Способ и устройство для дегидрирования алканов с выравниванием состава продукта

Изобретение относится к способу дегидрирования алканов с выравниванием состава продукта. При этом газообразный поток вещества, содержащий алканы, пропускают в непрерывном режиме через слой катализатора, расположенный в от двух до 10 соединенных последовательно реакторах адиабатического, аллотермического или изотермического типа или в их комбинации, посредством чего образуется газовый поток, который содержит олефин, водород и непрореагировавший алкан, при этом по меньшей мере один реактор является адиабатическим, в который подают кислород. Причем по меньшей мере один из параметров процесса: температуру, давление или соотношение пара и углеводородов регистрируют в одной или более точках по меньшей мере на одном из реакторов в форме измеренных значений, по меньшей мере один из параметров процесса целенаправленно контролируют и подвергают воздействию, так что состав произведенного газа на выходе по меньшей мере одного из реакторов остается постоянным в течение времени работы. Также изобретение относится к применению указанного способа для дегидрирования конкретных углеводородов. Использование настоящего способа позволяет получать продукт постоянного состава на выходе из реактора в течение всего времени работы 5 н. и 10 з.п. ф-лы, 1 табл., 5 пр., 8 ил.

 

Изобретение относится к способу дегидрирования алканов с выравниванием состава продукта, при котором алкан пропускают над соответствующим катализатором, вследствие чего образуется газовый поток, который содержит олефин, водород и непрореагировавший алкан. Так как дегидрирование алканов относится к группе обратимых равновесных реакций, то при идеальных каталитических условиях в ходе реакции после определенного времени обработки устанавливается химическое равновесие. Выравнивание состава продукта, или постоянное содержание олефина, алкана и водорода в произведенном газе обеспечивают посредством того, что на химическое равновесие воздействуют в желаемом направлении при помощи параметров процесса.

Дегидрирование алканов происходит на соответствующем катализаторе. Со временем при одинаковых условиях реакции активность катализатора уменьшается. Это приводит к тому, что состав продукта на выходе из реактора в течение производственного цикла постоянно изменяется, если параметры процесса остаются неизменными. Вследствие постоянного изменения состава продукта могут возникать неисправности в последующих частях установки. Например, ректификационные колонны являются чувствительными к колебаниям концентрации входного потока веществ.

В US 5243122 A1 описан процесс дегидрирования легких алканов в аллотермическом риформере, при котором температуру слоя катализатора во время реакции контролируют и медленно повышают, так что состав выходного потока реактора в течение реакции остается постоянным. Посредством этого метода замедляют снижение активности катализатора, так что состав потока продукта и, в частности, соотношение содержащихся в нем олефина и алкана остаются во время работы постоянными. Термический контроль реакции осуществляют при помощи специального управления клапанами подвода газового топлива. Разумеется, риформеры расположены параллельно, и кроме температуры на другие значимые факторы воздействие не оказывается.

В ходе реакции через некоторое время на катализаторе, как правило, образуются углеродсодержащие отложения, вследствие чего превращение алканов резко снижается. На основании этого реакцию проводят циклически. После определенного времени реакции реакцию останавливают, и над катализатором пропускают кислородсодержащий газ, который может также содержать водяной пар. Посредством этого газа углеродсодержащие отложения окисляются, так что катализатор очищается, и реакция может начинаться снова.

Поэтому в основе изобретения лежит задача разработки способа дегидрирования алканов, при помощи которого состав продукта на выходе из реактора остается постоянным в течение всего времени работы.

Задача решена посредством того, что в нескольких реакторах адиабатического, аллотермического или изотермического типа или в их комбинации газообразный поток вещества, содержащий алкан, пропускают в непрерывном режиме через слой катализатора, посредством чего образуется газовый поток, который содержит олефин, водород и непрореагировавший алкан, и что

- по меньшей мере один из параметров процесса: температуру, давление или соотношение пара и углеводородов регистрируют в одной или более точках по меньшей мере на одном из реакторов в форме измеренных значений,

- по меньшей мере на один из параметров процесса целенаправленно воздействуют, так что состав произведенного газа на выходе по меньшей мере из одного реактора остается постоянным в течение времени работы.

В одной или более точках реактора можно определять измеренные значения температуры, давления или соотношения пара и углеводородов, а затем при помощи управляющих устройств параметры процесса можно целенаправленно контролировать и подвергать воздействию, чтобы состав произведенного газа в конце системы реакторов оставался постоянным в течение времени работы.

В вариантах выполнения изобретения предусмотрено, что в комплексе применяют от двух до десяти одинаковых или различных типов реакторов. Однако с точки зрения экономичности предпочтительно применение от двух до четырех реакторов. Реакторы могут быть различных типов: аллотермическими, адиабатическими или изотермическими. Разумеется, реакторы различных типов можно также комбинировать различным образом для достижения соответствующей эффективности и экономичности. С целью обеспечения выравнивания состава продукта можно целенаправленно оказывать воздействие на параметры процесса: температуру, давление и соотношение пара и углеводородов. При помощи подвода газового топлива и кислорода и соответствующего датчика температуры можно регулировать температуру по меньшей мере в одном из реакторов. Равным образом давление в реакторе можно контролировать посредством отвода произведенного газа при помощи регулирующего клапана. Соотношение пара и углеводородов в реакторе определяют посредством подводимых количеств пара и газообразных углеводородов, причем это действие является предпочтительным в первом из реакторов.

В следующих вариантах выполнения изобретения для измерения состава произведенного газа применяют аналитический прибор. Аналитический прибор может представлять собой, например, газовый хроматограф. При заданном номинальном значении температуры, давления или соотношения пара и углеводородов при помощи аналитического прибора определяют состав произведенного газа. Благодаря этому на параметры процесса, как по отдельности, так и в комбинации, можно оказывать воздействие таким образом, что может быть достигнуто желаемое выравнивание состава произведенного газа. То же самое может быть достигнуто также при помощи системы управления производственным процессом, посредством задания изменяющейся во времени функции, например ступенчатой пилообразной функции.

В следующих вариантах выполнения изобретения описано также применение способа согласно изобретению для производства олефинов из алканов, в частности применение способа для дегидрирования пропана в пропилен, н-бутана в н-бутены и бутадиен, изобутана в изобутен, или их смесей, и для дегидроциклизации алканов в ароматические углеводороды. Однако дегидрированию можно подвергать любой алкан или любой углеводород, который является дегидрируемым при помощи способа дегидрирования, известного в уровне техники.

Изобретение подробнее поясняется при помощи некоторых примеров. Для этого с целью описания способа согласно изобретению в качестве варианта выполнения рассматривается аллотермический реактор для дегидрирования пропана в пропилен. При этом реактор эксплуатируют со следующими технологическими параметрами: входная температура: 510°C, разность температур между входом и выходом ΔT: 75 K, давление на выходе p: 6,0 бар (6 МПа), молярное соотношение пара и углеводородов STHC: 3,5.

Пример 1: Как показано на фиг.1, без адаптации технологических параметров выход пропилена уменьшается с начальных 26,7% до 26,1%.

Пример 2: Как показано на фиг.2, путем увеличения разности температур ΔТ выход пропилена в течение рабочего цикла остается постоянным на уровне 26,7%. Все другие параметры остаются неизменными по сравнению с примером 1.

Пример 3: Как показано на фиг.3, путем снижения выходного давления p выход пропилена в течение рабочего цикла остается постоянным на уровне 26,7%. Все другие параметры остаются неизменными по сравнению с примером 1.

Пример 4: Как показано на фиг.4, путем увеличения соотношения пара и углеводородов (STHC) выход пропилена в течение рабочего цикла остается постоянным на уровне 26,7%. Все другие параметры остаются неизменными по сравнению с примером 1.

Пример 5: Как показано на фиг.5, в этом примере в течение времени цикла давление постоянно снижают на 0,05 бар/ч (5 кПа/ч) и одновременно слегка повышают разность температур ΔT, чтобы получить равномерный выход пропилена. На практике одностороннее понижение выходного давления p с течением времени (как в примере 3) зачастую невозможно осуществить произвольно, так как последующая стадия процесса, например сжатие произведенного газа, требует определенного давления на входе. Поэтому рациональным является одновременное воздействие на несколько параметров процесса для достижения желаемого выравнивания состава произведенного газа.

Примеры приведены в таблице 1. При помощи примеров очевидны эффекты влияния параметров процесса на состав произведенного газа.

Таблица 1
Обзор установок параметров
Пример Время (ч) 0,0 0,5 1,0 1,5 2,0
Пример 1 без адаптации Выход пропилена (мол. %) 26,70 26,57 26,44 26,29 26,11
Пример 2 с адаптацией ΔT (K) 75,0 75,7 76,4 77,3 78,3
Пример 3 с адаптацией p (бар) 6,00 5,95 5,89 5,82 5,74
Пример 4 с адаптацией STHC1) 3,50 3,55 3,62 3,69 3,79
Пример 5 с адаптацией p (бар) 6,00 5,98 5,96 5,93 5,90
ΔT (K) 75 75,4 75,8 76,3 77,1
1): STHC - молярное соотношение пара и углеводородов.

Изобретение поясняется ниже при помощи чертежей, на которых изображено:

фиг.6 - устройство с включенными друг за другом аллотермическим и адиабатическим реакторами, содержащее систему контроля температуры,

фиг.7 - устройство с включенными друг за другом аллотермическим и адиабатическим реакторами, содержащее систему контроля температуры и систему контроля давления,

фиг.8 - устройство с включенными друг за другом адиабатическими реакторами, содержащее систему контроля температуры и давления при помощи системы управления производственным процессом.

На фиг.6 показано устройство, состоящее из включенных друг за другом реакторов аллотермического (1) и адиабатического (2) типа с подводом (3) кислорода. Реакционный газ (4) подают в аллотермический реактор (1). Нагревание осуществляют при помощи горелок (5), которые работают на горючем газе (6) и кислородсодержащем газе (7). В реакторе (1) предусмотрена замкнутая система (8) труб, в которой находится катализатор и происходит реакция. На выходе первой реакционной системы (1) подключены прибор (10) для измерения температуры и аналитический прибор (11). Подвод горючего газа регулируют при помощи прибора (10) для измерения температуры и электрических управляющих линий (10а) таким образом, что измеренные значения аналитического прибора (11) постоянно отображают желаемое постоянное содержание олефина в произведенном газе (9). Затем в произведенный газ (9) из реакционной системы (1) добавляют кислородсодержащий газ (3) и подают в адиабатический реактор (2). В этом реакторе также находится замкнутая система труб (12) для дегидрирования и окисления водорода, которая содержит катализатор и в которой происходит окисление водорода и дальнейшее дегидрирование. На выходе из второго реактора также находятся прибор (13) для измерения температуры и аналитический прибор (14). При помощи прибора (13) для измерения температуры и электрических управляющих линий (13а) подачу кислорода регулируют таким образом, что измеренные значения аналитического прибора (14) постоянно отображают желаемое постоянное содержание олефина в произведенном газе (15).

На фиг.7 показано устройство, которое также состоит из первого аллотермического реактора (1) и второго адиабатического реактора (2) с подводом (3) кислорода. Температуру на выходе из первой реакционной системы (9) измеряют при помощи прибора (10) для измерения температуры и в зависимости от нее посредством электрических измерительных сигналов (10а) регулируют подачи (6, 7) горючего газа и кислорода. Таким способом в первой реакционной системе может быть установлена постоянная температура. В этом устройстве состав продукта контролируют только на выходе из второй реакционной системы (15). Это осуществляют при помощи аналитического прибора (17) на выходе из второй реакционной системы, который измеряет давление в реакторе (2) второй реакционной системы через управляемый обратный клапан (16) и передает его через электрические управляющие линии (16а, 17а) в систему (18) управления технологическим процессом. Температуру реактора (2) регулируют посредством электрической управляющей линии (13а) и подвода (3) кислорода. Система (18) управления производственным процессом рассчитывает требуемые параметры для давления и регулирует его посредством электрических измерительных сигналов (17а) и управляемого обратного клапана (16) на выходе из системы реакторов таким образом, что на выходе из второго реактора (2) всегда сохраняется постоянный состав произведенного газа (15).

На фиг.8 показано устройство, состоящее из трех включенных друг за другом адиабатических реакторов (19, 2а, 2b) с подводом (3a, 3b) кислорода. Реакция в первом реакторе (19) протекает адиабатически, так что на выходе из реакционной системы (9) получают постоянно меняющийся состав продукта. В реакторах (2а, 2b) проводят селективное окисление водорода. На выходе из второго реактора (2а) расположен прибор (20) для измерения температуры, который управляет реактором (2а) посредством электрических измерительных линий (20а) и подвода (3а) кислорода. Через электрические управляющие линии (18а) измеренные значения прибора (20) для измерения температуры передаются в систему (18) управления производственным процессом. Благодаря этому происходит выравнивание состава произведенного газа на выходе из реактора (2а). На выходе из третьего реактора (2b) также расположен прибор (21) для измерения температуры, который посредством электрических управляющих линий (21b) и подвода (3а) кислорода регулирует соответствующий реактор. Прибор (21) для измерения температуры передает измеренные значения через электрическую управляющую линию (21а) в систему (18) управления производственным процессом. Благодаря этому на выходе из третьей реакционной системы (22) получают желаемый постоянный состав произведенного газа.

Список обозначений

1 аллотермический реактор
2 адиабатический реактор
3 подвод кислорода
3a подвод кислорода
3b подвод кислорода
4 реакционный газ
5 горелка
6 горючий газ
7 кислородсодержащий газ
8 замкнутая система труб для реакции дегидрирования
9 произведенный газ из первой реакционной системы
10 прибор для измерения температуры
10а электрическая управляющая линия
11 аналитический прибор для определения состава произведенного газа
12 замкнутая система труб для дегидрирования и окисления водорода
13 прибор для измерения температуры
13а электрическая управляющая линия
14 аналитический прибор для определения содержания олефина в произведенном газе
15 произведенный газ
16 управляемый обратный клапан
16а электрическая управляющая линия
17 аналитический прибор
17а электрическая управляющая линия
18 система управления производственным процессом
18а электрическая управляющая линия
19 адиабатический реактор
20 прибор для измерения температуры
20а электрическая управляющая линия
21 прибор для измерения температуры
21а электрическая управляющая линия
21b электрическая управляющая линия
22 произведенный газ

1. Способ дегидрирования алканов с выравниванием состава продукта, при котором
- газообразный поток вещества, содержащий алканы, пропускают в непрерывном режиме через слой катализатора, расположенный в от двух до 10 соединенных последовательно реакторах адиабатического, аллотермического или изотермического типа или в их комбинации, посредством чего образуется газовый поток, который содержит олефин, водород и непрореагировавший алкан, при этом по меньшей мере один реактор является адиабатическим, в который подают кислород,
при этом
- по меньшей мере один из параметров процесса: температуру, давление или соотношение пара и углеводородов регистрируют в одной или более точках по меньшей мере на одном из реакторов в форме измеренных значений,
- по меньшей мере один из параметров процесса целенаправленно контролируют и подвергают воздействию, так что состав произведенного газа на выходе по меньшей мере одного из реакторов остается постоянным в течение времени работы.

2. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что в комплексе применяют от двух до десяти, предпочтительно от двух до четырех реакторов различных типов.

3. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что в комплексе применяют от двух до десяти, предпочтительно от двух до четырех реакторов одинакового типа.

4. Способ дегидрирования алканов с выравниванием состава продукта по любому из пп. 1-3, отличающийся тем, что температуру в одном из реакторов регулируют при помощи подвода газообразного топлива и датчика температуры.

5. Способ дегидрирования алканов с выравниванием состава продукта по любому из пп. 1-3, отличающийся тем, что температуру в одном из реакторов регулируют при помощи подвода кислорода и датчика температуры.

6. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что давление по меньшей мере в одном из реакторов регулируют путем отвода произведенного газа при помощи регулирующего клапана.

7. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что соотношение пара и углеводородов по меньшей мере в одном из реакторов регулируют при помощи подводимых количеств пара и газообразных углеводородов.

8. Способ дегидрирования алканов с выравниванием состава продукта по п. 7, отличающийся тем, что соотношение пара и углеводородов предпочтительно регулируют в первом из реакторов при помощи подводимых количеств пара и газообразных углеводородов.

9. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что на параметры процесса воздействуют по меньшей мере в одном реакторе в зависимости от измеренных значений состава произведенного газа, определенных аналитическим прибором.

10. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что на параметры процесса воздействуют по меньшей мере в одном реакторе при помощи системы управления производственным процессом путем задания изменяющейся во времени функции.

11. Способ дегидрирования алканов с выравниванием состава продукта по п. 1, отличающийся тем, что одновременно воздействуют на несколько параметров процесса.

12. Применение способа согласно любому из пп. 1-11 для дегидрирования пропана в пропилен.

13. Применение способа согласно любому из пп. 1-11 для дегидрирования н-бутана в н-бутены и бутадиен.

14. Применение способа согласно любому из пп. 1-11 для дегидрирования изобутана в изобутен.

15. Применение способа согласно любому из пп. 1-11 для дегидроциклизации алканов в ароматические углеводороды.



 

Похожие патенты:

Изобретение относится к применению катализатора, содержащего монолит и слой катализатора, для дегидрогенизации алканов до алкенов или ароматизации при дегидрогенизации.

Изобретение относится к катализатору для синтеза бутадиена-1,3 окислительным дегидрированием н-бутенов. Данный катализатор характеризуется следующим содержанием компонентов 30-70 вес.% (Mo5-12Sb>6.0-15Bi0.2-3M1 0.1-10M2 0.05-0.5M3 0.01-2On) и 70-30 вес.% SiO2, где М1 - один или несколько элементов из группы Со, Ni, Fe, Cr, Cu; М2 - один или несколько элементов из группы Na, К, Cs, Mg, Се, La, М3 - элемент из группы Р, В, n = число, которое определяется валентностью и количеством отличных от кислорода элементов.

Изобретение относится к химической, нефтехимической промышленности и может быть использовано для проведения гетерогенно-каталитических реакций, в частности, для проведения дегидрирования C4-C5 парафиновых углеводородов в соответствующие олефиновые углеводороды.

Изобретение относится к способу дегидрирования алкилароматического углеводорода, включающему: контактирование потока парового реагента, содержащего алкилароматический углеводород и водяной пар и имеющего первое массовое соотношение пара к алкилароматическому углеводороду, с катализатором дегидрирования с образованием парофазного выходящего потока, содержащего углеводородный продукт, водяной пар и непрореагировавший алкилароматический углеводород; подачу по меньшей мере части выходящего потока в делитель для отделения углеводородного продукта от непрореагировавшего алкилароматического углеводорода, извлекаемых из делителя в виде донной и головной фракций соответственно; утилизацию тепла первой части упомянутой головной фракции посредством косвенного теплообмена со смесью, содержащей алкилароматический углеводород и воду, для по меньшей мере частичной конденсации упомянутой части и образования продукта азеотропного испарения, содержащего пары алкилароматического соединения и водяной пар, имеющего второе соотношение пара к алкилароматическому углеводороду; и объединение продукта азеотропного испарения с дополнительным алкилароматическим углеводородом и дополнительным паром, вместе или по отдельности, с образованием потока парового реагента.
Изобретение относится к нефтепереработке и каталитической химии, в частности к способу синтеза катализатора для дегидрирования легких парафиновых углеводородов, предпочтительно изобутана и изопентана, для процессов получения изобутилена и изоамиленов - мономеров синтетических каучуков.

Изобретение относится к области каталитической химии, в частности к катализатору дегидрирования C4-C5 парафиновых углеводородов. Данный катализатор дегидрирования представляет собой алюмооксидный носитель, модифицированный оксидом кремния, на котором распределены активный компонент оксид хрома и промотор оксид калия.

Изобретение относится к процессам дегидрирования парафинов. Способ регулирования температур в реакторе дегидрирования включает пропускание катализатора в реактор дегидрирования таким образом, что катализатор перетекает вниз через реактор, пропускание обогащенного парафинами потока в реактор дегидрирования, так что поток проходит вверх через реактор, образуя, таким образом, технологический поток, содержащий катализатор и дегидрированные углеводороды, а также некоторое количество не превращенных парафинов, отделение паровой фазы от технологического потока, формируя, таким, образом поток продуктов, пропускание потока продуктов в узел охлаждения, образуя посредством этого охлажденный поток продуктов и пропускание части охлажденного потока продуктов в технологический поток.

Изобретение относится к способу проведения реакций дегидрирования с последующей абсорбционной очисткой газов, при этом за абсорбционной очисткой газов следует стадия снятия давления в резервуаре мгновенного испарения при высоком давлении, который снабжен массообменными элементами, причем эту стадию проводят при использовании горючего газа, протекающего через массообменные элементы навстречу направлению силы тяжести, который проходит через резервуар мгновенного испарения при высоком давлении противотоком по отношению к растворителю, подвергнутому снятию давления, так что абсорбированные углеводороды поглощаются горючим газом.

Изобретение относится к способу дегидрирования пропана, включающему: пропускание предварительно нагретого исходного потока пропана в реактор дегидрирования; смешивание и взаимодействие исходного потока пропана с псевдоожиженным неметаллическим катализатором, содержащим оксид циркония, в реакторе дегидрирования, который представляет собой реактор быстрого псевдоожижения с образованием потока продукта, содержащего пропилен, причем катализатор находится в реакторе при среднем времени пребывания от 15 до 45 минут; пропускание отработанного катализатора в блок регенерации катализатора с образованием потока регенерированного катализатора; и пропускание потока регенерированного катализатора в реактор дегидрирования.
Данное изобретение относится к нанесенному на мезопористый уголь катализатору на основе меди, к способу его получения и применению в каталитическом дегидрировании соединения с алкильной цепью C2-C12 для превращения соединения с алкильной цепью C2-C12 в соединение с соответствующей алкенильной цепью.

Изобретение относится к способу получения ароматических соединений из потока углеводородного исходного сырья. Способ включает: перепускание потока углеводородного исходного сырья в систему реактора гидрирования/дегидрирования для генерирования тем самым первого потока; перепускание первого потока в установку фракционирования для генерирования верхнего потока, содержащего С7 и более легкие парафины, и нижнего потока, содержащего более тяжелые парафины; и перепускание указанного выше верхнего потока в систему реактора высокотемпературного риформинга для генерирования тем самым потока продуктов риформинга, где система реактора высокотемпературного риформинга функционирует при температуре в диапазоне от 540°С до 580°С.

Изобретение относится к cпособу получения пара-цимола из серосодержащего исходного материала, содержащего по меньшей мере один пинен, находящийся в газовой фазе, включающий каталитическое превращение пинена в пара-цимол при температуре, составляющей от 177 до 350°C, в присутствии цеолита типа Y-фожазита, применяемого в качестве катализатора.

Изобретение относится к способу и установке получения концентрата ароматических углеводородов из легких алифатических углеводородов и их смесей с оксигенатами. При этом согласно способу исходное сырье подают в два последовательно соединенных реакционных блока - первый и второй с цеолитовыми катализаторами на основе группы пентасилов, причем реакционные блоки отличаются условиями конверсии углеводородов в ароматические, разделяют полученную после реакционных блоков смесь на жидкую, и газовую фракции, подают газовую фракцию на вход первого и второго реакционного блока.

Изобретение относится к каталитическому превращению возобновляемого сырья - продуктов ферментации биомассы (этанол, сивушные масла) и их смесей с растительным маслом в алкан-ароматическую фракцию C3-C11+, которая может быть использована для получения компонентов топлив.

Изобретение относится к способу получения ароматических соединений из углеводородного сырьевого потока. Способ включает стадии, на которых: направляют углеводородный сырьевой поток в установку разделения и таким образом получают легкий технологический поток, имеющий пониженную концентрацию эндотермических углеводородных компонентов, и тяжелый технологический поток, имеющий более высокую концентрацию эндотермических компонентов.

Изобретение относится к способу алкилирования бензола, в котором: A) получают по меньшей мере часть потока из зоны переалкилирования; B) объединяют указанную по меньшей мере часть потока из зоны переалкилирования с потоком топливного газа, содержащим эффективное для алкилирования количество одного или нескольких алканов, который по меньшей мере частично получен из хвостового газа процесса очистки водорода; C) подают по меньшей мере часть указанного объединенного потока в зону метилирования бензола.

Изобретение относится к способу инициированного непрерывного каталитического получения ароматических углеводородов из этанола на катализаторе HZSM-5 при 400-420°C и объемной скорости 1-2 ч-1.
Группа изобретений относится к катализаторам циклизации нормальных парафиновых углеводородов. Катализатор содержит носитель, который готовят с использованием высококремнеземного цеолита KL и бемита, а каталитически активное вещество представляет собой как иммобилизованные на поверхности катализатора кристаллиты платины, так и локализованные внутри канала цеолита частицы платины, характеризующиеся размером 0,6-1,2 нм.

Изобретение относится к способу получения ароматических углеводородов из этана в присутствии катализатора. Способ характеризуется тем, что газовую смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подвергают контактированию с нагретым до 400-450°C катализатором, представляющим собой двухслойную композицию в виде смешанной оксидной Mo1.0V0.37Te0.17Nb0.12O3 составляющей, расположенной в проточном реакторе на входе газового сырья, и цеолита HZSM-5, расположенного далее по ходу движения сырья, при этом компоненты катализатора взяты в объемном соотношении 20-30 и 70-80 соответственно, и процесс проводят при атмосферном давлении и объемной скорости подачи газового сырья 1000-2000 ч-1.

Изобретение относится к способу алкилирования ароматических углеводородов по меньшей мере одним олефином, имеющим от 2 до 6 атомов углерода, с катализатором в условиях алкилирования.

Изобретение относится к катализатору для синтеза бутадиена-1,3 окислительным дегидрированием н-бутенов. Данный катализатор характеризуется следующим содержанием компонентов 30-70 вес.% (Mo5-12Sb>6.0-15Bi0.2-3M1 0.1-10M2 0.05-0.5M3 0.01-2On) и 70-30 вес.% SiO2, где М1 - один или несколько элементов из группы Со, Ni, Fe, Cr, Cu; М2 - один или несколько элементов из группы Na, К, Cs, Mg, Се, La, М3 - элемент из группы Р, В, n = число, которое определяется валентностью и количеством отличных от кислорода элементов.
Наверх