Способ терморелаксационной обработки деталей из легированного чугуна.

Изобретение относится к области термической обработки деталей из легированного чугуна с различной формой графита. Способ включает контроль исходной структуры, термическую обработку, азотирование, механическую обработку, при этом исходную структуру детали контролируют на содержание графита, цементита и феррита, термообработку для деталей из чугуна, содержащего в структуре графит шаровидной формы, до 10% графита нешаровидной формы и до 20% феррита, проводят путем высокого отпуска и старения, при содержании в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита путем аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, а при содержании в структуре от 10 до 80% графита нешаровидной формы, от 20 до 85% феррита и до 80 % цементита путем предварительного диффузионного отжига, аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, после термообработки контролируют структуру деталей, осуществляют механическую обработку поверхности детали с припуском, обеспечивающим при последующей после азотирования механической обработке удаление слоя ε-фазы, после чего участки детали с наименьшей толщиной стенки подвергают деформационному наклепу, затем детали фосфатируют, проводят низкотемпературное азотирование, рабочую поверхность детали подвергают электрохимическому травлению, хонингуют и фосфатируют. Изобретение позволяет получить в деталях из легированного чугуна с сечением различной жесткости и графитом различной формы, с повышенным количеством феррита и цементита минимальную деформацию при азотировании. 6 з.п. ф-лы, 1 пр.

 

Изобретение относится к области термической обработки деталей из легированного чугуна с различной формой графита.

Известен способ предварительной термической обработки азотируемых деталей из легированного чугуна с шаровидным графитом (патент на изобретение Российской Федерации №232 1645 МПК С21D 1/78, С21D 5/00, С23С 8/02, G01R 33/12,2006).

Недостатком данного способа является то, что в деталях, имеющих в исходной структуре графит не только шаровидный формы, но и вермикулярной и пластинчатой формы и соответственно большое количество феррита, не обеспечивается минимальная деформация при азотировании и приходится компенсировать ее большой глубиной азотированного слоя и значительным припуском на механическую обработку азотированной поверхности.

Задачей изобретения является получение в деталях из легированного чугуна с графитом различной формы и повышенным количеством феррита и цементита минимальной деформации при азотировании.

Это достигается тем, что для деталей из чугуна, содержащего в структуре в исходном состоянии графит шаровидной формы, до 10% графита нешаровидной формы и до 20% феррита, термообработку проводят путем высокого отпуска при 560-580°С в течение 5-6 часов и старения при 520-540°С в течение максимально до 40 часов.

При содержании в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита термообработку проводят путем аустенизации при 930-950°С в течение 5-8 часов, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита (500-600°С), изотермической выдержки при температуре 610-630°С не менее 30 минут, высокого отпуска при 560-580°С в течение 3-6 часов, старения при 520-540°С в течение максимально до 20 часов.

При содержании в структуре от 10 до 80% графита нешаровидной формы, от 20 до 85% феррита и до 80% цементита термообработку проводят путем диффузионного отжига при 930-950°С в течение 3-5 часов, подстуживания в печи до 760-770°С, охлаждения на воздухе до 500-600°С, изотермической выдержки при 600-610°С в течение не менее 3 часов, а затем их подвергают термообработке по режиму для деталей, содержащих в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита, а цементит отсутствует.

Дополнительно участки детали с наименьшей толщиной стенки подвергают деформационному наклепу накаткой роликами. Степень наклепа контролируют по изменению диаметров наружной и внутренней поверхностей. Оно должно достигать 0,03%. При азотировании вследствие терморелаксации остаточных напряжений от наклепа и их взаимодействия с напряжениями, образующимися в азотированном слое, обеспечиваются условия для уменьшения деформации детали.

Перед азотированием деталь фосфатируют для повышения абсорбционной способности азотируемой поверхности.

Азотирование деталей из легированного чугуна с различной формой графита для уменьшения их деформации проводят при температуре 480-530°С в течение 30-4- часов, а затем при 510-530°С в течение 80-110 часов.

После азотирования на рабочей поверхности детали механической обработкой удаляют слой ε-фазы, одновременно обеспечивая требуемую чистоту поверхности и ее геометрию, а если она больше 0,03 мм, то применяют электрохимическое травление. После хонингования втулку фосфатируют, обеспечивая растравливание азотированной поверхности до 0,025 мм и способствуя тем самым проявлению высокой антизадирности и износостойкости гетерогенной структуры чугуна.

Примером применения предложенного способа является изготовление втулок цилиндров дизелей из чугуна с различной формой графита, легированного медью (0,4-0,6%) и молибденом (0,25-0,40%), имеющих размеры: диаметр внутренний 260 мм, диаметр наружный 285-339 мм, высота 520 мм.

Структура чугуна в литом состоянии перлитно-ферритная с включениями фосфидной эвтектики на стыках дендритов, а в ряде случаев имеются включения цементита.

Перед термической обработкой структуру верха и низа втулок контролировали металлографически и коэрцитиметром на количество графита нешаровидной формы, феррита и цементита.

Втулки с шаровидным графитом и до 10% вермикулярным графитом и до 20% феррита после предварительной механической обработки подвергали высокому отпуску при 560-580°С в течение 5-6 часов, а перед азотированием - старению при 520-540°С в течение 20-40 часов.

Втулки с шаровидным графитом и с 10-80% вермикулярного графита и с 20-85% феррита после предварительной механической обработки подвергали аустенизации при 930-950°С в течение 5-8 часов, охлаждению со скоростью 5-15°С в секунду всей втулки в масле в течение 10 секунд и дополнительное охлаждение в масле в течение 45 секунд бурта втулки (бурт располагается в подприбыльной части отливки, и количество графита нешаровидной формы и феррита в нем до 40% больше, чем в остальной части втулки). После охлаждения температура втулки достигала 500-600°С и ее переносили в печь с температурой 610-630°С и выдерживали не менее 30 минут, а после охлаждения до температуры цеха или сразу после изотермической выдержки втулки отпускали при 560-580°С в течение 3-6 часов.

Перед азотированием втулки с припуском 1-2 мм подвергали старению при 520-540°С в течение 10-20 часов. Под азотирование механическую обработку поверхности детали осуществляли с припуском, обеспечивающим при последующей после азотирования механической обработке удаление слоя ε-фазы.

Втулки с шаровидным графитом и с 10-80% графита нешаровидной формы, с 20-85% феррита и цементитом до 80% (втулки отливались не в форму, а центробежным способом) вначале подвергали диффузионному отжигу при 930-950°С в течение 5-6 часов, подстуживали с печью до 760-770°С, охлаждали на воздухе до 500-600°С, изотермически выдерживали при 600-610°С не менее 3-х часов, а затем их подвергали термической обработке по режиму для втулок с 10-80% графита нешаровидной формы и от 20 до 85% феррита.

Втулки с 50-80% графита нешаровидной формы и с 40-85% феррита подвергали деформационному наклепу накаткой роликами. Наклепу подвергались участки наружной поверхности с минимальной толщиной стенки (20-25 мм при максимальной толщине 45 мм).

Степень наклепа определяли по величине изменения диаметров наружной и внутренней поверхности, которое достигало 0,03%.

Перед азотированием втулки фосфатировали в растворе солей «Мажеф» при 95-98°С в течение времени, обеспечивающем растравливание поверхности до 0,015 мм и небольшой слой фосфатов, что обеспечивает ей высокую абсорбционную способность при насыщении азотом.

Азотирование втулок проводилось кругом, благодаря чему обеспечиваются высокие антизадирные свойства и износостойкость внутренней рабочей поверхности и высокая коррозионно-кавитационная стойкость наружной поверхности, омываемой водой при эксплуатации втулки.

На основании выполненных исследований применен следующий режим низкотемпературного азотирования в среде диссоциированного аммиака:

1-я ступень - 480-490°С, выдержка 30-40 часов. 2-я ступень - 510-530°С, выдержка 80-110 часов. Глубина азотированного слоя не менее 0,4 мм, твердость HV 520-600. Толщина ε-фазы - 0,015-0,05 мм. В зонах, расположенных вокруг включений фосфидной эвтектики (стыки дендритов), имеются нитриды, обеспечивающие максимальную твердость азотированного слоя. Увеличение внутреннего диаметра не превышало 0,03 мм, что позволило не шлифовать «зеркало» втулок, а подвергать только хонингованию.

Механические свойства втулок: σв=55-70 кгс/мм2, δ≥1,5%, твердость НВ 229-285.

После азотирования изменений в структуре не обнаружено.

После окончательной механической обработки втулки фосфатировали, что обеспечило «зеркалу» втулки высокую адгезионную способность к впитыванию и сохранению смазки и лучшее использование особенностей гетерогенной структуры азотированного чугуна при трении и износе.

Экономический эффект от применения данного изобретения получается за счет уменьшения расходов на термическую обработку, снижения трудоемкости механической обработки и увеличения ресурса работы втулок.

1. Способ обработки деталей из легированного чугуна, включающий термическую обработку, азотирование и механическую обработку, отличающийся тем, что перед термической обработкой осуществляют контроль исходной структуры детали из чугуна на содержание в ней графита шаровидной и нешаровидной формы, цементита и феррита, в качестве термической обработки проводят терморелаксационную обработку по режимам, обеспечивающим минимальную деформацию деталей при последующем азотировании, механическую обработку детали осуществляют с припуском, обеспечивающим при последующей после азотирования механической обработке удаление слоя ε-фазы, после чего участки детали с наименьшей толщиной стенки подвергают деформационному наклепу, затем детали фосфатируют, проводят низкотемпературное азотирование и рабочую поверхность детали подвергают электрохимическому травлению, хонингованию и фосфатированию.

2. Способ по п. 1, отличающийся тем, что для деталей из чугуна, содержащего в структуре графит шаровидной формы, до 10% графита нешаровидной формы и до 20% феррита, терморелаксационную обработку проводят путем высокого отпуска при температуре 560-580°С в течение 3-6 часов и старения при температуре 520-540°С в течение максимально до 20 часов.

3. Способ по п. 1, отличающийся тем, что для деталей из чугуна, содержащего в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита, терморелаксационную обработку проводят путем аустенизации при температуре 930-950°С в течение 5-8 часов, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита 500-600°С, изотермической выдержки при 610-630°C в течение не менее 30 минут, высокого отпуска при температуре 560-580°С в течение 3-6 часов и старения при температуре 520-540°С в течение максимально до 20 часов

4. Способ по п. 1, отличающийся тем, что для деталей из чугуна, содержащего в структуре от 10 до 80% графита нешаровидной формы, от 20 до 85% феррита и до 80 % цементита, терморелаксационную обработку проводят путем предварительного диффузионного отжига, аустенизации при температуре 930-950°С в течение 5-8 часов, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита 500-600°С, изотермической выдержки при 610-630°C в течение не менее 30 минут, высокого отпуска при температуре 560-580°С в течение 3-6 часов и старения при температуре 520-540°С в течение максимально до 20 часов.

5. Способ по п.1, отличающийся тем, что для получения глубины азотированного слоя не мене 0,4-0,6 мм и твердости не менее HV 520 низкотемпературное азотирование проводят сначала при температуре 480-490°С в течение 30-40 часов, а затем при 510-530°С в течение 80-110 часов.

6. Способ по п.1, отличающийся тем, что детали перед азотированием и после окончательной механической обработки фосфатируют с обеспечением растравливания поверхности до 0,025 мм.

7. Способ по п.1, отличающийся тем, что деформационный наклеп проводят накаткой роликами в участках с минимальной толщиной стенки до изменения диаметров наружной и внутренней поверхностей на величину до 0,03%.



 

Похожие патенты:

Группа изобретений относится к способу упрочнения стальных деталей, устройству для осуществления способа и упрочненным в соответствии с этим способом стальным деталям.
Изобретение относится к области металлургии. Для улучшения свариваемости стальных полос с цинковым покрытием получают полосу из стали, содержащей, вес.%: С 0,04-1,0, Мn 9,0-30,0, Аl 0,05-15,0, Si 0,05-6,0, Cr ≤6,5, Cu ≤4, Ti+Zr ≤0,7, Nb+V ≤0,5, остальное - железо и неизбежные примеси, подвергают ее отжигу и затем на нее электролитическим методом наносят покрытие из цинка или цинкового сплава.

Изобретение относится к области поверхностного упрочнения путем азотирования деталей. Может использоваться при изготовлении деталей и инструмента, к которым предъявляются требования повышенного сопротивления схватыванию и адгезии в парах трения и коррозионной стойкости в условиях влажного воздуха.

Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей двигателей, а также в медицине и других отраслях промышленности.
Изобретение относится к машиностроению, в частности к производству штанг для бурильных машин мелкошпурового бурения (до 4250 мм). .

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, упрочняемым азотированием. .
Изобретение относится к химико-термической обработке изделий, получаемых методом порошковой металлургии, а именно к азотированию. .

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из технически чистого титана ВТ1-0, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов ВТ6 и ВТ16, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.

Изобретение относится к плазменной химико-термической обработке поверхности изделий и может быть использовано в машиностроении. .

Изобретение относится к машиностроению, в частности к способам повышения механических свойств приповерхностных слоев деталей машин из сплавов на основе железа с получением субмикро- или наноструктурированного состояния диффузионных слоев.

Изобретение относится к вакуумной ионно-плазменной технологии, а именно к устройствам для обработки длинномерных изделий. .

Изобретение относится к способам упрочнения и модификации поверхности и может использоваться для повышения стойкости деталей из титановых сплавов, работающих в коррозионно-активных средах с наличием абразивных частиц и высоких скоростей потока агрессивного раствора.

Изобретение относится к получению изделий из псевдо- или ( + ) титановых сплавов, предназначенных для длительной эксплуатации в парах трения с полимерными или металлическими материалами и биологическими тканями.
Изобретение относится к области термической обработки деталей из чугуна с шаровидным графитом. .

Изобретение относится к металлургии, в частности к химико-термической обработке, и может быть использовано для поверхностного упрочнения инструмента и деталей машин.

Изобретение относится к методам формирования легирующего покрытия (легирования поверхностного слоя металлических деталей) и может быть использовано в процессах плазменной обработки материалов.

Изобретение относится к области металлургии, в частности к термической и химико-термической обработке деталей из магнитомягкой высокохромистой стали, используемой для изготовления корпусов, магнитопроводов, сердечников электромагнитных клапанов подачи рабочих газов в электрических реактивных двигателях малой тяги.
Изобретение относится к металлургии, а именно к химико-термической обработке металлов и сплавов, в частности к ионному азотированию в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей сложной конфигурации, режущего инструмента и штамповой оснастки.

Изобретение относится к области упрочняющей обработки деталей и может быть использовано для повышения износостойкости поверхностей трения. .

Изобретение относится к области металлургии, в частности к получению отливок из высокопрочных чугунов с шаровидным графитом. .
Наверх