Смесительная головка метано-кислородного парогенератора



Смесительная головка метано-кислородного парогенератора
Смесительная головка метано-кислородного парогенератора
Смесительная головка метано-кислородного парогенератора
Смесительная головка метано-кислородного парогенератора

 


Владельцы патента RU 2555598:

Открытое акционерное общество "Конструкторское бюро химавтоматики" (RU)

Изобретение относится к энергетическим установкам, производящим пар высоких параметров, получаемый за счет энергии, выделяемой при сгорании природного газа или сжиженного природного газа в кислороде. Смесительная головка метано-кислородного парогенератора содержит струйные форсунки, запальное устройство, корпус и огневое днище. Смесительная головка имеет два каскада форсунок горючего, находящиеся на разных радиальных расстояниях, при этом форсунки горючего первого каскада выполнены таким образом, что пересечение их осей с продольной осью форсунки окислителя находится от огневого днища на расстоянии 5÷7 выходных диаметров форсунки окислителя, а форсунки горючего второго каскада - от огневого днища на расстоянии 10÷15 выходных диаметров форсунки окислителя. Изобретение позволяет повысить эффективность горения, ресурс работы смесительной головки и парогенератора в целом. 4 ил.

 

Изобретение относится к энергетике, в частности к энергетическим установкам, производящим водяной пар высоких параметров, получаемый за счет энергии, выделяемой при сгорании горючего (природного газа (ПГ)) в окислителе (кислороде).

Известен водородно-кислородный парогенератор для получения водяного пара (патент RU 2309325, F22B 1/26, 2005), в состав которого входит смесительная головка с триплетными смесительными элементами, представляющими собой комбинацию из трех струйных форсунок - одной форсунки окислителя (кислорода) и двух форсунок горючего (водорода), оси которых пересекаются в одной точке. Кроме того, на огневом днище смесительной головки расположены отверстия для подачи воды на пленочное охлаждение камеры сгорания.

Недостатком данной конструкции является:

- возможность контакта высокотемпературных обратных токов с огневым днищем смесительной головки, что может привести к его оплавлению;

- из-за более высокой плотности ПГ по сравнению с водородом (~ в 10 раз) очень сложно реализовать пересечение в одной зоне горючего и окислителя с оптимальным соотношением компонентов, что может сказаться на эффективности работы парогенератора.

Наиболее близкой к предлагаемому изобретению является конструкция смесительной головки водородно-кислородного парогенератора (патент RU 2379590, F23D 14/62, F02K 9/44, 2008, прототип), в состав которой входит запальное устройство, корпус, огневое днище, в котором основные форсунки находятся на одном радиальном расстоянии и установлены так, что пересечение их осей находится в одной зоне на расстоянии не менее 8 выходных диаметров форсунок окислителя от огневого днища, а дополнительные форсунки горючего установлены на промежуточных радиальных расстояниях.

Недостатком данной конструкции является невозможность, из-за высокой плотности горючего, осуществить полноту сгорания компонентов топлива при стехиометрическом соотношении в одной зоне, что снижает эффективность работы парогенератора.

Кроме того, наличие дополнительных форсунок горючего, защищающих огневое днище от горячих обратных токов, также не обеспечивает полноту сгорания компонентов топлива при оптимальном соотношении.

Данное изобретение решает техническую задачу повышения эффективности горения, ресурса работы смесительной головки и парогенератора в целом, устраняет указанные недостатки прототипа. Поставленная техническая задача решается тем, что в смесительной головке метано-кислородного парогенератора, содержащей струйные форсунками, запальное устройство, корпус и огневое днище, имеется два каскада форсунок горючего, находящихся на разных радиальных расстояниях. Форсунки горючего первого каскада выполнены таким образом, что пересечение их осей с продольной осью форсунки окислителя находится от огневого днища на расстоянии 5÷7 выходных диаметров форсунки окислителя, а форсунки горючего второго каскада - находится от огневого днища на расстоянии 10÷15 выходных диаметров форсунки окислителя.

Такое выполнение смесительной головки позволяет реализовать следующие процессы:

1. Горючее из форсунок первого каскада и окислитель при пересечении реализуют в первой зоне на расстоянии 5÷7 выходных диаметров форсунки окислителя смешение с соотношением компонентов топлива (отношение расхода окислителя к расходу горючего) km=10÷12 с реализацией температуры ~ 2600÷2800°С. Реализуемые с такой температурой обратные токи защищают огневое днище.

2. Горючее из форсунок второго каскада при соединении на расстоянии 10÷15 выходных диаметров форсунки окислителя от огневого днища с продуктами сгорания, имеющими соотношением km=10÷12, осуществляют дальнейшее сгорание топлива при оптимальном соотношении km=4.

Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1- 4.

Смесительная головка метано-кислородного парогенератора со струйными форсунками (фиг. 1) включает в себя запальное устройство 1, корпус 2 с магистралями подвода окислителя 3, горючего 4, воды 5 на пленочное охлаждение, полость окислителя 6, полость горючего 7, огневое днище (фиг. 2) 8 с форсунками горючего первого 9 (с чередованием через одну форсунку 10) и второго 10 (с чередованием через одну форсунку 9) каскадов, находящихся на разных радиальных расстояниях, форсунками окислителя 11, отверстия 12 для подачи воды на завесу.

Смесительная головка метано-кислородного парогенератора со струйными форсунками работает следующим образом.

В запальном устройстве происходит предварительное сжигание небольшого количества горючего в окислителе. Из магистрали подачи воды 5 через отверстия 12 вода поступает на пленочное охлаждение камеры сгорания.

Из магистралей 3 и 4 окислитель и горючее через форсунки окислителя 11 и форсунки горючего 9 и 10 поступает в камеру сгорания. Продукты сгорания запального устройства с температурой ~ 1400÷1500°С поджигают горючее, поступающее через форсунки горючего 9 с окислителем при соотношении km=10÷12 c реализацией температуры горения ~ 2600÷2800°С (зона первого каскада). На расстоянии от огневого днища 10÷15 выходных диаметров форсунки окислителя (D0) при поступлении горючего из форсунок горючего 10 осуществляется дальнейшее сгорание при температуре 3550°С с соотношением компонентов топлива km=4 (зона второго каскада).

Таким образом, использование смесительной головки с двумя каскадами форсунок горючего, находящимися на разных радиальных расстояниях, обеспечивают надежную защиту огневого днища за счет обтекания его обратными токами пониженной температуры из зоны первого каскада горения, качественное перемешивание компонентов топлива и эффективное горение за счет поступления горючего из форсунок второго каскада, что в целом обеспечивает высокую экономичность, надежность и повышенный ресурс работы смесительной головки метано-кислородного парогенератора.

Смесительная головка метано-кислородного парогенератора, содержащая струйные форсунки, запальное устройство, корпус и огневое днище, отличающаяся тем, что она имеет два каскада форсунок горючего, находящиеся на разных радиальных расстояниях, при этом форсунки горючего первого каскада выполнены таким образом, что пересечение их осей с продольной осью форсунки окислителя находится от огневого днища на расстоянии 5÷7 выходных диаметров форсунки окислителя, а форсунки горючего второго каскада - от огневого днища на расстоянии 10÷15 выходных диаметров форсунки окислителя.



 

Похожие патенты:

Изобретение относится к области машиностроения, энергетики, транспорта и к другим областям, где имеют место процессы смешения различных жидкостей и газов, в том числе процессы смесеобразования различных топлив с воздухом и сжигания «бедной» топливовоздушной смеси.

Задний кожух для регулирования потока воздуха, предназначенный для использования в горелке, содержит корпус, первое впускное отверстие, кольцевую сборную камеру, кольцевую смесительную камеру, кольцевую стенку и первое и второе отверстия для потока воздуха.

Изобретение относится к теплоэнергетике и может быть использовано в котельных. .

Изобретение относится к теплоэнергетике и может применяться в промышленности и других отраслях народного хозяйства, использующих природный газ в качестве энергоносителя.

Изобретение относится к устройствам сжигания топливных ресурсов и может применяться для обеспечения термического воздействия в процессах различного технологического назначения.

Изобретение относится к системе нагревания и способу пуска устройства непосредственного нагревания. .

Изобретение относится к энергетическим установкам, производящим водяной пар высоких параметров, получаемый за счет энергии, выделяемой при сгорании водорода в кислороде.

Изобретение относится к устройствам для сжигания низкокалорийных газов. .

Изобретение относится к области гидродинамики и теплотехники для организации процессов смешения и перемешивания сред, организации процесса теплообмена между средами, а также для организации транспортировки различных сред с меньшим гидравлическим сопротивлением, в частности различного рода газов, жидкостей, разнофазных смесей сред и псевдоожиженных порошкообразных сред.

Горелка // 2558702
Изобретение относится к области энергетики. Газовая инжекционная горелка содержит стабилизирующий пламя туннель, огнеупорную набивную массу, 13 цилиндрических смесителей, объединенных общей сварной газораспределительной камерой, в каждом смесителе просверлено четыре сопла под углом 24° к их осям, содержит кожух, приваренный к цилиндрической газораспределительной камере, в который набивается огнеупорная набивная масса, литой стабилизирующий пламя туннель для периферийного факела, который надевается на кожух и приваривается по периметру к нему, литой стабилизирующий пламя туннель для центрального факела, причем горелка содержит устройство для регулирования расхода воздуха, кроме того, в цилиндрической газораспределительной камере размещены: в центре центральный смеситель с насадкой, имеющей шестнадцать литых ребер на внутренней поверхности, а на ее периферии двенадцать периферийных смесителей без насадок с литыми ребрами на внутренней поверхности, более того, для крепления горелки к тепловому или плавильному агрегату предусмотрен стальной диск, приваренный к верхней части стабилизирующего пламя туннеля для периферийного факела. Изобретение позволяет получить при горении газовоздушной смеси длинный факел в центре и на периферии, увеличить срок службы горелки, улучшить процесс набивки и обмуровки горелки в тепловом или плавильном агрегате, регулировать расход воздуха. 6 з.п. ф-лы, 5 ил.

Горелка // 2560968
Настоящее изобретение относится к горелочным устройствам с регулируемыми параметрами факела и может быть использовано для сжигания газообразного или жидкого топлива, предварительно переведенного в газообразное состояние, в различных агрегатах. Горелка содержит корпус с расширяющимся участком, топливопровод с расположенным на конце жиклером, сопло, установленное над расширяющимся участком корпуса, и спираль. Корпус состоит из трех камер: первой смесительной камеры, турбулентной камеры и второй смесительной камеры. В первой смесительной камере выполнены по меньшей мере два воздухопроводных отверстия. Суммарная площадь сечений этих воздухопроводных отверстий должна быть не менее площади сечения корпуса. В турбулентной камере закреплена спираль. Спираль изготовлена из жаростойкого сплава. Во второй смесительной камере выполнены по меньшей мере два воздухопроводных отверстия. Сумма площадей сечений вышеуказанных воздухопроводных отверстий и площади сечения нерасширяющегося участка корпуса должна быть равна площади сечения сопла. Техническим результатом является получение экологически чистых продуктов сгорания, надежная и постоянная стабилизация пламени, широкий предел регулирования струи пламени, полное сгорание топлива, надежность конструкции горелки, уменьшение энергозатрат на горение. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетики. Изобретение касается конструкции горелки для газообразного топлива (в том числе всех его смесей), включающей в себя кожух, который определяет дистальный край для выхода пламени и проксимальный край для подачи газообразного топлива и воздуха; оба края имеют затвор. Воздухозаборник для сжатого воздуха расположен на кожухе возле проксимального края и определяет внутреннюю камеру для подачи сжатого воздуха. Трубка для подачи сжатого газообразного топлива расположена по центру внутри первой смесительной камеры и имеет множество отверстий для выхода газообразного топлива в указанную первую смесительную камеру, в которой также содержится множество отверстий для поставки сжатого воздуха радиально. Воспламенитель расположен внутри указанной первой смесительной камеры для первого горения, вторая камера для дополнительного смешивания расположена коллинеарное по отношению к указанной первой камере. Конец указанной трубки для топлива имеет затвор с отверстиями, через которые аксиально осуществляется подача газообразного топлива к указанной второй камере для дополнительного смешивания, ее стенка содержит отверстия, через которые радиально осуществляется подача сжатого воздуха, таким образом, осуществляется второй этап процесса горения. Третья конусообразная камера, камера возгорания, расположена коллинеарно и присоединена к концу указанной второй камеры для дополнительного смешивания. Изобретение позволяет повысить качество смешивания топлива и окислителя, сократить выброс вредных веществ в атмосферу. 16 з.п. ф-лы, 6 ил.

Изобретение касается улучшенного способа изготовления ацетилена и синтез-газа. Предложен способ получения ацетилена и синтез-газа путем частичного окисления углеводородов кислородом, причем исходные газы, в состав которых входит поток, содержащий углеводород, и поток, содержащий кислород, сначала предварительно нагревают по отдельности, затем смешивают в смесительной зоне, а после протекания через блок горелок вызывают их реакцию в камере сгорания, после чего быстро охлаждают. При этом на обращенную к камере сгорания поверхность блока горелок подают поток промывного газа, вводят этот поток промывного газа с помощью нескольких отверстий через блок горелок, причем усредненное отношение эффективной площади поверхности блока горелок к числу этих отверстий для потока промывного газа в блоке горелок находится в пределах от 5 до 100 см2, причем усредненное отношение эффективной поверхности блока горелок к числу этих отверстий для потока промывного газа в блоке горелок рассчитывается из отношения совокупной эффективной поверхности блока горелок к общему числу отверстий для промывного газа и причем проводимый через отверстия поток промывного газа распределяют с помощью распределительных устройств таким образом, что 70-100 об.% подаваемого потока промывного газа направляются параллельно обращенной к камере сгорания поверхности блока горелок. Изобретение позволяет получить синтез-газ и ацетилен улучшенным способом частичного окисления углеводородов, который препятствует отложениям на поверхности блока горелок без использования механической очистки. 2 н. и 5 з.п. ф-лы, 4 ил., 3 пр.
Наверх