Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Данный способ включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с пропиточным раствором, использование пропитки при повышенных температурах. При этом в качестве исходных соединений для приготовления пропиточного раствора используются натриевые соли Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn), растворяемые в воде в мольном соотношении Mo/X=12/1, после чего раствор пропускается через колонну с катионитом в H+-форме и в него добавляется ацетат Co или Ni. Предлагаемый способ позволяет получать катализаторы, обладающие повышенной активностью и селективностью по отношению к реакциям гидродесульфуризации, гидродеазотирования, гидрирования олефинов и ароматических соединений. 1 з.п. ф-лы, 5 табл., 11 пр.

 

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Известные катализаторы для гидроочистки дизельных фракций от соединений серы содержат молибден и/или вольфрам и кобальт и/или никель в оксидной форме, нанесенные на поверхность пористого термостойкого оксида металла. Известным способом получения катализаторов гидроочистки, содержащих диспергированные на Al2O3 оксиды Co(Ni)-Mo(W), является экструзия массы гидроксида алюминия, смешанной с солями Co и/или Ni и Mo и/или W. В этом случае активные компоненты добавляют в пептизированный какой-либо одноосновной кислотой гидроксид алюминия (RU 2189860, B01J 37/04, 23/882, 27.09.02; 2137541, B01J 23/88, C10G 45/08, 20.09.99). В качестве предшественников активного компонента используются труднорастворимые соли молибдена и вольфрама, в основном аммоний молибденовокислый (NH4)6Mo7O24·4H2O, и соли кобальта и никеля, в основном нитраты (RU 2137541, B01J 23/88, 20.09.99). Основным недостатком катализаторов, полученных по данному способу, является их низкая активность, не позволяющая использовать их для глубокой гидроочистки нефтяных фракций (с остаточным содержанием серы менее 500 ppm). Это объясняется тем, что часть внесенных в массу гидроксида алюминия активных компонентов не находится на активной поверхности катализатора, а заключено в объеме Al2O3.

Другим известным способом получения катализаторов гидроочистки типа CoO(NiO)MoO3(WO3)/Al2O3 является способ пропитки оксида алюминия растворами соединений активных компонентов, сушки и прокаливания. Нанесение активных компонентов осуществляют как последовательной пропиткой из отдельных растворов, так и одностадийной пропиткой из совместного раствора. Для стабилизации совместного раствора соединений Co(Ni) и Mo(W) в пропиточные растворы добавляют минеральные кислоты, в основном фосфорную кислоту. Основным недостатком совместных пропиточных растворов соединений Co(Ni) и Mo(W), стабилизированных неорганическими фосфорсодержащими кислотами, является их низкая устойчивость в присутствии избытка фосфорной кислоты и NH4+ иона из-за выпадения осадков фосфатов Co или Ni и фосформолибдатов аммония. Для создания устойчивых совместных пропиточных растворов используют также концентрированный раствор аммиака, который образует комплексные соединения с Co(Ni), что не позволяет образоваться осадкам молибдатов этих металлов. В случае аммиачной пропитки в недостаточно концентрированном растворе аммиака возможно выпадение осадков молибдатов Co или Ni.

Для стабилизации совместных растворов соединений Co(Ni) и Mo(W) можно использовать также комплексообразующие органические кислоты [А.С. 1297899 СССР, B01J 23/88. №3954947/31-04; заявл. 01.08.85; опубл. 23.03.87, Бюл. №11 - 3 с.]. Недостатком данного способа приготовления катализатора является высокая температура прокаливания катализатора (550°C) после нанесения активных компонентов пропиткой из совместного раствора солей молибдена и никеля или кобальта. Известно, что при температурах выше 500°C возможно образование шпинелей - соединений оксида алюминия и оксида никеля или кобальта. Если катализатор после нанесения солей Ni или Co на носитель, содержащий оксид алюминия, прокаливают при температурах выше 500°C, часть промотора (Ni или Co) связывается с носителем и не входит в состав активной фазы «CoMoS», которая образуется после сульфидирования, т.е. фактически становится неактивной в реакциях гидроочистки.

Наиболее близким к предлагаемому решению является способ приготовления катализаторов для глубокой очистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп, отличающийся тем, что готовится совместный пропиточный раствор, содержащий соединение молибдена и нитрат кобальта или ацетат кобальта при мольном соотношении Mo/Co, равном 1,70-2,30, стабилизированный 25,8-35,0 мл 30%-ного H2O2 на 100 мл пропиточного раствора, при pH среды 1,5-5,0, и производится однократная пропитка оксида алюминия с завершающим прокаливанием готового катализатора при температурах не выше 400°C в окислительной или инертной средах [RU 2385764, B01J 23/882, B01J 37/02].

Недостатком данного способа приготовления катализатора является то, что для приготовления пропиточного раствора применяются готовые гетерополисоединения молибдена, отсутствующие в свободной продаже. Способ синтеза таких соединений требует холодильного оборудования для охлаждения до 0÷(-3)°C или специального фильтровального оборудования [Руководство по неорганическому синтезу: В 6-ти томах. - Т. 6. - Под. ред. Г. Брауэра. - М.: Мир, 1986. - 360 с.] и не может быть осуществлен в условиях катализаторных производств. Кроме того, данный способ приготовления катализаторов гидроочистки не предусматривает возможность введения на стадии однократной пропитки известных модификаторов активной фазы (соединений элементов B, P, Si, V, Zn, Ge, Sn), которые повышают активность катализаторов и изменяют их селективность по отношению к реакциям гидродесульфуризации, гидродеазотирования, гидрирования олефинов и ароматических соединений, что является существенным для гидроочистки различных по пределам выкипания нефтяных фракций и вторичных нефтепродуктов.

Техническим результатом настоящего изобретения является способ создания катализатора гидроочистки нефтяных фракций одностадийной пропиткой носителя пропиточным раствором, содержащим основной активный компонент (Mo), промотор (Co или Ni) и один модификатор из группы (B, P, Si, V, Zn, Ge, Sn) в виде неорганического устойчивого комплекса. В качестве носителя используется Al2O3. Пропиточный раствор готовится путем растворения в воде натриевых солей Mo и одного из модификаторов из группы (B, P, Si, V, Zn, Ge, Sn) в определенном соотношении и пропускания раствора через колонну с катионитом в H+-форме; в полученный раствор, содержащий Mo гетерополикислоту 12 ряда, добавляют ацетат Co или Ni. Катализатор подвергается термической обработке (сушке) на воздухе при температуре не выше 120°C, что предотвращает термическое разложение гетерополикислоты.

При этом на стадии приготовления оксидной формы катализатора осуществляется контакт на молекулярном уровне между основным активным компонентом (молибденом), промотором (кобальтом или никелем) и модификатором (B, P, Si, V, Zn, Ge, Sn) в строго заданных соотношениях. Условия пропитки носителя и термической обработки готового катализатора обеспечивают промотирование молибдена Co или Ni и включение модификатора в активную фазу на основе дисульфида молибдена. После сульфидирования оксидного предшественника катализатор CoXMoS/Al2O3 имеет модифицированную активную фазу CoXMoS, что позволяет проводить глубокую гидроочистку нефтяных фракций.

Отличительным признаком предлагаемого изобретения является совокупность предлагаемых решений, включающая: использование в качестве исходных соединений для приготовления пропиточного раствора натриевых солей Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn) в мольном соотношении Mo/X=12/1; пропускание раствора через колонну с катионитом в H+-форме; добавление в полученный раствор, содержащий Mo гетерополикислоту 12 ряда, ацетата Co или Ni; завершающую термическую обработку (сушка) катализатора при температурах не выше 120°C, что не разрушает структуру гетерополианиона (подтверждено экспериментами, сочетающими ДТА, РФА и ИК-спектроскопию). Данные решения в совокупности дают возможность синтезировать катализатор, позволяющий проводить глубокую гидроочистку различных по пределам выкипания нефтяных фракций.

Технический результат достигается тем, что приготовление катализатора для глубокой гидроочистки нефтяных фракций включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с пропиточным раствором, использование пропитки при повышенных температурах. В качестве исходных соединений для приготовления пропиточного раствора используются натриевые соли Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn), растворяемые в воде в мольном соотношении Mo/X=12/1, после чего раствор пропускается через колонну с катионитом в H+-форме и в него добавляется ацетат Co или Ni. Завершающая термическая обработка (сушка) катализатора проводится при температурах не выше 120°C.

Исходные соединения для приготовления совместного пропиточного раствора, условия пропитки носителя совместным пропиточным раствором приведены в табл.1. Носитель представлял собой экструдат γ-Al2O3 в форме трилистника диаметром 1,2-1,3 мм и длиной 4-6 мм.

Катализаторы испытывали в виде частиц размером 0,25-0,5 мм, приготовленных путем измельчения и рассеивания исходных гранул прокаленного катализатора. Катализаторы сульфидировали при атмосферном давлении и температуре 400°C в смеси 20% об. H2S и H2 в течение 2 часов. Такие условия сульфидирования, по данным H. Topsoe, позволяют получить на поверхности катализатора активную фазу «CoMoS» II типа. Испытания активности катализаторов проводили на лабораторной проточной установке под давлением водорода. Загрузка сульфидированного катализатора 20 см3. Характеристика нефтяных фракций приведена в табл.2 и 3. Условия испытания: парциальное давление водорода 4,0 МПа, кратность циркуляции водорода 600 нл/л сырья, объемная скорость подачи сырья 1,0 ч-1, температуры в реакторе 340, 360 и 380°C. Гидрогенизаты отделяли от водорода в сепараторе при давлении, практически равном давлению в реакторе, и температуре 20°C, затем подвергали обработке 10%-ным раствором NaOH в течение 10 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали в течение суток над прокаленным CaCl2. Содержание серы определяли с помощью рентгенофлюоресцентного анализатора. Содержание азота определяли с помощью рентгенофлюоресцентного энергодисперсионного анализатора. Содержание ароматических соединений определяли спектрофотометрически. Брали среднее значение из двух параллельных измерений. Результаты испытания катализаторов представлены в табл.4 и 5.

ПРИМЕРЫ

Пример 1

26,89 г дигидрата молибдата натрия и 0,88 г натрия борнокислого десятиводного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 12,41 г ацетата кобальта четырехводного и концентрируют до объема 63 мл. Носитель массой 39,39 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 2,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 60°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,9, оксид модификатора - 0,3, Al2O3 - 78,8.

Пример 2

20,17 г дигидрата молибдата натрия и 2,48 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 7,09 г ацетата кобальта четырехводного и концентрируют до объема 67,8 мл. Носитель массой 42,35 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 70°C.

Состав готового катализатора, % масс.:

MoO3 - 12,0, CoO - 2,8, оксид модификатора - 0,5, Al2O3 - 84,7.

Пример 3

26,89 г дигидрата молибдата натрия и 3,31 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 11,91 г ацетата кобальта четырехводного и концентрируют до объема 62,9 мл. Носитель массой 39,32 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 80°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,7, оксид модификатора - 0,7, Al2O3 - 78,6.

Пример 4

33,61 г дигидрата молибдата натрия и 4,13 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 15,45 г ацетата кобальта четырехводного и концентрируют до объема 58,5 мл. Носитель массой 36,54 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 90°C.

Состав готового катализатора, % масс.:

MoO3 - 20,0, CoO - 6,1, оксид модификатора - 0,8, Al2O3 - 73,1.

Пример 5

33,61 г дигидрата молибдата натрия и 4,13 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 10,13 г ацетата никеля четырехводного и концентрируют до объема 60,1 мл. Носитель массой 37,59 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 100°C.

Состав готового катализатора, % масс.:

MoO3 - 20,0, NiO - 4,0, оксид модификатора - 0,8, Al2O3 - 75,2.

Пример 6

26,89 г дигидрата молибдата натрия и 2,63 г метасиликата натрия девятиводного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 11,40 г ацетата кобальта четырехводного и концентрируют до объема 63,2 мл. Носитель массой 39,47 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 2,0. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 110°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,5, оксид модификатора - 0,6, Al2O3 - 78,9.

Пример 7

26,89 г дигидрата молибдата натрия и 1,13 г метаванадата натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 10,89 г ацетата кобальта четырехводного и концентрируют до объема 63,1 мл. Носитель массой 39,43 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 3,0. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 120°C. Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,3, оксид модификатора - 0,8, Al2O3 - 78,9.

Пример 8

26,89 г дигидрата молибдата натрия и 1,32 г цинката натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 10,39 г ацетата кобальта четырехводного и концентрируют до объема 63,3 мл. Носитель массой 39,57 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 3,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 80°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,1, оксид модификатора - 0,8, Al2O3 - 79,1.

Пример 9

26,89 г дигидрата молибдата натрия и 1,40 г германата натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 9,88 г ацетата кобальта четырехводного и концентрируют до объема 63,3 мл. Носитель массой 39,56 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 4,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 90°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 3,9, оксид модификатора - 1,0, Al2O3 - 79,1.

Пример 10

26,89 г дигидрата молибдата натрия и 1,82 г станната натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 9,37 г ацетата кобальта четырехводного и концентрируют до объема 63,1 мл.

Носитель массой 39,45 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 5,0. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 100°C.

Состав готового катализатора, % масс.:

Moo3 - 16,0, CoO - 3,7, оксид модификатора - 1,4, Al2O3 - 78,9.

Пример 11 (по прототипу, пример 1)

Состав готового катализатора, % масс.:

MoO3 - 14,0, CoO (NiO) - 3,2, Al2O3 - 82,8.

Таблица 1
Соединения молибдена, модификатора, кобальта или никеля, используемые для приготовления пропиточного раствора, гетерополикислота Мо в составе пропиточного раствора
Соединение для приготовления пропиточного раствора Гетерополикислота Mo в составе пропиточного раствора Соединение промотора, вводимое в состав пропиточного раствора кобальта(никеля) Содержание в катализаторе, % масс.
молибдена модификатора MoO3 СоО (NiO) Оксида моди-фикатора
1 Na2MoO4·2H2O Na2B4O7·10H2O Н5ВМо12О40 (СН3СОО)2Со·4H2O 16,0 4,9 0,3
2 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (СН3СОО)2Со·4H2O 12,0 2,8 0,5
3 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (СН3СОО)2Со·4H2O 16,0 4,7 0,7
4 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (СН3СОО)2Со·4H2O 20,0 6,1 0,8
5 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (CH3COO)2Ni·4H2O 20,0 (4,0) 0,8
6 Na2MoO4·2H2O Na2SiO3·9H2O H4SiMo12O40 (СН3СОО)2Со·4H2O 16,0 4,5 0,6
7 Na2MoO4·2H2O NaVO3 H3VMo12O40 (СН3СОО)2Со·4H2O 16,0 4,3 0,8
8 Na2MoO4·2H2O Na2ZnO2 H6ZnMo12O40 (СН3СОО)2Со·4H2O 16,0 4,1 0,8
9 Na2MoO4·2H2O Na2GeO3 H4GeMo12O40 (СН3СОО)2Со·4H2O 16,0 3,9 1,0
10 Na2MoO4·2H2O Na2SnO3 H4SnMo12O40 (СН3СОО)2Со·4H2O 16,0 3,7 1,4
11 По прототипу, пример 1
Таблица 2
Характеристика дизельной фракции
Плотность при 20°C, кг/м3 nD20 Содержание серы, млн-1 Содержание азота, млн-1 Содержание ПАУ*, % масс.
816 1,4671 12467 560 13,34
Таблица 3
Характеристика вакуумной фракции
Пределы выкипания Плотность при 20°C, кг/м3 nD50 Содержание серы, млн-1 Содержание ПАУ*, % масс. Цвет, ед. ЦНТ ИВ
334-454 901 1,4892 17900 3,07 3,0 75

* - сумма би- и трициклических ароматических углеводородов.

Таблица 4
Результаты испытания катализаторов в гидроочистке дизельной фракции
Катализатор по примеру Температура испытания, °C Содержание серы, млн-1 Содержание азота, млн-1 Содержание ПАУ, % масс.
По примеру 1 340 50 - 4,72
По примеру 1 360 12 240 5,92
По примеру 1 380 8 - 6,44
По примеру 3 340 30 - 4,42
По примеру 3 360 7 250 5,20
По примеру 3 380 3 - 5,81
По примеру 6 340 130 - 5,39
По примеру 6 360 47 430 6,87
По примеру 6 380 18 - 7,44
Таблица 5
Результаты испытания катализаторов в гидроочистке вакуумной фракции
Катализатор, приготовленный по примеру Температура испытания, °C Содержание серы, млн-1 Содержание ПАУ, % масс.
По примеру 4 340 795 1,24
По примеру 4 360 131 0,96
По примеру 4 380 59 0,98
По примеру 5 340 1081 0,81
По примеру 5 360 622 0,86
По примеру 5 380 106 0,94
По примеру 7 340 2025 1,23
По примеру 7 360 1232 1,42
По примеру 7 380 760 1,64

1. Способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с пропиточным раствором, использование пропитки при повышенных температурах, отличающийся тем, что в качестве исходных соединений для приготовления пропиточного раствора используются натриевые соли Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn), растворяемые в воде в мольном соотношении Mo/X=12/1, после чего раствор пропускается через колонну с катионитом в H+-форме и в него добавляется ацетат Co или Ni.

2. Способ по п.1, отличающийся тем, что завершающая термическая обработка (сушка) катализатора проводится при температурах не выше 120°C.



 

Похожие патенты:

Изобретение относится к катализатору гидрообработки углеводородного сырья. Данный катализатор содержит аморфный носитель на основе оксида алюминия, фосфор, по меньшей мере один диалкил(C1-C4)сукцинат, уксусную кислоту и функциональную группу с гидрирующей/дегидрирующей способностью, содержащую по меньшей мере один элемент группы VIB и по меньшей мере один элемент группы VIII, выбранный из кобальта и/или никеля.

Изобретение относится к области нефтепереработки, а именно разработке катализатора и способа изодепарафинизации дизельных дистиллятов с целью получения дизельных топлив зимних и арктического сортов.

Изобретение относится к способу гидрообработки рафинатов масляных фракций в присутствии системы катализаторов с последующей депарафинизацией растворителем продукта.

Изобретение относится к способу обработки углеводородного сырья, включающему: смешивание минерального углеводородного сырья, имеющего температуру кипения Т5 по меньшей мере примерно 340°С и содержание серы от 200 до 20000 wppm (масс.

Изобретение относится к очистке и конверсии в стационарном слое тяжелой нефти. Изобретение касается способа предварительной очистки и гидроконверсии углеводородного сырья в виде тяжелой сырой нефти, содержащей, по меньшей мере, 0,5% мас.

Изобретение относится к способам для производства биотоплива, более конкретно к способам для производства пиролизного масла с низким содержанием кислорода. Способ включает в себя стадию контактирования пиролизного масла, произведенного из биомассы, с первым катализатором удаления кислорода в присутствии водорода в первых, заранее установленных условиях гидроочистки с образованием первого вытекающего потока пиролизного масла, с низким содержанием кислорода.

Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа, массовом расходе сырья 1,0-1,5 ч-1, объемном отношении водород/сырье 300-500 м3/м3 в присутствии гетерогенного катализатора, содержащего кобальт, никель и молибден в форме биметаллических комплексных соединений [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5-39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе CoO - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; Al2O3 - остальное.
Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических комплексных соединений [Со(H2O)х(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата.
Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний.

Изобретение относится к регенерированному катализатору гидрообработки, восстановленному из катализатора гидрообработки для очистки нефтяной фракции. При этом данный катализатор гидрообработки получен посредством закрепления молибдена и по меньшей мере одного компонента, выбранного из металлов групп 8-10 Периодической таблицы, на неорганическом носителе, содержащем оксид алюминия, в котором содержание остаточного углерода находится в интервале от 0,15 масс.% до 3,0 масс.%, интенсивность пика молибденсодержащего сложного оксида металлов по отношению к интенсивности основного пика находится в интервале от 0,60 до 1,10 в рентгеновском дифракционном спектре (Х-Ray), и либо интенсивность пика связи Mo-S, производной от пика остаточной серы, по отношению к интенсивности основного пика находится в интервале от 0,10 до 0,60 на кривой радиального распределения, полученной из спектра протяженной тонкой структуры рентгеновского поглощения при анализе тонкой структуры рентгеновского поглощения, либо доля MoO3 находится в интервале от 77% до 99% в спектре структуры вблизи края рентгеновского поглощения (X-ray), полученном при анализе тонкой структуры рентгеновского поглощения.

Изобретение относится к способу получения катализатора на основе CeO2-SnО2 на стеклотканном носителе. Данный способ включает подготовку носителя путем термической обработки при 500°С, нанесение спиртового пленкообразующего раствора методом вытягивания со скоростью 100 мм/мин, сушку при 60°С 1 ч и отжиг при 750°С 4 ч.

Изобретение относится к области селективного каталитического восстановления оксидов азота, а именно к материалу носителя для катализатора, используемого в этом процессе.

Изобретение относится к способу изготовления сотового керамического блока для каталитического нейтрализатора выхлопных газов, в соответствии с которым на керамический блок из основного материала наносят подстилающий связующий слой, содержащий силикат натрия Na2O(SiO2)n или силикат калия K2O(SiO2)n, или их смесь, поверх которого формируют, как минимум, один слой подложки для нанесения катализатора, содержащий нанодисперсную окись гидроокиси алюминия (бемит), для чего наносят на вторую заготовку слой суспензии, содержащей нанодисперсную окись гидроокиси алюминия, просушивают заготовку с нанесенным слоем суспензии, после чего прокаливают заготовку сотового керамического блока с нанесенным материалом подложки и получают таким образом сотовый керамический блок для каталитического нейтрализатора выхлопных газов.

Изобретение относится к способу приготовления оксидно-полиметаллических катализаторов, содержащих металлы платиновой группы, для окислительно-паровой конверсии углеводородов с получением оксида углерода и водорода.

Изобретение относится к извлечению металлов из потока обогащенного углеводородами и углеродсодержащими остатками с помощью зоны обработки. Способ включает следующие стадии: подачу указанного потока на первичную обработку, осуществляемую в одну или более стадий, где указанный поток обрабатывают в присутствии разжижителя в устройстве механической обработки при температуре от 80 до 180°C, предпочтительно от 100 до 160°C, и подвергают разделению на жидкую и твердую фазы, чтобы получить очищенный продукт, в основном состоящий из жидкостей, и уплотненный осадок (нефтяной кек); при необходимости, сушку отделенного уплотненного осадка, чтобы удалить из него углеводородный компонент с температурой кипения ниже температуры от 300 до 350°C; подачу уплотненного осадка, при необходимости высушенного, на вторичную термическую обработку, включающую: беспламенный пиролиз уплотненного осадка, осуществляемый при температуре от 400 до 800°C; окисление остатка пиролиза, осуществляемое в окислительной среде и при температуре от 400 до 800°C, предпочтительно от 500 до 700°C, с получением продукта, в основном состоящего из сульфидов/неорганических оксидов металлов; селективное извлечение металлических компонентов из продукта, полученного на стадии вторичной термической обработки.

Изобретение относится к способу получения алюмооксидного катализатора. В данном способе оксид алюминия обрабатывают в гидротермальных условиях.

Изобретение относится к катализатору гидрообработки углеводородного сырья. Данный катализатор содержит аморфный носитель на основе оксида алюминия, фосфор, по меньшей мере один диалкил(C1-C4)сукцинат, уксусную кислоту и функциональную группу с гидрирующей/дегидрирующей способностью, содержащую по меньшей мере один элемент группы VIB и по меньшей мере один элемент группы VIII, выбранный из кобальта и/или никеля.

Изобретение относится к катализатору синтеза аммиака. Данный катализатор представляет собой нанесенный металлический катализатор, который нанесен на соединение майенитового типа, содержащее электроны проводимости в концентрации 1015 см-3 или более и служащее носителем для катализатора синтеза аммиака.

Изобретение относится к способу приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой.

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе.

Изобретение относится к способу получения катализатора на основе CeO2-SnО2 на стеклотканном носителе. Данный способ включает подготовку носителя путем термической обработки при 500°С, нанесение спиртового пленкообразующего раствора методом вытягивания со скоростью 100 мм/мин, сушку при 60°С 1 ч и отжиг при 750°С 4 ч.

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Данный способ включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с пропиточным раствором, использование пропитки при повышенных температурах. При этом в качестве исходных соединений для приготовления пропиточного раствора используются натриевые соли Mo и одного из модификаторов X из группы, растворяемые в воде в мольном соотношении MoX121, после чего раствор пропускается через колонну с катионитом в H+-форме и в него добавляется ацетат Co или Ni. Предлагаемый способ позволяет получать катализаторы, обладающие повышенной активностью и селективностью по отношению к реакциям гидродесульфуризации, гидродеазотирования, гидрирования олефинов и ароматических соединений. 1 з.п. ф-лы, 5 табл., 11 пр.

Наверх