Возникающие высокие механические напряжения растяжения либо сжатия снижают надежность преобразователя и приводят к прогибу мембраны, появлению неинформативного сигнала и, как следствие, - к повышению дополнительной температурной погрешности.

Изобретение направлено на повышение надежности преобразователя, повышение прочности мембраны, повышение стабильности параметров при повышенных температурах.

Поставленная цель достигается тем, что в полупроводниковом преобразователе давления, содержащем мембрану с утолщенным периферийным основанием, выполненную из кремния, имеющую толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика, объединенных с помощью проводников в мостовую измерительную схему, имеющих соединенные с ними металлизированные контактные площадки и содержащую профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров, дополнительно сформирован слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны и равный по толщине и свойствам слою диэлектрика, закрепленному на мембране со стороны тензорезисторов.

Введение предложенной конструкции, содержащей дополнительно сформированный слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны и равный по толщине и свойствам слою диэлектрика, закрепленному на мембране со стороны тензорезисторов, позволяет снизить уровень механических напряжений, обусловленных различием свойств кремния и диэлектрика.

Предложенная конструкция представляет собой многослойную гетероструктуру, температурные напряжения у которой аналитически определяются из:

где Ef - модуль упругости пленки, νf - коэффициент Пуассона пленки, αs и αf - температурные коэффициенты линейного расширения слоев, ΔT - диапазон изменения температуры [6]. Согласно выражению (1) кремниевая мембрана при повышении температуры на 50°C по сравнению с нормальными условиями испытывает напряжение порядка 25 МПа, а дополнительно сформированный слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны, так же, как и слой диэлектрика, закрепленный на мембране со стороны тензорезисторов, испытывает напряжение порядка 9 МПа (при этом напряжения слоев диэлектрика равны по значению, но противоположны по знаку), что означает снижение механического напряжения, испытываемого мембраной, на то же значение. Более точные результаты дает численное моделирование в пакете прикладных программ конечно-элементного анализа, по результатам которого усредненное механического напряжение, испытываемое мембраной конструкции-прототипа при повышении температуры на 50°C, составляет порядка 21 МПа, а в предложенной конструкции составляет значение порядка 13 МПа. Таким образом, предложенная конструкция обеспечивает снижение дополнительных механических напряжений, действующих на тензорезисторы, на значение порядка 62%, что означает снижение дополнительной температурной погрешности на такое же значение, а также повышение надежности преобразователя, повышение прочности мембраны. А учитывая, что механические напряжения вызывают деформацию мембраны, особенно при эксплуатации преобразователя при повышенных температурах, то предложенная конструкция также позволяет повысить стабильность параметров при повышенных температурах.

Предлагаемое устройство поясняется фиг.1.

На фиг.1 изображен полупроводниковый преобразователь давления, содержащий мембрану (1) с утолщенным периферийным основанием (2). Мембрана (1) имеет толщину, равную толщине тензорезисторов (3), сформированных на закрепленном на мембране слое диэлектрика (4). Тензорезисторы (3) объединены с помощью проводников (5), имеющих соединенные с ними металлизированные контактные площадки (6), в мостовую измерительную схему. Мембрана (1) содержит профиль с концентраторами механических напряжений (7) в местах расположения тензорезисторов (3), который представляет собой сочетание утонченных участков и жестких центров. Кроме того, преобразователь содержит дополнительно сформированный слой диэлектрика (8), закрепленный с противоположной относительно сформированных тензорезисторов (3) стороны мембраны (1) и равный по толщине и свойствам слою диэлектрика (4), закрепленному на мембране (1) со стороны тензорезисторов (3).

Принцип работы преобразователя заключается в следующем.

Измеряемое давление, воздействуя на мембрану с жестким центром, деформирует тензорезисторы и увеличивает разбаланс мостовой схемы, в которую замкнуты тензорезисторы. Наличие дополнительно сформированного слоя диэлектрика, закрепленного с противоположной относительно сформированных тензорезисторов стороны мембраны и равного по толщине и свойствам слою диэлектрика, закрепленному на мембране со стороны тензорезисторов, обеспечивает взаимную компенсацию механических напряжений, как растяжения, так и сжатия, учитывая идентичность по толщине и физико-механическим свойствам данных слоев, когда деформации, вызванные механическими напряжениями, будут равными по значению, но противоположными по знаку, когда кремниевая мембрана при повышении температуры на 50°C по сравнению с нормальными условиями испытывает напряжение порядка 25 МПа, а дополнительно сформированный слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны, так же, как и слой диэлектрика, закрепленный на мембране со стороны тензорезисторов, испытывает напряжение порядка 9 МПа (при этом напряжения слоев диэлектрика равны по значению, но противоположны по знаку), что означает снижение механического напряжения, испытываемого мембраной, на то же значение. При эксплуатации преобразователя происходит взаимная компенсация механических напряжений, как растяжения, так и сжатия, учитывая идентичность по толщине и физико-механическим свойствам данных слоев, когда деформации, вызванные механическими напряжениями, будут равными по значению, но противоположными по знаку. Таким образом, предлагаемое техническое решение позволяет снизить уровень механических напряжений, повысить надежность преобразователя, повысить прочность мембраны, повысить стабильность параметров при повышенных температурах.

Технико-экономическими преимуществами предлагаемого преобразователя по сравнению с известными являются:

- повышение надежности преобразователя;

- повышение прочности мембраны;

- повышение стабильности параметров при повышенных температурах.

Источники информации

1. А.с. (СССР) №1732199, МКИ G01L 9/04, 1990.

2. Патент 2284613 RU. Полупроводниковый преобразователь давления и способ его изготовления. Опубл. 27.09.2006. Бюл. №27.

3. Концевой Ю.А., Литвинов Ю.М., Фаттахов Э.А. Пластичность и прочность полупроводниковых материалов и структур. М.: Радио и связь, 1982. - 240 с.

4. Палатник Л.С., Сорокин В.К. Материаловедение в микроэлектронике. М.: Энергия, 1978. - 280 с.

5. В.С. Сергеев, О.А. Кузнецов, Н.П. Захаров, В.А. Летагин. Напряжения и деформации в элементах микросхем. М.: Радио и связь, 1987. - 88 с.: ил.

6. Allyson L. Hartzell, Mark G. da Silva, Herbert R. Shea. MEMS Reliability. - Springer London, Limited, 2013.

Полупроводниковый преобразователь давления, содержащий мембрану с утолщенным периферийным основанием, выполненную из кремния, имеющую толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика, объединенных с помощью проводников в мостовую измерительную схему, имеющих соединенные с ними металлизированные контактные площадки и содержащую профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров, отличающийся тем, что в нем дополнительно сформирован слой диэлектрика, закрепленный с противоположной относительно сформированных тензорезисторов стороны мембраны и равный по толщине и свойствам слою диэлектрика, закрепленному на мембране со стороны тензорезисторов.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС).

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью.

Изобретение относится к измерительной технике и направлено на повышение точности измерения и стабильности технических характеристик датчиков давления. Способ измерения давления заключается в размещении датчика давления на основе тензорезистивного моста в исследуемую среду, регистрации напряжений с питающей и измерительной диагоналей моста, их преобразовании в аналоговый сигнал постоянного тока и определении по этим сигналам давления.

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур.

Изобретение относится к области измерительной техники, в частности, к преобразователям малых давлений и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Изобретение относится к измерительной технике, предназначено для измерения давления при автоматизации контроля технологических процессов. Техническим результатом изобретения является уменьшение температурной погрешности и повышение быстродействия.

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с жестким центром, заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных сред. Заявленная группа изобретений включает способ измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы (НиМЭМС) и интеллектуальный датчик давления на основе НиМЭМС.

Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления. Датчик абсолютного давления содержит корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу, выполненному в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием, на плоской поверхности профилированного монокристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь. Центры тензорезисторов расположены на расстоянии l от взаимно перпендикулярных осей Ox и Oy, проведенных через центр мембраны, лежащих в ее плоскости и параллельных границам тонкой части мембраны с основанием полупроводникового чувствительного элемента, которое определено из соотношения: где ам - размер мембраны полупроводникового кристалла; hм - толщина мембраны полупроводникового кристалла. Технический результат - повышение чувствительности устройства. 3 ил.

Датчик давления с нормализованным или цифровым выходом содержит корпус с установленными в нем чувствительным элементом давления (ЧЭД) с кристаллом интегральной микросхемы преобразователя давления (ИПД) и контактными площадками, кристалл интегральной микросхемы (ИС) преобразователя сигнала ИПД, защитную крышку ЧЭД и ИС, выходные контакты, средства электрических соединений ЧЭД, ИС и выходных контактов и по меньшей мере один канал в корпусе для подвода давления среды. ЧЭД снабжен контактными площадками, такое выполнение ЧЭД упрощает и позволяет автоматизировать процесс соединения электрическими проводниками ИПД, ИС и выходных контактов. Крышка выполнена из кремния по технологии производства ИС встроенной, т.е. размещена внутри полости корпуса на кристалле ИПД, а соединение ее с кристаллом ИПД также выполнено низкотемпературной пайкой стеклом, что, как известно, позволяет в кристалле ИПД уменьшить термические напряжения при работе. Размещение кристалла ИС на встроенной защитной крышке ИПД и их соединение клеем-герметиком улучшает условия работы и упрощает технологию сборки, т.к ЧЭД соединяется с корпусом таким же образом. 6 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Микромеханический волоконно-оптический датчик давления выполнен на основе оптического волокна, содержащего участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса. При этом пропускной канал включает участок для размещения оптического кабеля параллельно основанию корпуса и выполнен в виде паза с рифленой поверхностью в основании. Волокно в пазу прижато к вершинам выступов рифленой поверхности пластинами и выполнено с решетками Брега. Пластины выполнены в виде кремниевых кристаллов, на которых сформированы мембраны одинаковой толщины hм, при этом первая мембрана имеет один квадратный жесткий центр, размещенный в центре, вторая мембрана - два одинаковых квадратных жестких центра, расположенных вдоль участка оптического волокна на расстоянии l по обе стороны от центра мембраны. Техническим результатом является повышение точности измерения за счет повышения чувствительности микромеханического волоконно-оптического датчика давления. 3 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Техническим результатом изобретения является повышение временной и температурной стабильности, ресурса, срока службы. Определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и второй дополнительные критерии стабильности по соотношениям Ψτ01j=|(α2j+α4j)-(α1j+α3j)|, Ψτ02j(α)=αij, где α1j, α2j, α3j, α4j - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и если |Ψτ01j|<|Ψτ01jmax|, Ψτ02jmin<Ψτ02j(α)<Ψτ02jmax, где Ψτ01jmax, Ψτ02jmin, Ψτ02jmax - соответственно предельно допустимое максимальное значение первого дополнительного критерия стабильности, предельно допустимые минимальное и максимальное значение второго дополнительного критерия стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Способ настройки термоустойчивого датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы относится к области измерительной техники и предназначен для измерения давления при воздействии нестационарной температуры измеряемой среды. Способ заключается во введении в мостовую измерительную цепь из тензорезисторов двух компенсационных резисторов, воздействии нестационарной температуры измеряемой среды на мембрану датчика, определении начального выходного сигнала и его изменении от действия температуры, определении необходимой величины сопротивлений компенсационных резисторов и закорачивании компенсационных резисторов до необходимой величины. При этом первый компенсационный резистор размещают в зоне минимального градиента температурного поля на минимально возможном расстоянии от тензорезисторов, а второй компенсационный резистор размещают в зоне максимального градиента температурного поля. Причем сначала определяют необходимую величину второго компенсационного резистора при выключенном напряжении питания и воздействии нестационарной температуры и включают его в мостовую измерительную цепь из тензорезисторов, а затем определяют необходимую величину первого компенсационного резистора при включенном напряжении питания и стационарных температурах. Техническим результатом изобретения является уменьшение погрешности датчика давления. 3 ил.

Изобретение относится к оборудованию для гранулирования предварительно измельченных материалов и может быть использовано для определения напряженного состояния в клиновидном рабочем пространстве вальцово-матричных пресс-грануляторов. Прессующий ролик содержит ось с подшипниками, на которых установлена цилиндрическая обечайка, и силоизмерительное устройство, встроенное в информационно-измерительную систему. Силоизмерительное устройство состоит из двухопорных тензометрических пластин с наклеенными на них тензодатчиками, цилиндрических несущих штифтов и общей для тензометрических пластин опоры. Силоизмерительное устройство установлено в продольном сквозном пазу обечайки, в плоском основании которого по его длине выполнен ряд сквозных цилиндрических радиальных отверстий. Каждый несущий штифт установлен с кольцевым зазором в соответствующем отверстии и рабочим концом выходит на контактную поверхность обечайки, а сферической головкой опирается на тензометрическую пластину. В результате повышается точность измерения нормальных радиальных напряжений в клиновидном рабочем пространстве, обеспечивается возможность определения параметров напряженного состояния и их распределения в тангенциальном направлении и по ширине рабочих органов. 5 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления, массы, деформаций и напряжений. Устройство содержит тензорезисторы, которые размещены в контролируемых точках объекта и соединены с внешними конденсаторами в фазирующую RC-цепочку, образуя совместно с усилителем генератор гармонических колебаний, соединенный через преобразователь частота-код и микроконтроллер, программа которого снабжена градуировочной характеристикой зависимости частоты от контролируемой массы или деформации, с цифровым индикатором. Технический результат заключается в возможности непрерывно проводить измерения с использованием двухпроводной линии связи и однотипных стандартных тензорезисторов (тензодатчиков). 3 ил.

Изобретение относится к измерительной технике и может быть использовано для прецизионного измерения давления на основе тензомостового интегрального преобразователя давления в широком диапазоне рабочих температур. Предложен способ измерения давления и калибровки, в котором калибровку аддитивной и мультипликативной температурной погрешностей проводят при непрерывном измерении напряжений с диагоналей тензомоста отдельно для минимального и максимального значения давления при изменении температуры от минимальной до максимальной рабочей температуры и обратно, а нелинейность преобразователя от давления оценивают при изменении давления в НУ и крайних точках рабочих температур. Давление вычисляют по коэффициентам, рассчитанным при калибровке, путем последовательной компенсации аддитивной и мультипликативной температурной погрешностей, а также нелинейности преобразователя от давления. Технический результат - повышение точности измерений за счет компенсации аддитивной, мультипликативной погрешностей и нелинейности тензомостового интегрального преобразователя давления во всем диапазоне изменения рабочих температур и давления при сокращении времени и трудоемкости калибровки. 4 ил.

Изобретение относится к оборудованию для гранулирования измельченного полуфабриката растительного происхождения. Прессующий ролик пресс-гранулятора содержит обечайку, подшипники качения, торцевые крышки для фиксации обечайки относительно наружных колец подшипников и измеритель нормальных напряжений на рабочей поверхности ролика. Обечайка выполнена по меньшей мере с одним меридиональным пазом на внутренней поверхности и по меньшей мере с одним радиальным отверстием. Измеритель нормальных напряжений выполнен в виде по меньшей мере одного тензометрического штифта, установленного с зазором в соответствующем радиальном отверстии обечайки. Штифт имеет опорно-стопорную головку, расположенную в меридиональном пазу обечайки с опорой на тензометрическую пластину. На одной стороне упомянутой пластины закреплен тензодатчик. Проводники тензодатчика выведены через полость, образованную П-образным сечением колодки, по меньшей мере в одно отверстие в торцевой крышке. Колодка размещена в меридиональной пазу обечайки. В результате обеспечивается повышение точности измерения нормального напряжения на рабочей поверхности прессующего ролика. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений. Сущность: преобразователь давления содержит кремниевую мембрану (1), предназначенную для измерения давления, с расположенным на ней кремниевым резонатором (2). Дополнительно преобразователь содержит два постоянных магнита (3), обеспечивающие действие магнитного поля в плоскости резонатора в направлении, перпендикулярном продольной оси резонатора (2). Резонатор (2) выполнен в виде наружной рамки, внутри которой на перемычках (4, 5) подвешен колебательный элемент в виде внутренней рамки (6) с напыленной на ее поверхности по периметру проводящей дорожкой (7), которая проходит через одну из перемычек, а на другой перемычке расположен преобразователь деформации, состоящий из расположенных попарно-перпендикулярно на противоположных краях одной стороны перемычки в зонах наибольшего сжатия и растяжения четырех тензорезисторов (8), объединенных в мостовую схему. Технический результат: повышение чувствительности, увеличение добротности колебательной системы и снижение потребляемой мощности преобразователя. 5 ил.
Наверх