Способ получения пористых керамических гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс. % карбоната кальция, обладающие биоактивными свойствами и высокой биорезорбцией, что способствует быстрому восстановлению костной ткани. Гранулы указанного состава получали по суспензионной технологии, основанной на принципе несмешивающихся жидкостей, в результате диспергирования суспензии на основе раствора полиакриламида в среду растительного масла с температурой 80-180°С. После промывания и сушки полученные гранулы спекали в среде углекислого газа при температуре 620-700°С. Техническим результатом является получение пористых керамических гранул с регулируемым размером от 100 до 2000 мкм, открытой пористостью 40-80% и с размером пор от 20 до 400 мкм. 1 табл., 2 пр.

 

Одним из наиболее часто и эффективно применяемых видов матриксов для инженерии костной ткани являются пористые керамические гранулы. Они представляют собой керамический пористый материал с нерегулярной или близкой к сферической геометрией, на котором происходит культивирование стволовых клеток, факторов роста, протеинов и белков для создания тканеинженерных конструкций. Такие конструкции имплантируют в место костного дефекта при реконструктивно-пластических операциях. Ключевой проблемой является создание специфической архитектуры, способствующей циркуляции физиологических жидкостей, неоваскуляризации и росту новой костной ткани в месте костного дефекта. Предпочтительно, чтобы гранулы имели высокую открытую (до 80%) взаимосвязанную пористость [Weinlander М., Plenk Н., Jr., Adar F. and Holmes R. In: Bioceramics and the human body, Eds. A.Ravaglioli and A.Krajewski. Elsevier, London, 1992. P. 317].

Керамические гранулы могут изготовляться разными способами. Для получения гранул с формой, близкой к сферической, в основном используют метод, основанный на сфероидизации жидких капель за счет сил поверхностного натяжения. Реализация этого метода описана в работе [Paul W., Sharma СР. Development of porous spherical hydroxyapatite granules: application towards protein delivery // J.Mater. ScL: Mater. Med. 1999. V. 10, N 7. P. 383-388], где пористые сферические гранулы получали в результате смешения смесей суспензии гидроксиапатита в растворе связующего (хитозана) и жидкого парафина. Способ позволяет получать пористые гранулы сферической формы, открытые поры в которых образуются за счет выжигания связки. К недостаткам этого способа можно отнести использование расплавленного парафина и низкую пористость получаемого материала.

Наиболее близкими по техническому решению и достигаемому эффекту являются пористые керамические гранулы фосфатов кальция [патент РФ №2299869, МПК С04В 35/447, С04В 35/626, A61L 27/12, опубл. 27.05.2007. Способ изготовления пористых керамических гранул фосфатов кальция / Комлев B.C., Баринов С.М., Кубарев О.Л.]. В предложенной работе сферические пористые керамические гранулы с открытой пористостью от 20 до 80 об.%, размером от 50 до более чем 2000 мкм, состава от трехкальциевого фосфата (Са/Р=1,5) до гидроксиапатита (ГА) (Са/Р=1,67) получали на основе суспензионной технологии, основывающейся на методе несмешивающихся жидкостей, диспергированием суспензии на основе желатина в среду растительного масла. После диспергирования материалы подвергали термической обработке при температурах от 900 до 1250°C. В результате термической обработки получали высокопористые гранулы, при этом поры формируются в результате удаления желатина и растительного масла. Недостатком данного метода является высокая температура термической обработки, связанная с высокой температурой спекания керамических гранул, содержащих трехкальцийфосфат (ТКФ) и ГА. Кроме того, желатин имеет высокую температуру разложения - 400 до 600°C [Z. Yang, Y. Jiang, L. xin Yu, В. Wen et al. Preparation and characterization of magnesium doped hydroxyapatite-gelatin nanocomposite // J. Mater. Chem. 2005. V. 15, Р. 1807-1811]. Это может приводить к науглероживанию материала в результате образования свободного углерода или высокоуглеродистых соединений при спекания гранул и, как следствие, ухудшению биологических свойств.

Технический результат предлагаемого изобретения - получение пористых керамических гранул на основе карбоната кальция (КК) и ГА и/или карбонатгидроксиапатита (КГА) с регулируемым размером гранул от 100 до 2000 мкм с низкой температурой спекания 620-700°C с открытой пористостью от 40 до 80 об. % и размером пор 20-400 мкм.

Технический результат предлагаемого изобретения достигается тем, что способ получения пористых гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях отличается тем, что получают порошок состава:

карбонат кальция 20 до 80 масс. %,

гидроксиапатит и/или карбонатгидроксиапатит - 20-80 масс. %,

спекающая добавка на основе карбонатов щелочных металлов 3-7 масс. %, взятая сверх 100% по отношению к порошку;

затем порошок с добавкой смешивают с полиакриламидом и водой с образованием суспензии состава:

полиакриламид - 10-25 масс. %,

порошок с добавкой - 10-40 масс. %,

остальное - вода;

полученную суспензию диспергируют в среду растительного масла с температурой 80-180°C и интенсивно перемешивают с последующим промыванием, сушкой и спеканием гранул в среде углекислого газа при температуре 620-700°C.

В качестве органического связующего используют полиакриламид (ПАА), который в отличие от желатина (прототип) полностью удаляется при термообработке при температуре до 300°C, что связано с низкой температурой его кипения - около 215°C. Это позволяет получать гранулы, спекающиеся при 620-700°C без эффекта науглероживания, т.е. без присутствия свободного углерода и высокоуглеродистых соединений. При кипении ПАА внутри термообрабатываемых гранул образуются крупные поры размером от 20 до 400 мкм, размер и количество которых увеличивается с повышением содержания ПАА в исходном материале. Полученные гранулы имеют более низкую температуру спекания по сравнению с прототипом, это связано с использованием керамического материала на основе системы ГА (КГА)-КК [Гольдберг М.А., Смирнов В.В., Куцев С.В., Шибаева Т.В., Шворнева Л.И., Сергеева Н.С., Свиридова И.К., Баринов С.М. Композиционные керамические материалы системы гидроксиапатит-карбонат кальция // Неорганические материалы. 2010. Т. 46, №11. С. 1397-1402] и спекающей добавки в количестве 3-7 масс. % по сравнению с материалами на основе системы ГА-ТКФ, спекающимися при 900-1250°C. При выходе за указанные соотношения в составе порошка - КК менее 20 масс. % и более 80 масс. %, а добавки менее 3 масс. % гранулы не спекается. При увеличении содержания добавки более 7 масс. % гранулы имеют низкую пористость - менее 40%. При этом спекание необходимо проводить в среде, содержащей углекислый газ, что предотвращает разложение материала.

При содержании ПАА в суспензии менее 10 масс. % или содержании порошка менее 10 масс. % или температуры смешения суспензии с растительным маслом менее 80°C гранулы не образуются (растекаются). При содержании ПАА более 25 масс. % или порошка более 40 масс. % получается очень вязкая суспензия, что препятствует формированию гранул при диспергировании в среду растительного масла. При температуре растительного масла выше 180°C образование гранул также невозможно вследствие их разрушения при быстром закипании воды, содержащейся в суспензии гранул. При температуре спекания гранул ниже 620°C они имеют низкую прочность, что приводит к их разрушению. При спекании гранул без использования среды углекислого газа и при температуре выше 700°C происходит термическое разложение материала.

Изобретение иллюстрируется следующими примерами.

Пример 1. В порошок, содержащий 8 г (80 масс. %) карбоната кальция и 2 г (20 масс. %) гидроксиапатита (10 масс. %), вводят добавку 0,3 г (3 масс. %) карбоната натрия, взятую по отношению к порошку сверх 100%. Затем полученный порошок с добавкой в количестве 10 г (10 масс. %) смешивают с 10 г (10 масс. %) ПАА и 80 г (80 масс. %) воды с образованием суспензии. Полученную суспензию диспергируют в среду растительного масла при температуре 80°C и постоянном перемешивании лопастной мешалкой со скоростью 500 об/мин в течение 3 мин. После отстаивания, фильтрования, промывки и сушки полученные гранулы подвергают спеканию при температуре 620°C в среде углекислого газа. Обожженные образцы имели размер 100-300 мкм, присутствуют поры размером 20-50 мкм, открытая пористость составляет 60-70 об. %.

Пример 2. В порошок, содержащий 8 г (20 масс. %) карбоната кальция и 32 г (80 масс. %) карбонатгидроксиапатита, вводят добавку карбоната калия 2,8 г (7 масс. %), взятую по отношению к порошку сверх 100%. Затем полученный порошок с добавкой в количестве 40 г (40 масс. %) перемешивают с 10 г (10 масс. %) ПАА и 50 г (50 масс. %) воды с образованием суспензии. Суспензию вводят в растительное масло с температурой 120°C при постоянном перемешивании лопастной мешалкой со скоростью 100 об/мин в течение 10 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают спеканию при температуре 700°C в среде углекислого газа. Обожженные образцы имели размер 1800-2000 мкм, присутствуют поры размером 200-400 мкм, открытая пористость составляет 40-50 об. %.

Были изготовлены образцы гранул в пределах заявленного способа, определены свойства гранул в сравнении с прототипом. Полученные результаты сведены в таблицу.

Состав порошка, масс. % Добавка, масс. %, взятая сверх 100% по отношению к порошку Состав суспензии, масс. % Температура масла, °C Температура спекания, °C Размер гранул, мкм Размер пор, мкм Пористость, % Примечание
Образец № ГА и/или КГА КК Порошок с добавкой ПАА Вода
1 20 80 3 10 10 80 80 620 100-300 20-50 60-70
2 80 20 7 40 10 50 120 700 1800-2000 200-400 40-50
3 50 50 5 10 25 65 180 650 800-1200 100-300 70-80
4 (прототип) 100 0 0 1 г без добавки 1,5 мл 10% раствор желатина - 1200 1000-10000 1-10 39-41
5(прототип) 100% ТКФ 0 0 1 г без добавки 3 мл 10% раствор желатина - 900 50-400 0,5-15 79-81
6 100 0 2 20 20 60 80 600 Гранулы после спекания разрушаются
7 0 100 10 5 25 70 100 740 Гранулы после спекания разрушаются
8 50 50 3 5 2 93 200 Не происходит образования гранул из суспензии
8 80 20 7 50 30 20 50 Не происходит образования гранул из суспензии

Способ получения пористых гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях, отличается тем, что в порошок состава:
карбонат кальция 20 до 80 масс. %,
гидроксиапатит и/или карбонатгидроксиапатит - 20-80 масс. %,
вводят спекающую добавку на основе карбонатов щелочных металлов 3-7 масс. %, взятую сверх 100% по отношению к порошку;
полученный порошок с добавкой смешивают с полиакриламидом и водой с образованием суспензии в соотношении:
полиакриламид - 10-25 масс. %;
порошок с добавкой - 10-40 масс. %;
остальное - вода,
полученную суспензию диспергируют в среду растительного масла с температурой 80-180°С и интенсивно перемешивают с последующим промыванием, сушкой и спеканием гранул в среде углекислого газа при температуре 620-700°С.



 

Похожие патенты:

Изобретение относится к материалам, пригодным для метода 3D формования и/или 3D печати, и может быть использовано для получения формованных изделий на основе фосфатов кальция, применяемых в медицине для костной инженерии в качестве матриксов, обладающих биологической совместимостью и остеокондуктивностью.

Изобретение относится к области медицины, а именно к способу получения порошкового материала на основе карбонатгидроксиапатита и брушита, который может быть использован для создания новых керамических, композиционных материалов, цементных масс и лечебных паст для травматологии, ортопедии, челюстно-лицевой хирургии и стоматологии.
Изобретение относится к медицине, а именно к стоматологии, и касается способа получения гидроксилапатитной керамики в качестве модели твердых тканей зуба для лабораторных испытаний стоматологических материалов in vitro.

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кальций-фосфатных покрытий на имплантатах, при создании бифазных композитов на основе фосфатов кальция и сплавов титана.

Изобретение относится к получению керамики на основе ортофосфатов редкоземельных элементов и может быть использовано для изготовления конструктивных элементов в энергетических установках, в частности, в высокотемпературных микротурбогенераторных установках для малой энергетики.

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии.

Изобретение относится к химической технологии, конкретно к способу получения гидроксиапатита (ГА), обладающего антимикробной активностью, который может использоваться в медицине в качестве материала для замещения костных дефектов, в фармации, косметике, стоматологии, перевязочных средствах и в различных областях техники.

Изобретение относится к области медицинского материаловедения и может быть использовано при создании материалов для травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, а также в качестве носителей для лекарственных средств.
Изобретение относится к области керамических материалов для медицины, а именно для травматологии и реконструктивно-восстановительной хирургии, стоматологии и к системе доставки лекарственных препаратов.

Изобретение относится к области формования керамических изделий из материалов, содержащих низкотемпературные фосфатные связующие, и может быть использовано для изготовления заготовок композиционных керамических изделий, в том числе для радиоэлектроники.

Изобретение относится к области медицины и касается биоматериалов для заполнения дефектов костной ткани на основе реакционно-твердеющей смеси, содержащей фосфаты кальция и водорастворимый органический полимер.
Изобретение относится к медицине. Описан способ пост-загрузки керамических частиц антимикробными катионами металлов.

Изобретение относится к медицине. Описаны новые усиленные биоразлагаемые каркасы для регенерации мягких тканей, а также описаны способы поддержки, наращивания и регенерации живой ткани, где усиленный биоразлагаемый каркас применяют для лечения симптомов, где требуется повышенная прочность и устойчивость помимо необходимости регенерации живой ткани пациента.
Изобретение относится к медицине. Описан способ изготовления трубчатых изделий из полиуретана с антимикробным покрытием, в том числе многоканальных полиуретановых катетеров, заключающийся в модификации хлоргексидином и/или его солями, которую осуществляют в три стадии.
Изобретение относится к ортопедическому изделию и ортопедической прокладке, в частности прокладке для ампутационных культей, контактной накладке, покрытию для протеза, прокладке для ортезов, голенищам протеза, стельке для обуви или ортопедическим чулкам, т.е.

Изобретение относится к медицине, конкретно к реконструктивной хирургии дефектов слизистой оболочки полости рта. Описана матрица из биосовместимого, нерассасывающегося пространственно-сшитого полимера, полученного путем экспонирования УФ-светом фотополимеризующейся композиции, содержащей олигомеры метакрилового ряда, выполнена в виде эластичной прозрачной для света двухслойной пленки, сплошной слой которой гладкий, а другой слой - в виде рельефного рисунка, выполнен высотой, равной половине толщины матрицы, с образующим элементом в форме кольца, который не имеет общей стороны с соседствующими элементами.

Изобретение относится к медицине. Описаны способы получения имплантируемых медицинских изделий предпочтительно из ПЭЭК, имеющих противомикробные свойства.

Изобретение относится к медицинским устройствам, способным высвобождать биологически активные вещества. Имплантат представляет собой насыщенное лекарством полимерное устройство, например, в виде стержня, разработанное для контроля высвобождения биологически активного вещества клонидина или его производных, таких как клонидин HCl, в течение длительного периода времени, например в течение 2 месяцев, 3 месяцев, 4 месяцев и даже 4,5 месяцев.

Изобретение относится к клеточной трансплантологии и тканевой инженерии и описывает матрицу, основным элементом которой является плоская пластина, выполненная из пространственно-сшитого гидрофобного полимера, содержащего гидрофильные группы и образующего на поверхности пластины слой из предельных углеводородов с длиной цепочки от 8 до 16 атомов углерода, ориентированных преимущественно вдоль нормали к поверхности пластины.

Изобретение относится к области медицины, конкретно к материалу для закрытия костных дефектов при реконструктивно-пластических операциях, изготовления костных имплантатов, замещения дефектов при различных костных патологиях.

Изобретение относится к области медицины, конкретно к способу получения нанокристаллического силикатзамещенного карбонатгидроксиапатита (КГА), который включает смешение растворов солей кальция, фосфата и силиката, отстаивание, фильтрование, промывку от маточного раствора и сушку, при этом смешивают растворы четырехводного нитрата кальция, безводного двузамещенного фосфата аммония, пятиводного метасиликата натрия при соотношении концентраций Ca/(P+Si) равном 1,70, и доле силикат-ионов в общем количестве осадкообразующих анионов ( X S i O 4 4 − = C S i O 4 4 − / ( C P O 4 4 − + C S i O 4 4 − ) ) , составляющей не более 30 мол.

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит иили каронатгидроксиапатит, содержащие от 20 до 80 масс. карбоната кальция, обладающие биоактивными свойствами и высокой биорезорбцией, что способствует быстрому восстановлению костной ткани. Гранулы указанного состава получали по суспензионной технологии, основанной на принципе несмешивающихся жидкостей, в результате диспергирования суспензии на основе раствора полиакриламида в среду растительного масла с температурой 80-180°С. После промывания и сушки полученные гранулы спекали в среде углекислого газа при температуре 620-700°С. Техническим результатом является получение пористых керамических гранул с регулируемым размером от 100 до 2000 мкм, открытой пористостью 40-80 и с размером пор от 20 до 400 мкм. 1 табл., 2 пр.

Наверх