Способ измерения теплового импеданса светодиодов

Изобретение относится к технике измерения теплофизических параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов. Способ состоит в том, что через светодиод пропускают последовательность импульсов греющего тока постоянной амплитуды, широтно-импульсно модулированную по гармоническому закону с глубиной модуляции а, в промежутках между импульсами греющего тока через светодиод пропускают начальный ток, по результатам измерения напряжения на светодиоде во время действия импульсов греющего тока и в промежутках между ними определяют амплитуду первой гармоники мощности Pm1(Ω), потребляемой светодиодом, и амплитуду первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом КТ - прямого напряжения на p-n переходе светодиода при протекании через него начального тока и сдвиг фазы между ними φ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за время разогрева мощность оптического излучения светодиода и модуль теплового импеданса находят по формуле а фаза φTM) теплового импеданса светодиода равна сдвинутой на 180° разности фаз между первой гармоникой температурочувствительного параметра и первой гармоникой мощности. Технический результат заключается в повышении точности измерения модуля теплового импеданса светодиодов. 2 ил.

 

Изобретение относится к технике измерения теплофизических параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов.

Известен способ измерения теплового сопротивления полупроводниковых диодов, заключающийся в том, что на контролируемый диод подают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра, например прямого напряжения UТЧП диода при пропускании через него малого измерительного тока (ГОСТ 19656, 18-84. Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления).

Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения UТЧП(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения (Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. - М.: Сов. радио, 1980. С.51).

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового импеданса полупроводниковых диодов (см. Патент №2402783 РФ. Способ измерения теплового импеданса полупроводниковых диодов, Б.И. №30, 2010 г.), состоящий в том, что через диод в прямом направлении пропускают последовательность импульсов греющего тока, длительность τи которых изменяется по гармоническому закону

τ и = τ 0 ( 1 + a sin Ω t ) ( 1 )

где τ0 - средняя длительность импульсов; a - коэффициент модуляции; Ω - частота модуляции, а в промежутках между импульсами греющего тока через диод пропускают малый прямой ток. Период следования Tсл и амплитуду Iгр импульсов греющего тока поддерживают постоянными, по результатам измерения напряжения на диоде во время действия импульсов греющего тока и в промежутках между ними определяют амплитуду первой гармоники греющей мощности Pm1(Ω) и амплитуду первой гармоники температурочувствительного параметра U ˜ m 1 Т П ( Ω ) - прямого напряжения на p-n переходе при протекании через него начального тока и сдвиг фазы между ними φ(Ω) на частоте модуляции греющей мощности, и по измеренным значениям определяют тепловой импеданс полупроводникового диода на частоте модуляции греющей мощности по формуле:

Z ( Ω ) = | Z T ( Ω ) | e j ϕ ( Ω ) = U ˜ m 1 Т П ( Ω ) K T P m l ( Ω ) e j ϕ ( Ω ) . ( 2 )

KT - температурный коэффициент прямого напряжения диода при протекании через него постоянного начального тока, φ(Ω) - фаза теплового импеданса, равная сдвигу фаз между температурой и греющей мощностью.

Недостатком прототипа является то, что при его применении для измерения теплового импеданса светодиодов появляется значительная погрешность, обусловленная тем, что часть электрической мощности, потребляемой светодиодом, излучается во внешнюю среду в виде оптического излучения, в результате на нагрев светодиода идет не вся электрическая мощность. Таким образом, известный способ дает существенно заниженные значения модуля теплового импеданса. У современных светодиодов внешний квантовый выход может достигать десятков процентов, при этом конкретное значение квантовой эффективности имеет значительный разброс от образца к образцу.

Технический результат - повышение точности измерения модуля теплового импеданса светодиодов.

Технический результат достигается тем, что через светодиод пропускают последовательность импульсов греющего тока Iгр, в промежутках между импульсами греющего тока через диод пропускают малый постоянный начальный ток, по результатам измерения напряжения на диоде во время действия импульсов греющего тока и в промежутках между ними определяют амплитуду первой гармоники мощности Pml(Ω), потребляемой светодиодом, и амплитуду первой гармоники температурочувствительного параметра U ˜ m 1 Т П ( Ω ) с известным отрицательным температурным коэффициентом КТ - прямого напряжения на p-n переходе светодиода при протекании через него малого постоянного начального тока и сдвиг фазы между ними φ(Ω) на частоте модуляции греющей мощности, дополнительно измеряют среднюю мощность W ¯ о п т оптического излучения светодиода и модуль теплового импеданса находят по формуле

| Z T ( Ω ) | = U ˜ m l Т П ( Ω ) K T ( P m l ( Ω ) a W ¯ о п т ) , ( 3 )

а фаза φTM) теплового импеданса светодиода будет равна сдвинутой на 180° разности фаз между первой гармоникой температурочувствительного параметра и первой гармоникой мощности.

Повышение точности измерения модуля теплового импеданса светодиода достигается за счет того, что из первой гармоники электрической мощности, потребляемой светодиодом, вычитается первая гармоника мощности Wlonm(Ω) оптического излучения на частоте модуляции, которая при гармоническом законе ШИМ модуляции с глубиной a определяется по формуле W l o n m ( Ω ) = a W ¯ о п т и которая не идет на нагреве структуры СИД, и, таким образом более точно определяется мощность, затрачиваемая на разогрев светодиода.

Предлагаемый вариант способа может быть реализован с помощью устройства, структурная схема которого показана на фиг.1.

Устройство содержит контакты 1 для подключения контролируемого светодиода, источник 2 постоянного начального тока Iнач, генератор греющих импульсов тока 3, устройство управления 4, управляемые аналого-цифровые преобразователи 5 и 6, измеритель оптической мощности 7 с цифровым выходом и вычислитель 8.

Устройство работает следующим образом. После установки светодиода в контактную колодку 1 напротив входного отверстия измерителя оптической мощности 7 через него пропускают постоянный начальный ток Iнач от источника 2. Генератор импульсов 3 по сигналу устройства управления 4 начинает вырабатывать последовательность греющих импульсов тока заданной амплитуды Im и постоянной частоты fсл (фиг.2а), которые подаются в контролируемый светодиод. Моменты времени tk=kTсл начала k-го импульса и его длительность τuku0(1+acosΩtk) определяются управляющими импульсами UУ1 (фиг.2б) и UУ2 (фиг.2в) устройства управления. Через некоторое время, превышающее три постоянных времени переход-корпус светодиода, в светодиоде установится регулярный режим и температура p-n перехода светодиода будет пульсировать относительно некоторого квазистационарного значения T ˜ n ( t ) (фиг.2г), изменяющегося по гармоническому закону. Изменения прямого напряжения Um(t) светодиода показаны на (фиг.2д). Прямое напряжение светодиода подается на входы аналого-цифровых преобразователей 5 и 6. АЦП 5 преобразует в цифровой код прямое напряжение светодиода Um(t) во время протекания греющих импульсов тока в моменты времени t k i m 1 = t k + Δ t o m 1 , определяемые управляющими импульсами U-У3 (фиг.2е) устройства управления 4, где ΔTtom1, некоторое фиксированное время задержки запуска первого АЦП. Цифровые отсчеты прямого напряжения светодиода Um(k) передаются в оперативную память вычислителя 8, где формируется массив значений прямого напряжения диода {Um(k)}. Второй АЦП 6 преобразует в цифровой код температурочувствительный параметр - прямое напряжение светодиода U m Т П во время паузы между греющими импульсами тока при протекании начального тока Iнач в моменты времени t k o m 1 = t k + τ u k + Δ t o m 2 , определяемые управляющими импульсами UУ4 (фиг.2ж) устройства управления, где Δtom2 - некоторое фиксированное время задержки запуска второго АЦП. Цифровые отсчеты U m Т П ( k ) передаются в оперативную память вычислителя 8, где формируется массив значений температурочувствительного параметра { U m Т П ( k ) } . Значение W ¯ о п т средней оптической мощности (фиг.2з) с выхода измерителя оптической мощности 7 по сигналу устройства управления передается в вычислитель 8 за несколько тактов до окончания измерения.

Вычислитель 8 вычисляет значения импульсной мощности для каждого k-го греющего импульса тока путем умножения Um(t) на значение амплитуды греющих импульсов тока Im:Pm(k)=Im·Um(k) и формирует массив значений импульсной мощности {(Pm(k)}. По массивам данных {Pm(k} и U m Т П ( k ) методом дискретного преобразования Фурье вычислитель 8 определяет амплитуду и фазу гармоник греющей мощности Pm1 и φP температурочувствительного параметра U m 1 Т П и φT далее вычисляет модуль и фазу теплового импеданса полупроводникового диода по формулам:

| Z T ( Ω ) | = U ˜ m l Т П ( Ω ) K T ( P m l ( Ω ) a W ¯ о п т ) ; ( 4 а )

ϕ = ϕ T ϕ P . ( 4 б )

Для повышения точности преобразование измеряемых величин осуществляется в течение нескольких (3-5) периодов модуляции греющей мощности и получают N=(3÷5)ТМ/Tсл цифровых отсчетов измеряемых величин.

Способ измерения теплового импеданса переход-корпус светодиодов, состоящий в том, что через светодиод пропускают последовательность импульсов греющего тока постоянной амплитуды, широтно-импульсно модулированную по гармоническому закону с глубиной модуляции а, в промежутках между импульсами греющего тока через светодиод пропускают начальный ток, по результатам измерения напряжения на светодиоде во время действия импульсов греющего тока и в промежутках между ними определяют амплитуду первой гармоники мощности Pml(Ω), потребляемой светодиодом, и амплитуду первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом КТ - прямого напряжения на p-n переходе светодиода при протекании через него начального тока и сдвиг фазы между ними φ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за время разогрева мощность оптического излучения светодиода и модуль теплового импеданса находят по формуле

а фаза φTM) теплового импеданса светодиода равна сдвинутой на 180° разности фаз между первой гармоникой температурочувствительного параметра и первой гармоникой мощности.



 

Похожие патенты:

Изобретение относится к области контрольно-измерительной технике, в частности - к способам и устройствам контроля качества внутренних электрических соединений сложных технических изделий, включая изделия вооружений, военной и специальной техники.

Изобретение относится к радиационной технике и может быть использовано при проведении испытаний различных типов элементов электронно-компонентной базы (ЭКБ) на стойкость к воздействию импульсного ионизирующего излучения (ИИ).

Изобретение относится к электроэнергетике, а именно к системной автоматике и релейной защите, и предназначено для реализации в устройствах определения места повреждения линий электропередачи (ЛЭП).

Изобретение относится, главным образом, к испытаниям систем энергоснабжения космических аппаратов (КА) при изготовлении преимущественно спутников связи. Система электропитания КА содержит солнечные (СБ) и аккумуляторные (АБ) батареи, стабилизированный преобразователь напряжения (СПН) с зарядным (ЗП) и разрядным (РП) преобразователями и стабилизатором выходного напряжения (8).

Изобретение относится к электроизмерительной области техники и может быть использовано для диагностики устойчивости оборудования к воздействию преднамеренных силовых электромагнитных воздействий (ПД ЭМВ).

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях.

Изобретение относится к области электротехники, преимущественно к трансформаторостроению. Сущность: измеряют сопротивления короткого замыкания со сторон высшего и низшего напряжений.

Изобретение относится к измерительным устройствам на основе волоконно-оптических фазовых поляриметрических датчиков. Оптимизация структуры датчика, обуславливающая возникновение разноименной модуляции показателя преломления при подаче на двухканальный модулятор разности фаз напряжения одной полярности, приводит к возможности использования для модуляции фазы любой частоты управляющего сигнала и к отсутствию необходимости создания линии задержки.

Изобретение относится к испытательной технике и электрооборудованию, применяемым при передаче электрической энергии для питания электроустановок потребителей. Сущность: стенд снабжен источником переменного тока повышенной и перестраиваемой частоты, который через первый переключатель и магазин электрических конденсаторов соединен с низковольтной обмоткой передающего высокочастотного резонансного трансформатора, которые образуют электрический контур источника питания для подачи электрической энергии в высоковольтный электрический контур.

Заявленная группа изобретений относится к измерительной технике, в частности к средствам измерения энергетического КПД. Способ контроля показателей энергоэффективности устройства предусматривает подключение контролируемого устройства, получение данных об энергии на входе и энергии на выходе контролируемого устройства за определенный период времени, расчет энергетического КПД контролируемого устройства, определение отклонения энергетического КПД от стандартного энергетического КПД контролируемого устройства и определение состояния контролируемого устройства исходя из отклонения энергетического КПД.

Изобретение относится к электротехнике и предназначено для контроля ресурса изоляции сухих силовых трансформаторов. Технический результат состоит в повышении точности контроля ресурса. Сигнал θп с датчика температуры наиболее нагретой точки трансформатора 2 поступает на вход контроллера 5, который выполняет функции аналого-цифрового преобразования сигнала с датчика температуры 2, регистрации и хранения данных о температуре; обработки зарегистрированных данных, определение минимальных и максимальных значений температуры и подсчета количества n циклов «нагревание - охлаждение» с перепадом температуры более Δθ=αθн. Вычисление остаточного ресурса изоляции обмоток трансформатора по формуле где t - время включенного состояния; µ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, k1 и k2 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа изоляции трансформатора, α - коэффициент, зависящий от материалов обмоток и изоляции, за время t. Данные о полном времени работы t и величине остаточного ресурса Т по шине 3 передаются в компьютер 5 для регистрации и хранения и отображаются с помощью монитора 6. 2 ил.

Изобретение относится к электротехнике и может быть использовано при определении места несанкционированного подключения нагрузки неизвестной мощности к однородной линии электрической передачи трехпроводного исполнения протяженностью менее трехсот километров. Раскрыты способы определения места несанкционированного подключения нагрузки неизвестной мощности к симметричной или несимметричной линии электрической передачи. По такой линии электрической передачи трехпроводного исполнения ток и напряжение промышленной частоты распределяются по всей ее длине по линейным законам. Место подключения нагрузки неизвестной мощности к линии электрической передачи определяют в результате выполнения алгоритма, позволяющего получить величины активных мощностей в начале и в конце линии электропередачи, с учетом которых определяют величины длин от начала и от конца линии электропередачи, где находится место подключения нагрузки. Данные о напряжениях и токах, активной мощности в линии электропередачи могут быть получены через устройства сопряжения или датчики, выполненные в виде трансформаторов напряжения и тока, ваттметров или в виде делителей напряжения и шунтов переменного тока. В результате обработки данных в процессоре формируется величина длины линии электропередачи, где находится подключенная нагрузка. Предлагаемый способ позволит повысить оперативность определения места несанкционированного подключения нагрузки неизвестной мощности к ЛЭП. 2 н.п. ф-лы, 6 ил.
Изобретение относится к области технического обслуживания и ремонта подвижного состава железнодорожного транспорта. Способ заключается в том, что с помощью мегомметра измеряют сопротивления электрической изоляции элементов в каждой из групп цепей вагона-термоцистерны. Сравнивают полученные значения с допустимыми пороговыми значениями и определяют исправность изоляции. Используют мобильный комплект устройств, которым измеряют сопротивления каждой из подгрупп цепей вагона-термоцистерны. Номер вагона вводят с клавиатуры переносного компьютера, на котором также содержится база данных по калибровке термореле. В случае истечения срока калибровки термореле заменяют на откалиброванное заранее, а факт замены фиксируют на компьютере. Результаты измерений выгружают в электронную базу данных диагностики приписного вагонного парка на компьютер, который на основе сравнения с пороговыми значениями определяет состояние электрооборудования. Для учета температурных коэффициентов сопротивлений ТЭН при расчете исправных ТЭН используют несколько температурных профилей пороговых значений сопротивлений. Все записи базы данных диагностики обслуженных за рабочую смену вагонов-термоцистерн выгружают в основной компьютер участка обслуживания. Технический результат изобретения заключается в повышении качества контроля и диагностики электрооборудования вагонов-термоцистерн.

Изобретение относится к наземным электрическим испытаниям космических аппаратов (КА) в процессе производства КА на заводе-изготовителе, а также при их предстартовых испытаниях. Согласно изобретению в контрольно-проверочную аппаратуру КА дополнительно введены измерители мощности и частоты, а также анализатор спектра принимаемого радиосигнала, приемник с приемной антенной, адресный коммутатор цифровых потоков, управляемые аттенюатор и аттенюатор-делитель, передатчик с передающей антенной. Данные элементы, а также соответствующие связи между ними позволяют проводить комплексную проверку функционирования систем КА, в том числе ВЧ-трактов командной и телеметрической радиолиний. Технический результат изобретения заключается в расширении функциональных возможностей контрольно-проверочной аппаратуры КА за счет обеспечения контроля работоспособности и измерения характеристик приемного тракта командной радиолинии и передающего тракта телеметрической радиолинии КА. 1 ил.
Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование интегрированных программных средств и стенда тепловакуумных испытаний. Температуру поверхности прибора измеряют с помощью термодатчиков вблизи контрольных точек. Одновременно измеряют температуру всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами с помощью тепловизионной измерительной системы через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде. Технический результат - повышение точности получаемых данных.

Изобретение относится к области контроля фотоэлектрических устройств и касается способа исследования пространственного распределения характеристик восприимчивости фотоэлектрических преобразователей в составе солнечных батарей к оптическому излучению. Способ включает сканирование поверхности исследуемого объекта лазерным лучом с помощью гальваносканеров с одновременной записью координат сканирования и напряжения, пропорционального величине фотоотклика в данной точке исследуемого объекта. Технический результат заключается в обеспечении возможности получения данных о распределении энергетических параметров фотоэлектричиских преобразователей в составе солнечных батарей, а также в обеспечении возможности визуализации полученных данных. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области эксплуатации трубопроводов, в частности теплотрасс, и может быть использовано для обнаружения мест протечек теплотрасс. Технический результат - повышение точности контроля состояние изоляции трубопровода. Способ определения места протечки теплотрассы включает размещение на контролируемом участке теплотрассы в покрывающей трубопровод теплоизоляции с диэлектрическими свойствами по меньшей мере одной линии токопроводящего сигнального проводника. На концах проводника устанавливают устройства контроля электрического сопротивления. По меньшей мере на одной линии токопроводящего сигнального проводника последовательно через заданные расстояния устанавливают резисторы, имеющие равные значения электрического сопротивления, превышающие значение сопротивления теплоизоляции при намокании. Расстояние до места протечки от устройства для контроля электрического сопротивления определяют путем деления измеренного общего электрического сопротивления токопроводящего сигнального проводника на величину электрического сопротивления одного резистора и умножения полученного результата на расстояние между резисторами. 2 ил.

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении космических аппаратов (КА). Способ электрических проверок космических аппаратов заключается в проведении включения и выключения КА, включая подключение или отключение бортовых источников электропитания или их наземных имитаторов. Автоматизированной системой выдаются команды управления, допускового контроля дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы. Контролируются также сопротивление изоляции бортовых шин относительно корпуса и технологические сигнальные параметры КА. Формируются директивы автоматической программы и оператора в ручном режиме, а также протокол испытаний и отображение текущего состояния процесса испытаний. Сопротивление индивидуальных резисторов выбирают исходя из геометрической прогрессии. Техническим результатом изобретения является повышение надежности процесса электрических проверок КА. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электронной технике. Предлагается способ определения параметров прибора СВЧ, включающий измерение Μ значений тока Ij, протекающего через прибор, и Μ значений напряжения Uj на электрических контактах прибора при значениях j, равных 1, 2, … М, моделирование работы прибора в виде нелинейной функции этого напряжения на электрических контактах прибора от этого тока и определяемых параметров, собственно определение параметров прибора решением нелинейных уравнений с определяемыми параметрами. В заявленном способе дополнительно измеряют N значений тока Ii и N значений дифференциального сопротивления Ri, при значениях i, равных 1, 2, … N, дополнительно осуществляют моделирование работы прибора нелинейной функцией дифференциального сопротивления от этих i значений тока и определяемых параметров, а собственно определение параметров прибора решением нелинейных уравнений с определяемыми параметрами осуществляют при их общем числе, равном Μ+N, посредством метода наименьших квадратов. Техническим результатом является повышение точности и расширение функциональных возможностей способа определения параметров прибора СВЧ. 3 табл.

Изобретение относится к электротехнике и может быть использовано для определения места несанкционированного подключения нагрузки к однородной линии электропередачи. По проводам линии электрической передачи, выполненным из обычного материала, токи и напряжения промышленной частоты распределяются по всей ее длине по нелинейным законам. Место подключения нагрузки неизвестной мощности к трехпроводной линии электрической передачи, состоящей из двух линейных проводов, выполненных из стандартного материала и одного линейного провода, выполненного из сверхпроводящего материала, определяется в результате измерения активной мощности несанкционированно подключенной нагрузки в конце линейного провода, выполненного из сверхпроводящего материала. По величине измеренной активной мощности несанкционированно подключенной нагрузки определяется протяженность от конца линии электропередачи до места подключения нагрузки. Данные о напряжениях, токах и активной мощности в линии электропередачи получают через устройства сопряжения или датчики, выполненные в виде трансформаторов напряжения и тока или в виде делителей напряжения и шунтов переменного тока. В результате обработки данных в процессоре формируется величина протяженности участка линии электропередачи до места, где подключена нагрузка. Технический результат заключается в повышении оперативности определения места несанкционированно подключения нагрузки к ЛЭП. 5 ил.
Наверх