Чувствительный элемент волоконно-оптического датчика температуры

Изобретение относится к волоконно-оптическим датчикам температуры. Чувствительный элемент выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и ионы редкоземельного металла. Технический результат - увеличение температурной чувствительности датчика. 3 ил.

 

Изобретение относится к измерительной технике и может применяться в волоконно-оптических датчиках температуры, предназначенных для использования в системах аварийной защиты высоковольтного и электрораспределительного оборудования и узлов транспортных средств для индикации перегрева, а также может быть использован для контроля температуры охлаждающей жидкости в энергетических установках и для контроля температуры в химической и пищевой промышленности.

Известен волоконный датчик температуры, включающий в себя источник оптического сигнала, передающие оптические волокна, фотоприемное устройство и чувствительный элемент в виде волокна из люминесцентного стекла, легированного ионами неодима [Z.Y. Zhang, К.Т.V. Grattan, A.W. Palmer, В.Т. Meggitt // Rev. Sci. Instrum. 1997. Vol.68, P.2759]. Ионы неодима обладают люминесценцией на длине волны 1.06 мкм. Датчик основан на измерении температуры по изменению времени затухания люминесценции при возбуждении люминесценции импульсным источником излучения. Чувствительность датчика составляет 0.13 мкс/°C. Недостатками датчика являются необходимость использования импульсного источника возбуждающего излучения, электронных устройств для формирования электрического импульса для управления источником излучения и синхронизации фотоприемного устройства, включающего в себя быстродействующий фотодиод и амплитудно-временной анализатор, что усложняет конструкцию датчика, а также проведения прецизионного измерения амплитудно-временной характеристики затухания люминесценции.

Известен волоконный датчик температуры, включающий в себя источник оптического сигнала, передающие оптические волокна, фотоприемное устройство и чувствительный элемент в виде волокна из люминесцентного стекла, легированного ионами эрбия [Z.Y. Zhang, К.Т.V. Grattan, A.W. Palmer, В.Т. Meggitt, Т.Sun // Rev. Sci. Instrum. 1997. Vol.68, P.2764]. Ионы эрбия обладают люминесценцией на длине волны 1.5 мкм. Датчик основан на измерении температуры по изменению времени затухания люминесценции при возбуждении люминесценции импульсным источником излучения. Чувствительность датчика составляет 2.5-12 мкс/°C. Недостатками датчика являются необходимость использования импульсного источника возбуждающего излучения, электронных устройств для формирования электрического импульса для управления источником излучения и синхронизации фотоприемного устройства, включающего в себя быстродействующий фотодиод и амплитудно-временной анализатор, что усложняет конструкцию датчика, а также проведения прецизионного измерения амплитудно-временной характеристики затухания люминесценции.

Известен чувствительный элемент волоконного датчика температуры, выбранный в качестве прототипа, состоящий из волокна из люминесцентного стекла, содержащего нейтральные молекулярные кластеры серебра [Д.С. Агафонова, В.И. Егоров, А.И. Игнатьев, А.И. Сидоров // Опт. журн. Т.80. №8. С.51. 2013]. Датчик основан на измерении температуры по изменению интегральной интенсивности люминесценции при возбуждении люминесценции непрерывным источником излучения. Увеличение температуры от 25 до 200°C приводит к уменьшению интегральной интенсивности люминесценции в 10 раз. Недостатком датчика является относительно низкая температурная чувствительность.

Изобретение решает задачу увеличения температурной чувствительности волоконного датчика температуры.

Сущность заявляемого изобретения заключается в следующем. Чувствительный элемент волоконно-оптического датчика температуры выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и в его состав введены ионы редкоземельного металла.

Нейтральные молекулярные кластеры серебра (Ag2, Ag3, Ag4 и др.) в стеклах обладают интенсивной люминесценцией в видимой области спектра при возбуждении люминесценции излучением с длиной волны 360-410 нм (напр., А.И. Игнатьев, Н.В. Никоноров, А.И. Сидоров, Т.А. Шахвердов // Опт. и спектр. 2013. Т.114, №5, с.838-844.). При увеличении температуры стекол, содержащих нейтральные молекулярные кластеры серебра происходит термическое тушение люминесценции, сопровождающееся уменьшением ее интенсивности без изменения формы полосы люминесценции и ее спектрального положения. В этом случае измерение температуры сводится к измерению интегральной интенсивности люминесценции в спектральной полосе чувствительности фотоприемника. При введении в состав стекла ионов редкоземельного металла в стекле образуются комплексы вида Agn-X (X - ион редкоземельного металла). Такие комплексы также обладают люминесценцией, однако, как показали наши исследования, температурное тушение люминесценции в таких комплексах происходит более интенсивно, по сравнению с молекулярными кластерами Agn, из-за особенностей переноса энергии в комплексе. Это позволяет увеличить температурную чувствительность датчика температуры.

Совокупность признаков, изложенных в формуле, характеризует чувствительный элемент волоконного датчика температуры, изготовленный из люминесцентного стекла с нейтральными молекулярными кластерами серебра Ag2, Ag3 и Ag4 и ионами редкоземельного металла. Это позволяет увеличить температурную чувствительность датчика температуры.

Сущность изобретения поясняется фиг.1-3, где представлены:

на фиг.1 - конструкция волоконного датчика температуры, где 1 - источник оптического сигнала, 2 - линза, 3 - передающее оптическое волокно с волоконным разветвителем, 4 - фотоприемное устройство, 5 - оптический фильтр, 6 - чувствительный элемент датчика;

на фиг.2 - зависимость интенсивности люминесценции от длины волны для чувствительного элемента из волокна с нейтральными молекулярными кластерами серебра и ионами Tb3+, где 1 - t=20°C, 2 - t=120°C, 3 - огибающая спектральной полосы люминесценции молекулярных кластеров серебра; стрелками указаны полосы люминесценции Tb3+; длина волны возбуждающего излучения 405 нм;

на фиг.3 - нормированная амплитуда сигнала фотоприемного устройства от температуры волокна из стекла с молекулярными кластерами серебра и ионами Tb3+; длина волны возбуждающего излучения 405 нм.

На фиг.1 показана конструкция волоконного датчика температуры.

Датчик состоит из источника оптического сигнала, возбуждающего люминесценцию 1, представляющего собой непрерывный светодиод с длиной волны излучения 405 нм, линзы 2, расположенной перед входом волоконного разветвителя многомодового волокна из кварцевого стекла 3, фотоприемного устройства 4, представляющего собой кремниевый фотодиод, расположенный у выхода волоконного разветвителя 3, оптического фильтра 5 и чувствительного элемента 6, в виде волокна, изготовленного из стекла с нейтральными молекулярными кластерами серебра и ионами Tb3+. Чувствительный элемент датчика 6 представляет собой волокно диаметром 150 мкм и длиной 3 см. Волокно изготовлено из оксифторидного стекла, имеющего следующий состав: SiO2-AlF3-PbF2-CdF2-ZnF2 с добавками AgNO3 (5 мол.%) и TbF3 (2 мол.%).

Датчик температуры работает следующим образом. Чувствительный элемент датчика помещают в область, в которой необходимо провести измерение температуры. Оптический сигнал, возбуждающий люминесценцию, с выхода светодиода 1 с помощью линзы 2 фокусируется на вход волоконного разветвителя 3 и по передающему оптическому волокну поступает в чувствительный элемент 6. Оптический сигнал возбуждает люминесценцию молекулярных комплексов Agn-Tb3+ в чувствительном элементе 6 в спектральном интервале 550-1000 нм, что соответствует спектральной области чувствительности кремниевого фотодиода 4. Оптический сигнал люминесценции из чувствительного элемента 6 по передающему волокну 3 поступает на выход волоконного разветвителя 3, проходит через оптический фильтр 5, отсекающий паразитное возбуждающее излучение и регистрируется кремниевым фотодиодом 4. При изменении температуры чувствительного элемента 6 происходит изменение интенсивности люминесценции в чувствительном элементе 6 и изменение амплитуды электрического сигнала кремниевого фотодиода 4.

Спектры люминесценции чувствительного элемента при t=20°С и t=150°С показаны на фиг.2. Спектры люминесценции измерены с помощью волоконного спектрометра EPP2000-UVN-SR (StellarNet) с возбуждением люминесценции непрерывным полупроводниковым светодиодом (л=405 nm). Из фиг.2 видно, что при увеличении температуры волокна интенсивность люминесценции уменьшается без спектрального сдвига и без изменения формы полосы люминесценции. Амплитуда сигнала фотоприемного устройства в этом случае пропорциональна интегральной интенсивности люминесценции. Это позволяет использовать для регистрации изменения интенсивности люминесценции кремниевый фотодиод. На фиг.3 показана зависимость нормированного сигнала кремниевого фотодиода от температуры чувствительного элемента. Из фиг.3 видно, что при изменении температуры чувствительного элемента от 20°C до 250°C сигнал фотодиода уменьшается в 50 раз. Для температурного интервала 25-200°C изменение интенсивности люминесценции в 3.3 раза больше в сравнении с прототипом. Для температурного интервала 20-250°C изменение интенсивности люминесценции в 3 раза больше в сравнении с оксифторидным стеклом, содержащем молекулярные ионы серебра, но не содержащем ионы Tb3+. Температурная зависимость интенсивности люминесценции не имеет температурного гистерезиса и многократно воспроизводится.

Таким образом, предлагаемое техническое решение позволяет увеличить температурную чувствительность волоконного датчика температуры более, чем в 3 раза по сравнению с прототипом.

Чувствительный элемент волоконно-оптического датчика температуры, выполненный в виде волокна из люминесцентного стекла, содержащего нейтральные молекулярные кластеры серебра, отличающийся тем, что в состав стекла введены ионы редкоземельного металла.



 

Похожие патенты:

Изобретение относится к волоконной оптике. Оптическое волокно включает не содержащую Ge сердцевину с центральной областью, первой кольцевой областью, легированной фтором второй кольцевой областью и оболочкой.

Изобретение относится к методам химического парофазного осаждения для изготовления кварцевых световодов с малыми оптическими потерями. Согласно способу внутрь трубки заготовки волоконного световода вводят сухие, содержащие дейтерий газы, например пары диметилсульфоксида Д6.

Изобретение относится к одномодовым оптическим волокнам, имеющим низкий коэффициент затухания. Оптическое волноводное волокно включает сердцевину и оболочку.
Изобретение относится к улучшенному способу получения заготовок из галогенидов серебра и их твердых растворов для волоконных инфракрасных световодов, включающему нанесение на кристалл-сердцевину из галогенида серебра кристаллической оболочки из кристаллического галогенида серебра с показателем преломления, меньшим, чем у кристалла-сердцевины, и термическую обработку.

Группа изобретений относится к области волоконных световодов, стойких к воздействию ядерного и/или ионизирующего излучения. Волоконный световод получают методом химического осаждения кварцевого стекла из смеси исходных газообразных реагентов.

Изобретение относится к сенсорной системе, содержащей волновод. На части волновода содержится дифракционная решетка.

Изобретение относится к волоконной оптике. Фотонно-кристаллический волновод гексагональной формы содержит оболочку и полую сердцевину, в которую введен мультислой капилляров.

Изобретение относится к оптоволоконной технике и может быть использовано в производстве микроструктурированных волоконных световодов, используемых в оптических усилителях, лазерах, спектральных фильтрах и телекоммуникационных сетях.

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности.
Изобретение относится к волоконной оптике и может быть использовано для изготовления анизотропных одномодовых волоконных световодов. Согласно способу получают цилиндрическую заготовку MCVD методом, которая содержит сердцевину, низковязкую напрягающую оболочку и конструктивную оболочку.

Изобретение относится к оптоволоконной технике. Микроструктурированный световод содержит тонкостенные трубки, которые расположены равномерно по внутренней поверхности опорной трубы либо в соприкосновении друг с другом, либо раздельно. Тонкостенные трубки заполнены жидкокристаллическим материалом полностью или содержат слои жидкокристаллического материала на их внутренней поверхности. Технический результат - локализация излучения высокой оптической мощности в спектральном диапазоне частот от видимого до ИК-излучения с возможностью динамической перестройки волноводного режима с помощью воздействия внешних электрических и магнитных полей, оптического излучения или температуры. 8 ил.

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на подложке, имеет периодически меняющееся по длине волновода поперечное сечение. При этом упомянутое изменение поперечного сечения канавки удовлетворяет условию образования фотонного кристалла с запрещенной зоной для моды, локализованной на краях канавки, с периодом L, определяемым по формуле , где с - скорость света, ν - рабочая частота излучения, εm и εd - соответственно диэлектрические проницаемости металла и диэлектрика на рабочей частоте. Технический результат изобретения заключается в возможности обеспечения одномодового режима распространения оптических плазмонов в волноводе на основе V-образной канавки в металлической пленке. 6 з.п. ф-лы, 7 ил.

Изобретение относится к оптическим волокнам. Заявленное оптическое волокно с низким затуханием, выполненное с возможностью использования в качестве оптической передающей линии в оптической сети доступа, является стеклянным оптическим волокном на основе кварца и включает в себя сердцевину, включающую в себя центральную ось, оптическую оболочку, окружающую сердцевину, и защитную оболочку, окружающую оптическую оболочку. Сердцевина содержит GeO2 и имеет относительную разность показателя преломления Δcore на основе оптической оболочки, большую чем или равную 0,35% или меньшую чем или равную 0,50%, и имеет объем v показателя преломления, больший чем или равный 0,045 мкм2 и меньший чем или равный 0,095 мкм2. Защитная оболочка имеет относительную разность показателя преломления ΔJ, большую чем или равную 0,03% и меньшую чем или равную 0,20%. Составляющее сердцевину стекло имеет фиктивную температуру, выше чем или равную 1400°С и ниже чем или равную 1590°С. Остаточное напряжение в сердцевине представляет собой напряжение сжатия, которое имеет абсолютную величину, большую чем или равную 5 МПа. Технический результат – уменьшение потерь в оптическом волокне при использовании в качестве оптической передающей линии в оптической сети доступа. 6 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к новым термостойким растворимым полиимидным покрытиям волоконных световодов и способу их изготовления. Полученные покрытия характеризуются удовлетворительной адгезией к волокну как в присутствии аппрета, так и без него. В предлагаемом способе покрытие формируется из раствора готового гомо- или сополиимида определенной структурной формулы. Способ изготовления покрытия включает вытягивание световода из заготовки, протягивание его через фильеру, содержащую раствор полиимида, и удаление растворителя при нагревании, при этом используют полиимид в виде раствора с вязкостью 2400-18000 мПа×с, а растворитель удаляют нагреванием в печи при 50-350°C. В качестве растворителей для полиимидов используют апротонные растворители. Предложенный способ, в котором используют полиимид, а не его предшественник (соответствующую полиамидокислоту), позволяет исключить стадию высокотемпературной циклизации полиамидокислоты до полиимида и необходимость многократного нанесения соответствующего раствора полимера на световод, что обеспечивает сокращение времени и энергозатрат на изготовление растворимого термостойкого покрытия. Покрытие может быть легко удалено при помощи соответствующего растворителя. 2 н. и 2 з.п. ф-лы, 1 табл., 5 ил., 15 пр.

Изобретение относится к области оптического приборостроения и может найти применение для изготовления волоконных брэгговских решеток показателя преломления. Способ состоит в использовании импульсного излучения фемтосекундного лазера, которое с помощью микрообъектива фокусируется через шлифованную боковую грань прозрачной феррулы в сердцевину нефоточувствительного волоконного световода с защитным покрытием. Нефоточувствительный волоконный световод перемещается с помощью высокоточного линейного позиционера с постоянной скоростью V. Пространство между нефоточувствительным волоконным световодом и внутренними стенками феррулы заполняется иммерсионной жидкостью для компенсации кривизны боковой поверхности нефоточувствительного волоконного световода. Показатель преломления иммерсионной жидкости подбирается равным показателю преломления феррулы. С помощью пьезокерамического позиционера, на котором закреплена феррула, осуществляется настройка положения фокуса перед изготовлением. Также пьезокерамический позиционер используется для подстройки положения точки фокусировки внутри сердцевины нефоточувствительного волоконного световода в процессе изготовления. Технический результат - увеличение точности изготовления волоконных брэгговских решеток, в увеличении прочностных характеристик и скорости изготовления волоконных брэгговских решеток. 5 з.п. ф-лы, 4 ил.

Заявленное изобретение относится к волоконно-оптической связи, а более конкретно к оптическому волокну, оптимизированному для обеспечения как одномодовой, так и многомодовой передачи. Заявленное оптоволокно содержит оптическую сердцевину и оптическую оболочку, окружающую оптическую сердцевину, при этом оптическая сердцевина имеет градиентный профиль показателя преломления с минимальным показателем преломления n1 и максимальным показателем преломления n0. Данное оптоволокно имеет числовую апертуру NA и радиус оптической сердцевины а, удовлетворяющие критерию С качества оптической связи, описываемому следующим уравнением: С=NA-0,02×α, где , Δ - нормированная разность показателей преломления; и тем, что упомянутые минимальный и максимальный показатели преломления n1, n0 и радиус а оптической сердцевины выбираются такими, чтобы NA>0,20, α>10 мкм и |C|<0,20. Технический результат - создание оптического волокна, которое является простым в изготовлении, значительно уменьшает модовые шумы на длине волны 1310 нм и 1550 нм, в то же время обеспечивая широкую модовую полосу частот на длине волны 850 нм, а также обеспечивает широкую модовую полосу частот для многомодовой передачи на дальние расстояния и поддерживает основную моду подобной требуемой для одномодовой передачи. 3 н. 12 з.п. ф-лы, 8 ил., 2 табл.

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для изготовления конструктивных элементов сенсоров, при химической модификации их внутренней поверхности. Способ оценки количества поверхностных гидроксильных групп на внутренней поверхности стеклянных ФКВ с ПС основан на измерении положения локальных максимумов спектра пропускания образца ФКВ с ПС, последующей химической модификации внутренней поверхности образца до полного насыщения внутренней поверхности поверхностными гидроксильными группами. Затем осуществляют измерение новых положений локальных максимумов спектра пропускания модифицированного образца и построение линейной зависимости положения локального максимума от количества поверхностных гидроксильных групп для локального максимума, изменившего свое положение на большую абсолютную величину, чем другие, присутствующие в спектре пропускания образца. Затем оценивают количество поверхностных гидроксильных групп для аналогичного образца по построенной линейной зависимости при измерении спектра пропускания. Техническим результатом являются уменьшение времени подготовки образцов ФКВ с ПС, простота и повышение чувствительности процесса и использование стандартного оборудования для измерения спектров пропускания ФКВ с ПС. 3 ил.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов и других интерферометрических датчиков физических величин с использованием одномодовых световодов. Радиационно-стойкий одномодовый волоконный световод с большим линейным двулучепреломлением для волоконно-оптического гироскопа содержит световедущую жилу и отражающую оболочку, состоящие из легированного кварцевого стекла, внешнюю защитную оболочку, состоящую из чистого кварцевого стекла, две нагружающие зоны с пониженным по отношению к кварцевому стеклу защитной оболочки показателем преломления и защитно-упрочняющее покрытие. При этом отражающую оболочку световода формируют из кварцевого стекла с пониженным показателем преломления относительно показателя преломления кварцевого стекла защитной оболочки, равного показателю преломления нагружающих зон с точностью ±2×10-3, при этом обеспечивают 1,3≤τ/ρ≤4,6, где τ - радиус отражающей оболочки, а ρ - радиус световедущей жилы. Технический результат - повышение точности волоконно-оптического гироскопа. 6 ил., 8 табл.

Изобретение относится к волоконным световодам и может быть использовано в широкополосных волоконно-оптических системах связи, при разработке перестраиваемых непрерывных импульсных лазеров. Волоконный световод для усиления оптического излучения в спектральной области 1500 – 1800 нм содержит сердцевину из оксидного стекла, содержащего оксиды висмута в количестве 10-4-10-2 мол.% и эрбия в количестве 10-4-10-1 мол.%, оксиды германия и кремния с концентрациями, взятые вместе или по отдельности, в количестве 90-99,9 мол.%, оксиды фосфора, бора и алюминия, взятые вместе или по отдельности, в количестве 0,1-9,9 мол.%. При этом сердцевина волоконного световода обеспечивает усиление оптического излучения в полосе шириной более 200 нм в спектральной области 1500 – 1800 нм при накачке излучением с одной длиной волны в областях 850 – 1000 нм и/или 1400 – 1500 нм, по меньшей мере одну оболочку из кварцевого стекла и защитное покрытие. Технический результат – усиление оптического излучения в спектральной области 1500-1800 нм. 3 н. и 5 з.п. ф-лы, 5 ил., 1 табл.

Группа изобретений относится к оптическому волокну, характеризующемуся эффективной формой профиля показателя преломления в сердцевине. Оптическое волокно содержит сердцевину и оболочку, окружающую внешнюю окружность сердцевины, в котором первая относительная разность показателей преломления Δ1a больше, чем 0. Вторая относительная разность показателей преломления Δ1b больше, чем 0, при этом первая относительная разность показателей преломления Δ1a больше, чем вторая относительная разность показателей преломления Δ1b. Кроме того, первая относительная разность показателей преломления Δ1a и вторая относительная разность показателей преломления Δ1b удовлетворяют соотношению: 0,20≤(Δ1a-Δ1b)/Δ1a≤0,88, а профиль показателя преломления Δ для сердцевины во всей области 0≤r≤r1 в виде функции Δ(r) расстояния r от центра сердцевины в радиальном направлении определяется выражением: Δ(r)=Δ1a-(Δ1a-Δ1b)r/r1, где r1- радиус сердцевины. Технический результат – уменьшение избыточных потерь на изгибе, возникающих во время изгиба оптического волокна. 2 н. и 26 з.п. ф-лы, 1 табл., 15 ил.
Наверх