Способ имитации гармонического и случайного воздействий

Изобретение относится к вибрационной технике. Способ предполагает использование вибратора, в котором пьезоэлемент выполняют в виде пакета пьезокерамических колец, при этом внутри колец располагают цилиндрическую оправку. Ось симметрии оправки располагают перпендикулярно основанию, а диск располагают в ее верхней части так, что он контактирует с верхним пьезокерамическим кольцом пакета пьезокерамических колец пьезоэлемента, а на верхней поверхности диска устанавливают измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого присоединяют наконечник. Внешний диаметр диска выполняют равным внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с четырьмя пазами для крепления к исследуемому объекту. При этом нижнюю плоскость цилиндрической оправки располагают с зазором по отношению к верхней плоскости основания, а токонепроводящий корпус выполняют в виде цилиндрической обечайки. В верхней деформируемой части основания наклеивают тензодатчики, а в цилиндрической оправке выполняют полость и заполняют ее элементами, создающими дополнительное стохастическое движение. Технический результат - расширение частотного диапазона виброускорений. 2 ил.

 

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных объектов, включая комплексные испытания.

Наиболее близким техническим решением по технической сущности и достигаемому результату является способ вибрационного воздействия на исследуемые объекты, изложенный в патенте РФ №2489698, в котором пьезоэлемент и систему подвода электрического напряжения к пьезоэлементу выполняют в виде пакета пьезокерамических колец, опирающихся на основание, а на верхней поверхности диска устанавливают измерительные пьезоэлементы.

Недостаток известного технического решения заключается в сравнительно узком частотном диапазоне виброускорений при динамическом нагружении и при контактном вибровозбуждении объектов.

Технически достижимый результат - расширение частотного диапазона виброускорений.

Это достигается тем, что в способе имитации гармонического и случайного воздействий, заключающегося в том, что в вибраторе пьезоэлемент выполняют в виде пакета пьезокерамических колец, опирающихся на основание, при этом внутри пьезокерамических колец располагают цилиндрическую оправку, имеющую во фронтальном сечении Т-образный профиль, при этом ось симметрии оправки располагают перпендикулярно основанию, а диск, жестко соединенный с цилиндрической оправкой, располагают в ее верхней части так, что он контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом пакета пьезокерамических колец пьезоэлемента, а на верхней поверхности диска устанавливают измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого посредством крепежного элемента присоединяют наконечник, передающий изменение линейного размера пакета пьезокерамических колец на исследуемый объект, при этом внешний диаметр диска равен внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с по крайней мере, четырьмя пазами для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем, через который подают электрическое напряжение на пьезоэлемент, а нижнее пьезокерамическое кольцо опирают на верхнюю плоскость основания, при этом нижнюю плоскость цилиндрической оправки располагают с зазором по отношению к верхней плоскости основания, а токонепроводящий корпус выполняют в виде цилиндрической обечайки, которая охватывает пьезоэлемент, а в верхней деформируемой части основания на плоскости, обращенной к полости, наклеивают тензодатчики, контролирующие величину статического усилия, в вертикальной части цилиндрической оправки, контактирующей с пьезокерамическими кольцами пьезоэлемента, выполняют внутреннюю цилиндрическую полость и заполняют ее элементами, создающими дополнительное стохастическое движение.

На фиг.1 показан общий вид устройства для реализации способа имитации гармонического и случайного воздействий на узлы станков, в частности фронтальный разрез, а на фиг.2 - сечение, перпендикулярное оси симметрии вибратора.

Устройство для реализации способа имитации гармонического и случайного воздействий (фиг.1 и 2) содержит пьезоэлемент, выполненный в виде пакета пьезокерамических колец 3, опирающихся на основание 1,и к внутренней поверхности которых оппозитно друг другу прикреплены шпоночные элементы 14, входящие в соответствующие пазы в цилиндрической оправке 4, имеющей во фронтальном сечении Т-образный профиль. Ось симметрии оправки 4 перпендикулярна основанию 1, при этом диск 10, жестко соединенный с оправкой 4 и расположенный в верхней части оправки 4 перпендикулярно ее оси, контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом 3 пьезоэлемента, а на верхней поверхности диска 10 установлены измерительные пьезоэлементы 6, контактирующие с двухступенчатым цилиндрическим диском 11, к верхней части которого посредством крепежного элемента 13 присоединен наконечник 5, передающий изменение линейного размера пакета пьезокерамических колец 3 на деталь станка. При этом внешний диаметр диска 10 равен внешнему диаметру пакета пьезокерамических колец 3. В вертикальной части цилиндрической оправки 4, контактирующей с пьезокерамическими кольцами пьезоэлемента 3, выполнена внутренняя цилиндрическая полость 20, заполненная элементами 21, например, выполненными в виде стальных шариков, создающими дополнительное стохастическое движение, сочетаемое с гармоническим или случайным воздействием, генерируемым пьезокерамическими кольцами пьезоэлемента 3, что позволяет получать общий сигнал, содержащий в себе как гармонические составляющие, так и случайные с наложением стохастических составляющих. В нижней части цилиндрической оправки 4 закреплена при помощи крепежных элементов 23 крышка 22.

Основание 1 представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами 18 для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем 7, через который подается электрическое напряжение на пьезоэлемент, нижнее пьезокерамическое кольцо 3 которого опирается на верхнюю плоскость основания 1, а нижняя плоскость оправки 4 расположена с зазором по отношению к верхней плоскости основания 1.

Токонепроводящий корпус 2, выполненный в виде цилиндрической обечайки, охватывающей пьезоэлемент, защищает исследователя от высокого напряжения, подаваемого на пьезоэлемент, при этом нижний торец обечайки опирается на кольцо 19, жестко прикрепленное к верхней плоскости основания 1 соосно оправке 4, а верхний ее торец закрыт крышкой 12 с центральным отверстием под наконечник 5.

В нижней части основания выполнена полость 17, ось которой соосна оправке 4 и отверстию 9, выполненным в верхней деформируемой части 16 основания, на плоскости которой, обращенной к полости 17, наклеены тензодатчики 8, контролирующие величину статического усилия. Наклонные отверстия 15, выполненные в основании 1, служат для прокладки проводов к тензодатчикам 8 от разъема 7.

При установке вибратора между его наконечником и нагружаемом телом устанавливается зазор на величину, меньшую амплитуды колебаний наконечника вибратора, в результате чего при работе вибратора возникают периодические удары. Верхний частотный диапазон спектра создаваемых импульсов определяется длительностью импульсов (fв=1,5/t; где fв - верхняя частота спектра импульсов Гц, a t - длительность импульса в сек). Длительность импульса, создаваемая вибратором, зависит от его амплитуды, частоты и зазора, который регулируется в процессе установки вибратора на объект. Не обязательно иметь натуральный реальный зазор, достаточно, чтобы натяг в стыке вибратора был меньше амплитуды колебаний наконечника вибратора, чтобы во время отхода образовывался зазор, способствующий виброударному режиму работы вибратора.

Устройство для реализации способа имитации гармонического и случайного воздействий работает следующим образом.

Переменное усилие создается пьезокерамическими кольцами 3, на которые подается электрическое напряжение через разъем 7. Из-за этого напряжения изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 4, измерительные пьезоэлементы 6. наконечник 5 передается на деталь станка, на которое требуется подать силовое воздействие. Величина статического усилия контролируется с помощью тензодатчиков 8, наклеенных на деформирующуюся часть основания 1. Токонепроводящий корпус 2 защищает исследователя от высокого напряжения, подаваемого на пьезоэлементы.

Внутренняя цилиндрическая полость 20, заполненная элементами 21, создающими дополнительное стохастическое движение, сочетаемое с гармоническим или случайным воздействием, генерируемым пьезокерамическими кольцами пьезоэлемента 3, позволяет получать общий сигнал, содержащий в себе как гармонические составляющие, так и случайные с наложением стохастических составляющих. Меняя размеры полости 20 и дисперсность элементов 21, добиваются требуемой характеристики входного воздействия.

Способ имитации гармонического и случайного воздействий осуществляют следующим образом.

В вибраторе пьезоэлемент 3 выполняют в виде пакета пьезокерамических колец, опирающихся на основание 1, при этом внутри пьезокерамических колец располагают цилиндрическую оправку, имеющую во фронтальном сечении Т-образный профиль, при этом ось симметрии оправки располагают перпендикулярно основанию 1, а диск 10, жестко соединенный с цилиндрической оправкой, располагают в ее верхней части так, что он контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом пакета пьезокерамических колец пьезоэлемента 3, а на верхней поверхности диска 10 устанавливают измерительные пьезоэлементы 6, контактирующие с двухступенчатым цилиндрическим диском 11, к верхней части которого посредством крепежного элемента 13 присоединяют наконечник 5, передающий изменение линейного размера пакета пьезокерамических колец 3 на исследуемый объект (на чертеже не показан), при этом внешний диаметр диска 10 равен внешнему диаметру пакета пьезокерамических колец 3, а основание 1 представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем, через который подают электрическое напряжение на пьезоэлемент 3, а нижнее пьезокерамическое кольцо опирают на верхнюю плоскость 16 основания, при этом нижнюю плоскость цилиндрической оправки располагают с зазором 17 по отношению к верхней плоскости основания, а токонепроводящий корпус 2 выполняют в виде цилиндрической обечайки, которая охватывает пьезоэлемент 3, а в верхней деформируемой части основания на плоскости, обращенной к полости, наклеивают тензодатчики 8, контролирующие величину статического усилия. В вертикальной части цилиндрической оправки, контактирующей с пьезокерамическими кольцами пьезоэлемента 3, выполняют внутреннюю цилиндрическую полость 20 и заполняют ее элементами 21. создающими дополнительное стохастическое движение.

Способ имитации гармонического и случайного воздействий, заключающийся в том, что в вибраторе пьезоэлемент выполняют в виде пакета пьезокерамических колец, опирающихся на основание, при этом внутри пьезокерамических колец располагают цилиндрическую оправку, имеющую во фронтальном сечении Т-образный профиль, при этом ось симметрии оправки располагают перпендикулярно основанию, а диск, жестко соединенный с цилиндрической оправкой, располагают в ее верхней части так, что он контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом пакета пьезокерамических колец пьезоэлемента, а на верхней поверхности диска устанавливают измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого посредством крепежного элемента присоединяют наконечник, передающий изменение линейного размера пакета пьезокерамических колец на исследуемый объект, при этом внешний диаметр диска равен внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем, через который подают электрическое напряжение на пьезоэлемент, а нижнее пьезокерамическое кольцо опирают на верхнюю плоскость основания, при этом нижнюю плоскость цилиндрической оправки располагают с зазором по отношению к верхней плоскости основания, а токонепроводящий корпус выполняют в виде цилиндрической обечайки, которая охватывает пьезоэлемент, а в верхней деформируемой части основания на плоскости, обращенной к полости, наклеивают тензодатчики, контролирующие величину статического усилия, отличающийся тем, что в вертикальной части цилиндрической оправки, контактирующей с пьезокерамическими кольцами пьезоэлемента, выполняют внутреннюю цилиндрическую полость и заполняют ее элементами, создающими дополнительное стохастическое движение.



 

Похожие патенты:

Способ проверки затяжки сердечника статора электрической машины, содержащей сердечник (2) статора и ротор (3), образующие воздушный зазор (5) между собой, причем способ включает в себя этапы, на которых вводят контрольно-измерительный прибор (12), который соединен с подвижной опорой (10), в воздушный зазор (11), вводят пластину (21) между стальными листами (5) сердечника статора и приводят пластину (21) во вращение, располагают локально контрольно-измерительный прибор (12) и осуществляют локальную проверку определенных зон сердечника (2) статора генератора.

Изобретение относится к области измерительной технике и касается оптико-электрического преобразователя механических волн. Преобразователь механических волн содержит осветитель, водяную емкость с зеркальным узлом и стойку, поддерживающую светочувствительный элемент.

Изобретение относится к испытательной технике, а именно к установкам для испытания на вибрацию в трех взаимно перпендикулярных положениях прицела, при воздействии условий внешней среды.

Изобретение относится к области механики сплошных сред и предназначено для оценки напряженно-деформированного состояния объектов механических систем. Способ заключается в измерении пространственной вибрации, накапливании массива векторных величин деформаций и воспроизведении пространственного годографа измерительной точки.

Изобретение относится к испытательному оборудованию и может быть использовано в различных отраслях промышленности для испытания изделий на виброустойчивость в трех взаимно перпендикулярных положениях.

Изобретение относится к измерительной технике, а именно к оптическим измерителям и датчикам вибрации, и служит для решения задачи виброконтроля в условиях вибрационных нагрузок больших электрических машин (турбогенераторы, гидроэлектрические насосы/генераторы, электродвигатели, силовые трансформаторы).

Изобретение относится к области акустики и предназначено для создания акустических волн в газовой среде. Способ генерирования акустических волн осуществляется путем образования колебательного тела из облака ионизированного газа в электростатическом поле с последующим моделированием колебательного тела высокочастотным электрическим полем, при этом в качестве электростатического поля используется переменное электрическое поле.

Изобретения относятся к контрольно-измерительной технике и могут быть использованы на объектах, оснащенных системами вибрационного контроля. Способ включает использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е.

Изобретение относится к области транспортного машиностроения. Испытательный стенд для исследовательских и доводочных работ по оценке влияния внешнего воздействия дождя на виброакустику автомобиля содержит установку имитации дождя, состоящую из четырех регулируемых по высоте телескопических стоек с установленным на них дождевальным устройством, устройство подачи воды с расходомером и запорной арматурой, измерительную и анализирующую виброакустическую аппаратуру, установленную в салоне исследуемого ТС, размещенного под дождевальным устройством. Дождевальное устройство выполнено в виде открытого корпуса с дном, перфорированным сквозными отверстиями. Установка имитации дождя выполнена с возможностью перемещения посредством колес со стопорным механизмом, закрепленных на регулируемых телескопических стойках. Стенки открытого корпуса дождевального устройства образованы скрепленными между собой фигурными планками с угловым и Z-образным профилем. Дно открытого корпуса, перфорированное сквозными отверстиями, выполнено в виде съемной панели. Достигается повышение качества исследовательских и доводочных работ за счет реализации возможности исследования влияния внешнего воздействия дождя на виброакустический комфорт в условиях свободного звукового поля внешней среды. 2 з.п. ф-лы, 5 ил.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Устройство содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему. В качестве генератора гармонических колебаний использован эксцентриковый вибратор, расположенный на переборке, a на переборке установлена стойка для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов. При этом колебания массы, закрепленной на каждом упругом элементе, фиксируются индикатором перемещений, по показаниям которого определяется резонансная частота, соответствующая параметрам каждого упругого элемента. На основании и переборке закреплены датчики виброускорений, сигналы от которых поступают на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используется частотомер и фазометр. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями. 3 з.п. ф-лы, 7 ил.

Использование: испытательная техника, использующая электродинамические вибростенды. Сущность: электродинамический вибростенд предназначен для испытаний многорезонансных изделий синусоидальной вибрацией переменной частоты с использованием автоматического управляющего устройства, содержащего цепь дополнительной отрицательной обратной связи с заграждающим фильтром (9), выполненным в виде последовательно соединенных между собой выделителя основной гармоники (10) с переменной частотой и устройства вычитания (11), выход которого подключен к входу усилителя мощности (3), а входы - соответственно к выходам выделителя (10) и виброизмерительного преобразователя (7), установленного на изделии (6). При испытании изделия (6) из-за нелинейных эффектов возбуждения и передачи синусоидальной вибрации с переменной частотой возникают паразитные высокочастотные гармоники, которые выделяются заграждающим фильтром (9), подаются в противофазе через усилитель мощности (3) в подвижную катушку (4) электродинамического возбудителя и подавляют такие же гармоники, возникающие из-за указанных нелинейностей в механической подсистеме «подвижная часть возбудителя + изделие». Технический результат: существенное уменьшение искажений режимов виброиспытаний многорезонансных изделий. 1 ил.

Изобретение относится к области испытательной техники, в частности к методам сейсмических испытаний опор конструкций линий электропередач. Способ включает установку, по меньшей мере, одной опоры линии электропередач в грунтовой лоток сейсмоплатформы, заполненный грунтом или имитирующей грунт смесью с плотностью, соответствующей плотности грунта, для установки в который предназначена испытуемая опора линии электропередач, закрепление на одной или нескольких траверсах опоры линии электропередач, грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля между опорами линий электропередач, для сооружения которой предназначена испытуемая опора линии электропередач, приведение грунтового лотка в колебательное движение с одним или несколькими выполняемыми последовательно режимами с соблюдением определенных условий, извлечение испытуемой опоры линии электропередач из грунтового лотка после его остановки и проверка сохранения целостности составляющих ее элементов и/или их соединений. Технический результат заключается в обеспечении моделирования условий реального землетрясения и реальных условий закрепления в грунте и нагружения опоры линии электропередач. 12 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области испытаний изделий на случайную вибрацию и может быть использовано при определении вибронадежности машин, приборов и аппаратуры. Устройство содержит цепи формирования, каждая из которых включает первый генератор шума (ГШ), подключенный к его выходу первый фильтр низких частот (ФНЧ), выход которого подключен к управляемому частотно-модулированному генератору (ЧМГ), выход которого соединен с сигнальным входом соответствующего регулируемого усилителя (РУ). Также содержит сумматор, к входам которого подключены выходы РУ, возбудитель колебаний, к входу которого подключен выход сумматора, вибродатчик, а также цепи анализа, каждая из которых включает анализирующий полосовой фильтр (АПФ), который выполнен в виде модулированного фильтра, модулирующий вход которого подключен к выходу соответствующего первого ФНЧ. Амплитудный детектор (АД) и блок сравнения (БС), которые соединены с АПФ. Индикаторное устройство, к входам которого подключены выходы АД. При этом каждая цепь формирования дополнительно содержит последовательно соединенные ГШ, второй ФНЧ, перемножитель, а каждая цепь анализа дополнительно содержит усилитель анализируемого сигнала, который подключен к вибродатчику и соединен с соответствующим вторым ФНЧ и соответствующим АПФ. Причем в каждой цепи анализа БС соединен с соответствующим перемножителем каждой цепи формирования, который соединен с соответствующим РУ. Технический результат заключается в обеспечении возможности воспроизведения случайной нестационарной вибрации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к механическим испытаниям объектов, а именно к устройствам для испытаний объектов на вибронагружение в различных средах при высоких температурах и давлениях. Установка содержит индукционный нагреватель, включающий водоохлаждаемую катушку в виде спирали, выполненной с возможностью соосного размещения объекта испытаний (ОИ) внутри нагревателя, опоры для ОИ, нагружающее устройство, устройство охлаждения, соединенное с протоками охлаждения тоководов нагревателя, контрольно-измерительную аппаратуру, соединенные последовательно пульт управления, соединенный с контрольно-измерительной аппаратурой, преобразователь частоты, батарею конденсаторов, последовательно-параллельно подключенную по крайней мере к одной паре соосно установленных водоохлаждаемых катушек индукционного нагревателя в виде спиралей. Нагружающее устройство выполнено в виде вибровозбудителя, а опоры для ОИ установлены на скользящем столе вибровозбудителя. Устройство охлаждения, пульт управления, преобразователь частоты, батарея конденсаторов могут быть расположены на дистанции от вибровозбудителя с размещенным на его скользящем столе ОИ внутри катушек индукционного нагревателя, а устройство охлаждения снабжено независимым пультом управления подачей охлаждающей воды. Технический результат от использования заявляемого изобретения заключается в обеспечении испытаний крупногабаритных цилиндрических объектов на комплексные термомеханические нагрузки, сокращение времени выхода на заданный температурный режим, снижение теплопотерь, массы и габаритов, повышение температуры испытаний до 1400°C и выше, в повышении КПД установки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для градуировки датчиков аэродинамического угла летательных аппаратов. Способ заключается в контроле вибраций датчика, превышение которых свыше определенного уровня происходит в результате изменений динамической характеристики, вызванных поврежденными или изношенными механическими компонентами датчика. Система использует компьютерную обработку сигналов вибраций для выявления повреждений датчика. Технический результат заключается в возможности обнаружения ухудшения рабочих характеристик и повреждений устройства непосредственно в процессе его использования. 3 н. и 21 з.п. ф-лы, 5 ил.

Использование: для оценки виброустойчивости компонента регулирующего клапана текучей среды. Сущность изобретения заключается в том, что в изобретении раскрыты способы и устройства для оценки виброустойчивости компонента регулирующего клапана текучей среды. Типичный способ, раскрываемый здесь, включает в себя выбор компонента регулирующего клапана текучей среды и расположение датчика относительно выбранного компонента. Способ также включает в себя механическое возбуждение выбранного компонента, определение резонансной частоты выбранного компонента и выполнение корректирующих мер, основанных на резонансной частоте выбранного компонента. Технический результат: обеспечение возможности оценки виброустойчивости компонента регулирующего клапана текучей среды. 3 н. и 23 з.п. ф-лы, 6 ил.

Изобретение относится к способам прочностных испытаний самолета. Для оценки нагружения конструкции самолета при летных прочностных испытаниях измеряют значения силовых факторов реакции конструкции датчиками деформаций, размещенными на конструкции самолета, передают измеренные значения и значения параметров полета из памяти бортовых регистраторов в память компьютеров, строят, обучают и тестируют четыре искусственные нейронные сети. На первом шаге находят относительно стационарные по нагружению короткие интервалы времени, на втором шаге вычисляют средние значения параметров полета, силовых факторов, на третьем шаге строят, обучают с учителем и тестируют две отдельные нейросети определенным образом для статических и динамических составляющих, на четвертом шаге выполняют построение многомерных моделей нагружения на основе построенных нейросетей и прогноз на их основе силовых факторов, формируют третью нейронную сеть для прогноза спектральных характеристик динамических составляющих силовых факторов и диагностики повреждений, формируют четвертую нейросеть, используя средние значения параметров полета и средние значения спектральных характеристик динамических составляющих силовых факторов для выявления наиболее влияющих на силовые факторы параметров полета. Обеспечивается повышение точности результатов прочностных исследований и сокращение числа испытательных режимов и полетов. 4 ил.

Изобретение относится к геофизическим, в частности сейсмоакустическим, устройствам исследований и может быть использовано для контроля характеристик преобразователей, применяющихся при мониторинге различных технических объектов. Устройство содержит излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство и калибруемый сейсмоакустический преобразователь. В монолитном блоке выполнено отверстие. Калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие. На центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало. Излучающий элемент используется с отверстием и закреплен снизу монолитного блока. Отверстия монолитного блока и излучающего элемента установлены концентрично. Приемный модуль расположен в отверстии, не касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером. Регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства. Обеспечивается повышение достоверности и упрощение устройства. 1 ил.
Наверх