Исполнительный элемент замкового устройства и способ его изготовления из сплава с эффектом памяти формы

Изобретение относится к ракетно-космической технике и может быть использовано в системах разделения для соединения двух или нескольких объектов с последующим их отделением. Исполнительный элемент замкового устройства с безударным разъединением конструкции, имеющий форму полого тела вращения и изготовленный из материала с эффектом памяти формы, выполнен в виде втулки с прорезями и сквозными отверстиями. Внутренняя полость втулки разделена на две части вкладышем. С левого торца втулки образована камера нагревателя с наружной резьбой, с правого торца установлена разрезная гайка. Способ изготовления исполнительного элемента заключается в получении исходной заготовки в виде цилиндрического прутка из сплава с эффектом памяти формы, при этом заготовка выполнена из гранул сплава с эффектом памяти формы методом гранульной металлургии с использованием горячего изостатического прессования и последующей радиально-сдвиговой деформации. Техническим результатом изобретения является повышение надежности срабатывания замкового устройства. 2 н. и 12 з.п. ф-лы, 6 ил., 2 табл.

 

Изобретение относится к области машиностроения, а именно к ракетно-космической технике, и может быть использовано в системах разделения для соединения двух или нескольких изделий (объектов) с последующим их отделением.

Для целей сборки и разделения ступеней ракетоносителей, разгонных блоков космических аппаратов и др. систем применяются механические замковые системы и узлы на основе детонирующих пирозарядов.

Известны замковые устройства разделения и способы их изготовления по патентам США №3352189, 1967 г. и №4002120, 1977 г. В основу замковых устройств положены конструкции с использованием стяжных болтов разнообразного конструкционного исполнения. Разъединение болтовых соединений и их перемещение вдоль продольной оси разъединяемых объектов происходит мгновенно под воздействием пороховых газов при срабатывании пиропатронов.

Вышеописанные устройства и способы их изготовления имеют существенные недостатки. Недостатком этих устройств является наличие повышенных динамических и вибрационных нагрузок на элементы конструкции разъединяемых объектов от подрыва пиропатронов, что может вызывать сбой в работе оборудования.

Наиболее близким по технической сущности к изобретению является устройство разделения по патенту РФ №2084811, кл. F42B 15/10, F42B 15/36, 1993 г. Данное устройство содержит в качестве исполнительного элемента привод с рабочей камерой. Привод выполнен в виде тонкостенного стакана из материала с эффектом памяти формы и предназначен для мягкого разъединения болтового соединения и последующего извлечения стяжного болта предварительно сжатой пружиной, тем самым обеспечивая разделение объектов. Разъединение болтового соединения происходит за счет нагрева термоэлементом в течение 0,5-0,6 с стенки привода до температуры 80-90°C, при которой происходит мартенситное превращение структуры материала привода, и он, восстанавливая свою первоначальную форму до деформации при растяжении, сокращается на заданную величину и выходит из контакта с поверхностью вкладышей, освобождая их, которые, в свою очередь, освобождают из зацепления головку стяжного болта, и болт под воздействием пружины и усилий от стяжки выталкивается из замкового устройства. Соединяемые детали, не скрепляемые стяжным болтом, расходятся. В этом случае происходит безударное разделение объектов. Недостатком известного устройства (привода) и способа его изготовления является его конструктивная сложность, повышенная металлоемкость, вызванные тем, что привод представляет собой глубокий стакан с двумя опорными фланцами, что увеличивает массу и габариты привода.

Известен способ изготовления заготовок из никелида титана в виде прутков из литых слитков методом прессования, используемых при изготовлении замковых устройств. Недостатком этого способа является неоднородность химического состава сплава при плавке и его неравномерность в объеме литой заготовки. Имеющаяся неоднородность слитков сохраняется и в прессованных прутках, которая значительно влияет на температурный интервал мартенситных превращений в сплавах на основе никелида титана. Изменение содержания никеля на 0,1 ат.% влечет изменение точки начала прямого мартенситного превращения на 10…20°C. Технология прессования также приводит к разбросу механических свойств по длине отпрессованного прутка. Таким образом, характеристические точки начала и окончания прямого и обратного мартенситного превращения по длине прессованного прутка могут существенно отличаться, что недопустимо при изготовлении деталей с регламентированными температурами мартенситных превращений. (ж. Технология легких сплавов № 4, 1990 г.)

Изобретение направлено на упрощение конструкции исполнительного элемента и снижение массогабаритных характеристик устройства.

Технический результат - повышение надежности срабатывания замкового устройства.

Указанный технический результат достигается тем, что исполнительный элемент замкового устройства с безударным разъединением конструкции, имеющий форму полого тела вращения и изготовленный из материала с эффектом памяти формы, выполнен в виде втулки с прорезями и сквозными отверстиями, внутренняя полость которой разделена на две части вкладышем, с левого торца которой образована камера с нагревателем с наружной резьбой: с правого торца установлена разрезная гайка. При этом разрезная гайка удерживается фиксаторами, вкладыш имеет форму цилиндрической вставки в виде шайбы или стакана, в качестве нагревателя используется химический источник тепла, при этом с наружной стороны от верхнего торца разрезной гайки до начала камеры нагревателя нанесен теплоизоляционный материал. Исполнительный элемент выполнен с четырьмя прорезями на всю глубину, расположенными в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки, а ширина прорезей определена из условия их равномерного смыкания при обжатии втулки в цилиндр на установочный размер; внутренняя поверхность лепестков имеет соответствующий радиус кривизны, который при смыкании прорезей образует цилиндрическую поверхность, при этом количество прорезей должно быть не менее трех. Исполнительный элемент выполнен со сквозными отверстиями, расположенными перпендикулярно оси втулки и в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки и развернутых вокруг оси втулки на угол 45° относительно взаимно перпендикулярных плоскостей, по которым выполнены глубокие прорези, причем втулка выполнена в форме многогранника. Теплоизоляционным материалом служит материал на основе кремнеземных волокон, а вкладыш выполнен из материала с высокой теплопроводность.

Способ изготовления исполнительного элемента, заключающийся в получении исходной заготовки в виде цилиндрического прутка из сплава с эффектом памяти формы, при этом заготовка выполнена из гранул сплава с эффектом памяти формы методом гранульной металлургии с использованием горячего изостатического прессования и последующей радиально-сдвиговой деформации. Причем используются гранулы фракционного состава от 40 до 250 мкм, а радиально-сдвиговая деформация осуществляется в трехвалковом стане винтовой прокатки в три перехода с суммарной вытяжкой не менее 2,1.

На фиг.1-6 представлены элементы замкового устройства с исполнительным элементом, где:

1 - втулка,

2 - прорези,

3 - сквозные отверстия,

4 - вкладыш,

5 - теплозащитный материал,

6 - разрезная гайка,

7 - соединяемая конструкция,

8 - основная конструкция,

9 - фиксаторы,

10 - крышка,

11 - стяжной болт.

На фиг.1 и фиг.2 представлен исполнительный элемент замкового устройства безударного разъединения конструкции. Устройство представляет собой втулку 1 из материала, обладающего эффектом памяти формы (далее по тексту - ЭПФ) с выполненными в ней продольными прорезями 2 и сквозными отверстиями 3. Предварительно деформированная втулка 1 из материала с ЭПФ при нагреве до определенной температуры в составе замкового устройства «вспоминает» и восстанавливает свою первоначальную (заданную) форму. На этом основана работа замкового устройства. С левого торца втулки 1 (камера нагревателя) выполнена наружная резьба. Она необходима для установки крышки 10 (фиг.4; 5; 6), замыкающей камеру нагревателя. С правого торца втулки 1, где реализована возможность изменения размеров втулки 1 с использованием материала с эффектом памяти формы (ЭПФ), выполнены параллельно ее продольной оси четыре глубокие прорези 2, которые расположены в двух взаимно перпендикулярных плоскостях и пересекающихся по оси втулки 1. С правого торца втулки 1 также выполнены перпендикулярно оси втулки 1 четыре сквозных отверстия 3. Отверстия 3 расположены в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки 1 и развернутых вокруг оси втулки 1 на угол 45° относительно взаимно перпендикулярных плоскостей, по которым выполнены глубокие прорези 2. Глубокие прорези 2 необходимы для формирования ровной замкнутой поверхности втулки 1 без зазоров со стороны правого торца в процессе ее обжатия после раздачи на первоначальный (заданный) размер, что обеспечивает надежный охват и фиксацию во втулке 1 разрезной гайки 6 по всей сопрягаемой поверхности и максимально возможное восстановление первоначальной цилиндрической формы втулки 1 при размыкании замкового соединения.

На фиг.3 представлен продольный разрез втулки 1 после ее обжатия. Во внутреннюю полость втулки 1 со стороны правого торца вставлен вкладыш 4 в виде укороченного стакана с толстым дном из материала с высокими теплопроводными свойствами с наружным диаметром, равным внутреннему диаметру втулки 1. Вкладыш 4 разделяет внутреннюю полость втулки 1 на две полости: левую, камеру нагревателя, и правую. Высокие теплопроводные свойства вкладыша 4 должны обеспечить высокую скорость передачи тепла от нагревателя к деформированной части втулки 1 с эффектом памяти формы, которая «вспомнит» свою первоначальную цилиндрическую форму, а это, в свою очередь, должно обеспечить срабатывание замкового устройства. При этом левая полость (камера нагревателя) предназначена для размещения в ней химического источника тепла (ХИТ). Правая полость собственно и предназначена для фиксации и крепления разрезной гайки 6 и стяжки стяжным болтом 11 присоединяемой конструкции 7, подлежащей дальнейшему разъединению замковым устройством. Четыре сквозных отверстия 3 обеспечивают надежный и неподвижный контакт посредством фиксаторов 9 при соединении сегментов разрезной гайки 6 с втулкой 1.

На часть внешней поверхности исполнительного элемента в зоне установки вкладыша 4 нанесен теплозащитный материал 5 для формирования требуемого градиента теплового потока внутри втулки 1 от химического источника тепла, а также для исключения несанкционированного теплового облучения элементов конструкции и несанкционированного срабатывания замкового устройства.

На фиг.4 показана втулка 1 исполнительного механизма замкового устройства в сборе с соединяемыми конструкциями (узлами) 7 и 8.

В левой полости втулки 1 (камера нагревателя) размещен химический источник тепла. В правой полости показана зафиксированная во втулке 1 четырьмя фиксаторами 9 разрезная гайка 6 соединяемой конструкции 7, которая в дальнейшем должна быть разъединена от основной конструкции 8 с помощью предлагаемого исполнительного элемента замкового устройства. Фиксаторы установлены в четырех резьбовых отверстиях, выполненных в коронке разрезной гайки 6 и ввернутых до упора в отверстия 3 во втулке 1. Разрезная гайка 6 и ввернутый в нее стяжной болт 11 образуют неподвижное соединение разъединяемых конструкций 7 и 8 и служат для передачи нагрузок при эксплуатации замкового устройства. Свободная наружная поверхность втулки 1 покрыта теплозащитным материалом 5 для формирования требуемого градиента теплового потока внутри втулки 1 от химического источника тепла, а также во избежание ее несанкционированного теплового облучения и несанкционированного срабатывания замкового устройства.

Исполнительный элемент в составе замкового устройства работает следующим образом. На фиг.5 осевой стрелкой показан момент срабатывания замкового устройства с предлагаемой втулкой 1, т.е. безударного, плавного разъединения конструкций 7 и 8. После инициации химического источника тепла, размещенного в левой внутренней полости втулки 1, происходит быстрый разогрев втулки 1 из материала с ЭПФ. Тепло от химического источника тепла без существенных потерь проходит через вкладыш 4 вплоть до правого торца втулки 1 и, достигнув оптимальной температуры - температуры срабатывания эффекта памяти формы материала втулки 1, заставляет «вспоминать» втулку 1 первоначально заложенную цилиндрическую форму, при которой должно произойти раздвижение сегментов разрезной гайки 6 и освобождение резьбы стяжного болта 11, обеспечивая разделение соединяемых конструкций 7 и 8. Этот момент показан двумя вертикальными стрелками, направленными от оси втулки 1. Четыре глубокие прорези 2, заранее выполненные на втулке 1, при «вспоминании» втулкой 1 своей первоначальной (заданной) цилиндрической формы, позволяют ей с правого торца увеличиваться в диаметре (т.е. изменяться в размерах в плоскости, перпендикулярной оси втулки), разойдясь от оси втулки 1 четырьмя лепестками до размеров памяти формы. При этом теплозащитный материал 5 не должен препятствовать увеличению диаметра втулки 1 (изменению ее размеров) при инициации ЭПФ.

Предлагаемую втулку 1 (замковое устройство абсолютно той же конструкции), но без фиксаторов 9 (фиг.6), можно выполнить, если со стороны правого торца организовать внутреннюю резьбу, для чего внутреннюю поверхность лепестков втулки 1 разделать радиусом, который при обжатии их принимал правильную цилиндрическую поверхность с последующим вворачиванием стяжного болта 11. Таким образом, фиксация и крепление разделяемых частей осуществляется также резьбовым соединением, но без промежуточной разрезной гайки и фиксаторов. И в этом случае это техническое решение позволит беспрепятственно разъединить соединенные предлагаемым замковым устройством конструкции.

Способ получения исходной заготовки для изготовления исполнительного элемента (втулки) замкового устройства из сплава на основе никелида титана основан на технологиях металлургии гранул, горячего изостатического прессования и винтовой прокатки. Предлагаемый способ включает плавку и распыление слитка в сферические гранулы, компактирование гранул в монолитную заготовку, винтовую прокатку компактной заготовки в прутки.

Пример 1 изготовления исполнительного элемента замкового устройства безударного разъединения конструкции.

Втулка 1 изготовлена из прутка гранулированного сплава марки ТН-1 диаметром 31 мм механической обработкой (фиг.1, 2) и имеет следующие размеры: с правого торца наружный диаметр втулки 30 мм, толщина стенки 2 мм на глубине 30 мм; с левого торца наружный диаметр втулки 27 мм, толщина стенки 3,2 мм на глубине 20 мм. С левого торца по наружному диаметру втулки 1 выполняли метрическую резьбу М27×1,5 на длине 12 мм. С правого торца выполнены четыре сквозные отверстия 3 диаметром 4 мм. Оси этих четырех отверстий 3 перпендикулярны оси втулки 1, пересекаются в одной точке, находящейся на оси втулки 1 на расстоянии 6 мм от правого торца цилиндра. Оси этих отверстий 3 находятся в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки 1.

С правого торца втулки 1 выполнены четыре глубокие прорези 2 шириной 3,5 мм и длиной 27 мм, расположенные в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки 1, и развернутых вокруг оси втулки 1 на угол 45° относительно взаимно перпендикулярных плоскостей, по которым выполнены отверстия 3.

Со стороны правого торца проводили раздачу втулки 1 при комнатной температуре запрессовкой в нее оправки на заданный (первоначальный) размер (⌀ 32 мм). Затем втулку 1 с запрессованной оправкой отжигали в вакууме при температуре 500°C с выдержкой 1 ч для «запоминания» заданного размера втулки 1. После вакуумного отжига оправку извлекали, втулку 1 охлаждали до минусовых температур и проводили обжатие втулки 1 матрицей на ручном гидравлическом прессе при температуре не выше минус 5°C на установочный размер (наружный диаметр 26 мм). После этого нагревали втулку 1 на температуру на 50-70°C выше температуры конца обратного мартенситного превращения для восстановления заданного (первоначального) размера втулки 1 (⌀ 32 мм). Данный цикл операций проводился дважды. На третьем цикле для восстановления заданного размера втулки 1 нагрев не проводили. После этого с правого торца во внутреннюю полость втулки 1 вставлен по плотной посадке вкладыш 4 (фиг.3) из меди марки М3 наружным диаметром, равным внутреннему диаметру втулки 1 после обжатия.

В левую полость втулки 1 (камера нагревателя) запрессовывали вручную смесь экзотермического состава марки ТБ-2АЗФ на основе титана с бором и с добавлением 10% порошка никеля с сопутствующими компонентами и закрывали винтовой крышкой 10 (фиг.4) с вклеенным электровоспламенителем МБ-2Н. Навеска смеси составляла 8 г, что обеспечивает нагрев втулки 1 до 285°C. Экзотермическая смесь представляет собой химический источник тепла (ХИТ).

В правую полость втулки 1 устанавливают и закрепляют (фиксируют) при помощи четырех фиксаторов 9 диаметром 6 мм, высотой 6 мм, выполненных из нержавеющей стали, разрезную гайку 6, которая в дальнейшем подлежит разъединению с помощью предложенного исполнительного элемента (втулки 1) замкового устройства. В разрезную гайку вкручивают стяжной болт 11, соединяющий элементы разъединяемых элементов конструкций 7 и 8.

На свободную наружную поверхность втулки 1 нанесен теплозащитный материал 5 марки «SUPERSIL-M2» (ТУ 5952-156-176-44763-09), фиксируемый высокотемпературным клеем КМ-41М (ОСТ 92-0948-74).

При инициации ХИТ путем подачи импульса тока силой 1 А на электровоспламенитель втулка 1 замкового устройства восстанавливает («вспоминает») свою первоначально заданную форму в виде раскрытого четырехлепесткового цилиндра и в этот момент происходит безударное разъединение соединяемых конструкций (узлов) 7 и 8.

Пример 2 способа получения исходной гранульной заготовки для изготовления исполнительного элемента замкового устройства из сплава ТН-1.

Выполняли плазменную плавку и распыление литого обточенного слитка диаметром 55 мм, длиной 650 мм в гранулы на установке центробежного распыления, затем проводили рассев гранул на рабочую фракцию от 40 до 250 мкм, ее очистку от металлических и неметаллических включений. Засыпали гранулы в стальную капсулу с одновременным их виброуплотнением, дегазацией и вакуумированием и заваркой электронным лучом горловины капсулы в вакуумной установке. Компактирование гранул в капсуле в монолитную заготовку проводили в газостате по оптимальному режиму. Затем стачивали оболочку капсулы с компактной заготовки на токарно-винторезном станке в размер ⌀45 мм. Винтовую прокатку компактной заготовки проводили на трехвалковом стане «14-40» в размер ⌀31 мм в три перехода с суммарной вытяжкой не ниже 2,1 при температуре деформации 950°C.

Результаты механических испытаний гранулированного сплава ТН-1, полученного предлагаемым способом, при комнатной температуре на образцах из отожженных заготовок (прутков) приведены в табл. 1.

Таблица 1
Механические свойства прутков из сплава ТН-1
Состояние прутка Предел прочности, σВ, МПа Предел текучести, σ0,2, МПа Относительное удлинение, δ, % Относительное сужение, ψ, %
Пруток получен методом металлургии гранул и последующей винтовой прокаткой. 790-810 680-700 16.9-17,1 17,2-18,3
Прототип - прессованный пруток (ОСТ 925137-90). ≥529 ≥294 ≥8 ≥8

Полученные данные показывают, что прокатанные прутки из гранулированного сплава ТН-1 обладают существенно более высокими прочностными и пластическими свойствами, чем прессованные заготовки сплава ТН-1.

Результаты испытаний по определению начала и конца обратного мартенситного превращения гранулированного сплава ТН-1 приведены в табл. 2.

Таблица 2
Результаты испытания образцов для оценки температур обратного мартенситного превращения гранулированного сплава ТН-1
Температура, °C
Состояние прутка Температура начала обратного мартенситного превращения, As, °C Температура окончания обратного марюнситного превращения, Af, °C
Пручок получен методом металлургии гранул и последующей винтовой нрокакой. 65-95 145-165
Прототип - прессованный пруток (ОСТ 925137-90). 62-68 84-88

Температурный интервал начала (As) и окончания обратного мартенситного превращения (Af) прутка из гранулированного сплава ТН-1 по сравнению с прессованным прутком из сплава ТН-1 в два раза больше, что снижает вероятность несанкционированного срабатывания предлагаемого исполнительного элемента (втулки) замкового устройства безударного разъединения конструкции.

Оценка функциональных свойств замкового соединения безударного разделения с предлагаемой конструкцией втулки 1 проведена на шести сборках на специальном стенде в виде двух подвижных тележек с установкой на них попарно двух образцов замкового соединения.

По результатам испытаний установлено, что произошло полное разделение замковых соединений. Во всех трех случаях тележки разъехались под действием силы расталкивания, при этом срабатывание замковых соединений происходило одновременно: изменений траекторий движения тележек не было. Время подачи импульса на электровоспламенители до начала движения тележек составило: в первой серии - 0,61 с, во второй серии - 0,55 с, в третьей серии - 0,68 с, что соответствует аналогичным показателям аналога. Полученные данные показывают, что сборка замкового соединения безударного разделения с предлагаемой конструкцией втулки 1 из гранулированного сплава ТН-1 с ЭПФ имеет высокие функциональные свойства, обеспечивающие синхронность срабатывания.

Таким образом, заявленный исполнительный элемент замкового устройства безударного разделения в виде втулки с возможностью изменения ее размеров в плоскости, перпендикулярной ее продольной оси, показал, что по функциональным характеристикам, таким как синхронность и время срабатывания, он находится на уровне известных аналогов, а по показателям механической прочности и массогабаритным характеристикам превосходит их за счет повышенной прочности материала втулки и ее срабатывания в плоскости, перпендикулярной продольной оси соединения-разъединения конструкций при указанных в формуле изобретения конструктивных особенностях исполнительного элемента замкового устройства с безударным разъединением конструкции и применяемого материала с эффектом памяти формы на основе гранулированного сплава ТН-1.

1. Исполнительный элемент замкового устройства, имеющий форму полого тела вращения и изготовленный из материала с эффектом памяти формы, отличающийся тем, что выполнен в виде втулки с прорезями и сквозными отверстиями, внутренняя полость которой разделена на две части вкладышем, с левого торца которой образована камера с нагревателем с наружной резьбой, с правого торца установлена разрезная гайка.

2. Исполнительный элемент по п.1, отличающийся тем, что разрезная гайка удерживается фиксаторами.

3. Исполнительный элемент по п.1, отличающийся тем, что вкладыш имеет форму цилиндрической вставки в виде шайбы или стакана.

4. Исполнительный элемент по п.1, отличающийся тем, что в качестве нагревателя используется химический источник тепла, при этом с наружной стороны от верхнего торца разрезной гайки до начала камеры нагревателя нанесен теплоизоляционный материал.

5. Исполнительный элемент по п.1, отличающийся тем, что выполнен с четырьмя прорезями на всю глубину, расположеными в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки.

6. Исполнительный элемент по п.1, отличающийся тем, что ширина прорезей определена из условия их равномерного смыкания при обжатии втулки в цилиндр на установочный размер; внутренняя поверхность лепестков имеет соответствующий радиус кривизны, который при смыкании прорезей образует цилиндрическую поверхность.

7. Исполнительный элемент по п.1, отличающийся тем, что количество прорезей должно быть не менее трех.

8. Исполнительный элемент по п.1, отличающийся тем, что сквозные отверстия выполнены перпендикулярно оси втулки и расположены в двух взаимно перпендикулярных плоскостях, пересекающихся по оси втулки и развернутых вокруг оси втулки на угол 45° относительно взаимно перпендикулярных плоскостей, по которым выполнены глубокие прорези.

9. Исполнительный элемент по п.1, отличающийся тем, что втулка выполнена в форме многогранника.

10. Исполнительный элемент по п.4, отличающийся тем, что теплоизоляционным материалом служит материал на основе кремнеземных волокон.

11. Исполнительный элемент по п.1, отличающийся тем, что вкладыш выполнен из материала с высокой теплопроводностью.

12. Способ изготовления исполнительного элемента из сплава с эффектом памяти формы, заключающийся в получении заготовки в виде цилиндрического прутка, отличающийся тем, что заготовка выполнена из гранул сплава с эффектом памяти формы методом гранульной металлургии с использованием горячего изостатического прессования и последующей радиально-сдвиговой деформации.

13. Способ по п.12, отличающийся тем, что используются гранулы фракционного состава от 40 до 250 мкм из сплава на основе никелида титана.

14. Способ по п.12, отличающийся тем, что радиально-сдвиговая деформация осуществляется в трехвалковом стане винтовой прокатки в три перехода с суммарной вытяжкой не менее 2,1.



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано для получения дополнительного импульса тяги. Межступенчатый ракетный ускоритель содержит стволы с пиропатронами с электродетонаторами, штоками-толкателями с амортизаторами с функцией смягчения удара при срабатывании пиропатрона, отталкивающего отделяемую часть ракеты в направлении, противоположном направлению полета ракеты и плавного разгона отделяемой ступени до нужной скорости.

Группа изобретений относится к устройствам для пуска летательных аппаратов (ЛА). ЛА содержит корпус с силовой обшивкой, силовые рамы, прикрепленные к обшивке, и агрегаты, закрепленные на силовых рамах, включая стартовую двигательную установку с реактивным соплом, прикрепленную к корпусу устройством, выполненным с возможностью расфиксации крепления, и систему управления.

Изобретение относится к военной технике и может быть использовано в боевых отсеках ракет. Система отделения и стабилизации для боевого отсека снаряда содержит оболочку с дном, узел отделения, вытяжной фал, парашютную систему стабилизации с контейнером с дном, крышкой с узлом форсирования, парашютом с вертлюгом, вытягивающим звеном в виде поршня с центральным газоводом, устройством разделения отсеков замедленного действия, фиксатором в виде распорного пружинного кольца.

Изобретение относится к космической технике и может быть использовано в стационарных стендах сборки частей ракет-носителей. Стационарный стенд сборки головного блока ракетно-космического носителя содержит силовую раму в виде прямоугольника коробчатого сечения с выступающими узлами для скрепления со стрелой и гидроцилиндрами, площадку обслуживания с лестничными переходами и выдвижными трапами, анкерный крепеж, грузоподъемную стрелу с устройством для размещения и скрепления головного блока, гидроцилиндры подъема и опускания стрелы, гидросистему питания, электрооборудование с мотор-редукторами, опорно-поворотное кольцо в виде полого цилиндра с отверстиями под болты, подшипник вращения, упоры.

Изобретение относится к области ракетной техники, в частности к системе разделения и стабилизации головной части. Система разделения и стабилизации головной части представляет собой боевой отсек и оболочку с дном.

Изобретение относится к машиностроительной технике, в частности к разъемным соединениям, разделяемым в процессе эксплуатации. Пирозамок содержит основание, стяжной болт, сухари со штифтами, поршень, цилиндр, крышку и пиропатрон.

Изобретение относится к авиационной технике, в частности к узлу разделения отсеков летательного аппарата. Узел разделения отсеков летательного аппарата содержит основной отсек, отталкиваемый отсек, корпус, пиропатрон, болт, раздвигающийся фиксатор и поддерживающий его сдвигаемый поршень.

Способ стрельбы пулей, соединенной с отделяемым метательным устройством, включает удержание пули и метательного устройства, запуск метательного устройства и выход пули из пусковой трубы.

Управляемая пуля содержит отделяемый двигатель и кольцевой насадок с резьбовой втулкой, установленный на кормовой части маршевой ступени и соединенный с двигателем посредством разрезного кольца, выполненного в виде кольцевых секторов.

Способ стрельбы пулей, соединенной с отделяемым метательным устройством, включает удержание пули и метательного устройства, запуск метательного устройства и выход пули из пусковой трубы.

Изобретение относится к космической технике, а именно к устройствам отделения космического аппарата. Устройство отделения КА содержит разъединяемое удерживающее устройство между несущей конструкцией с отверстием и КА с отверстием с выступами для фиксации упора, механические замки со стержнем с шайбой и гайкой, упором и отверстием со смещением относительно оси стержня, фиксирующее звено, удерживающее звено с выемкой на оси вращения. Изобретение позволяет повысить надежность отделения полезной нагрузки. 4 ил.

Изобретение относится к ракетной технике и может быть использовано для разделения и сброса головного обтекателя (ГО) ракеты-носителя (РН). Устройство разделения и сброса ГО РН содержит створки с возможностью вращения, толкатели, опирающиеся на фитинги РН, хвостовик со сферическими законцовками, пружины с противоположным направлением навивки и установленные одна в другую. Толкатель содержит телескопически соединенные между собой внешний цилиндр с гильзой с жестко закрепленной нижней крышкой с малым стаканом и внутренний цилиндр со штоком с жестко закрепленной верхней крышкой со стаканом. Стаканы телескопически соединены между собой с образованием полости между нижней и верхней крышками. Изобретение позволяет повысить надёжность разделения и сброса ГО. 2 ил.

Изобретение относится к ракетной технике и может быть использовано в устройствах разделения элементов ракет. Безимпульсный делитель, установленный на разделяемой оболочке пространственной формы, содержит детонирующий удлиненный заряд (ДУЗ), инициатор ДУЗа, вставку в виде выступа П-образной формы с завулканизированным эластомером, Г-образную разрезную пластмассовую втулку. Изобретение позволяет упростить конструкцию узла разделения, повысить уровень защиты внутренней полости разделяемых частей от действия ДУЗа. 1 ил.

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и размещенными в них пневмопоршнями, имеющими шток, оканчивающийся скошенным клиновидным торцем, а также замковый элемент, взаимодействующий со штоками пневмопоршней, имеющий фланец с конической образующей, которая параллельна скосу торца штока в плоскости, проходящей через оси замкового элемента и пневмопоршня. Каждый пневмоцилиндр взаимодействует с пружиной сжатия. Пневмопоршень имеет узел предотвращения окружного проворота. В нем выполнены радиусные скругления, а на штоке каждого пневмопоршня выполнена лыска, обращенная к нижнему основанию конуса замкового элемента, параллельная последнему, с расположенным на пересечении с плоскостью скоса клиновидного торца радиусным скруглением. Каждая пружина снабжена узлом регулировки поджатия, а ход X пневмопоршня определяется соотношением: G>Х>В-K+(D-L-r-R) tgα, где: G - длина лыски; В - радиус окружности при пересечении конической образующей фланца ее замкового элемента с плоскостью лыски на штоке пневмопоршня; K - максимальное расстояние от оси замкового элемента до точки пересечения скоса клиновидного торца штока пневмопоршня с его цилиндрической поверхностью; D - диаметр штока пневмопоршня; L - глубина лыски на штоке пневмопоршня; r - радиус скругления конической образующей замкового элемента при нижнем основании конуса; R - радиус скругления штока пневмопоршня при пересечении плоскостей лыски и скоса клиновидного торца; α - угол наклона конической образующей фланца замкового элемента к его оси. 2 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в системах отделения космических аппаратов (КА). Система отделения КА, установленная между несущей конструкцией ракеты-носителя (РН) и КА, содержит корпус, состоящий из силовых опор и стенок с замками и толкателями, болтовые соединения, дискретно размещенные по периметру корпуса демпфирующие узлы, состоящие из резиновых прокладок и пластинчатых упоров с резьбовыми отверстиями, промежуточную раму, элементы крепления, резьбовые стыковочные элементы. Устанавливают на верхнюю часть корпуса системы отделения замки и толкатели, устанавливают демпфирующие узлы на промежуточную раму, обжимают демпфирующие узлы, контролируют величину усилия обжатия демпфирующих узлов, фиксируют демпфирующие узлы в обжатом состоянии относительно промежуточной рамы, закрепляют посредством замков и толкателей промежуточную раму к верхней части корпуса к нижнему торцу корпуса, стыкуют КА к верхней части корпуса, корпус с состыкованным КА через промежуточную раму устанавливают и закрепляют затяжкой болтовых соединений на несущую конструкцию РН через демпфирующие узлы. Изобретение позволяет уменьшить нагрузки на КА упростить установку КА на РН. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретение относится к области ракетной техники, а именно к отсеку разделения снаряда. Содержит оболочку с дном, опорное кольцо, поршень, источник энергии с инициирующим устройством и узел форсирования, скрепляющий разделяемые элементы конструкции. Источники энергии отсека выполнены в виде комбинации форсажного заряда и одного или нескольких разгонных аккумуляторов давления. Аккумуляторы симметрично закреплены в поршне и снабжены инициирующими устройствами. Форсажный заряд закреплен в опорном кольце посредством диафрагмы и выполнен в виде изделия тороидальной формы, размещенного вокруг предохранительно-исполнительного механизма (ПИМа). ПИМ снабжен радиальным инициирующим устройством. Устройство сориентировано с локальным утонением на внутренней поверхности тора. Утонение выполнено посредством осевой пуклевки на опорной поверхности корпуса заряда и наличия ответной головки фиксирующего винта, установленного на смежной с корпусом поверхности диафрагмы. Пороховые аккумуляторы давления симметрично закреплены в поршне и снабжены инициирующими устройствами. Последние выполнены в виде воспламенителей и разрывных мембран, закрепленных в зоне размещения сопловых блоков аккумуляторов. Мембраны имеют регламентируемые силовые и тепловые условия срабатывания в процессе разделения. Это обеспечивает вскрытие газодинамических связей камер сгорания аккумуляторов с полостью разделения снаряда в требуемый момент времени. Повышает надежность конструкции отсека разделения снарядов, уменьшает пассивный вес, обеспечивает увеличение скорости разделения при снижении силового и теплового воздействий на разделяемые элементы конструкции. 1 ил.

Группа изобретений относится к ракетно-космической технике. Переходной отсек головной части ракеты-носителя (РН) содержит корпус, адаптер и средство соединения корпуса с адаптером. Средство соединения корпуса с адаптером выполнено в виде размещенных внутри корпуса ферм, каждая из которых содержит два раскоса, два стержня и опорный узел. На опорном узле каждой из ферм закреплены первые концы раскосов и стержней фермы. Вторые концы стержней закреплены на верхнем торцевом шпангоуте корпуса, а вторые концы раскосов - на нижнем торцевом шпангоуте корпуса. Адаптер выполнен из секций, жестко соединенных друг с другом кронштейнами, каждый из которых включает верхнюю и нижнюю опорные площадки, причем верхняя опорная площадка выполнена с обеспечением возможности соединения с полезной нагрузкой, а нижняя опорная площадка разъемным соединением соединена с опорным узлом одной из ферм. Корпус переходного отсека выполнен в виде усеченного конуса или цилиндра. Техническим результатом группы изобретений является снижение массы переходного отсека РН. 2 н. и 16 з.п. ф-лы, 28 ил.

Предлагаемая группа изобретений относится к области ракетной техники и может быть использована в малогабаритных зенитных и противотанковых ракетах. Бикалиберная ракета (вариант 1) содержит разгонный двигатель и механически связанный с ним переходной обтекатель, телескопически установленные на кормовую часть маршевой ступени. Маршевая ступень и двигатель связаны между собой разрывным винтом, усилие разрыва которого меньше усилия разрушения механической связи между двигателем и переходным обтекателем и больше усилия от перегрузок, действующих на маршевую ступень при эксплуатации, а также меньше разности аэробаллистических сил, действующих на разгонный двигатель и подкалиберную маршевую ступень в полете в конце разгона. Бикалиберная ракета (вариант 2) содержит разгонный двигатель, телескопически соединенный с подкалиберной маршевой ступенью. Маршевая ступень и разгонный двигатель связаны между собой стыковочным узлом, выполненным в виде штока, закрепленного на торце маршевой ступени и установленного во втулку, закрепленную в донной части телескопического соединения двигателя. Шток и втулка зафиксированы между собой штифтом, сила срезания которого больше силы, действующей на маршевую ступень при эксплуатации, и меньше силы, действующей на маршевую ступень в процессе разгона, а между торцами маршевой ступени и двигателя образованы зазоры, величины которых не менее хода, необходимого для срезания штифта. Изобретение позволяет повысить надежность демпфирования возмущений маршевой ступени ракеты при разделении и упростить конструкцию ракет. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области ракетной техники и может быть использовано при разработке разделяющихся боеприпасов реактивной и ствольной артиллерии. Технический результат – повышение надежности работы устройства. Узел разделения головной части боеприпаса содержит оболочку с дном, опорное кольцо с узлом форсирования, поршень, заряд форсирования, пороховые аккумуляторы давления, рабочую и накопительную полости для продуктов сгорания зарядов. Пороховые аккумуляторы давления закреплены в поршне отсека разделения. Они размещены сопловыми блоками напротив газодинамических окон. Такое размещение обеспечивает возможность заполнения продуктами сгорания накопительной полости. Упомянутые окна выполнены в промежуточной диафрагме, жестко скрепленной с опорным кольцом оболочки. Сопловые блоки пороховых аккумуляторов давления снабжены устройствами одновременного вскрытия сопел. Они выполнены в виде заглушек, размещенных в выходной части сопла и имеющих вытяжные тяги. Эти тяги зафиксированы в промежуточной диафрагме и связаны с заглушками сопел посредством упора и разъемных соединений резьбового типа. 1 ил.

Изобретения относятся к ракетной технике и могут быть использованы при создании ракеты и ракетного двигателя твердого топлива, имеющих габаритные ограничения в исходном состоянии, причем длина полезного груза ракеты сопоставима с длиной корпуса ракетного двигателя. Ракета содержит тянущий ракетный двигатель твердого топлива и толкающий ракетный двигатель. Тянущий ракетный двигатель твердого топлива включает сопловой блок, образованный несколькими равномерно распределенными по окружности наклонными соплами, установленными на заднем днище, а также задний узел стыка. С корпусом ракетного двигателя твердого топлива сопряжен стакан, с внутренней цилиндрической поверхностью которого контактирует поддон с полезным грузом, связанный с толкающим ракетным двигателем. Длина и масса ракетного двигателя твердого топлива превышают длину и массу толкающего ракетного двигателя. Другое изобретение относится к ракетному двигателю твердого топлива, содержащему корпус с днищами, задний узел стыка, сопловой блок, а также сопряженный с передним днищем стакан. С внутренней цилиндрической поверхностью стакана контактирует поддон с полезным грузом. Стакан сопряжен с задним днищем и имеет открытый задний торец, при этом площадь поперечного сечения заднего узла стыка определена тянуще-изгибной нагрузкой, равной сумме величины тяги ракетного двигателя твердого топлива и полетных нагрузок. Группа изобретений позволяет повысить энергомассовое совершенство ракеты и ракетного двигателя твердого топлива, упростить их конструкцию и повысить надежность, а также минимизировать габариты ракеты в ее исходном состоянии. 2 н. и 8 з.п. ф-лы, 2 ил.
Наверх