Способ и устройство для измерения скорости течений и волновых процессов в океане

Изобретение относится к области для регистрации микроперемещений морской воды. Устройство для реализации заявленного способа для измерения скорости течений и волновых процессов в океане выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится плоский оптический излучатель, а на противоположной стороне выполнены отверстия разного диаметра для оптических датчиков. При этом отверстия различного диаметра для частиц одного размера расположены на параллельных линиях, перпендикулярных торцам отрезка. Кроме того, при реализации заявленного способа регистрируют времена прохождения одной частицы между тремя точками, которые находятся на одной линии направления течения на равном расстоянии друг от друга, и при их равенстве делают отсчет скорости. Технический результат - регистрация инфранизкочастотных колебаний на любых глубинах и водах любой солености. 2 н. и 4 з.п. ф-лы, 5 ил.

 

Настоящее предлагаемое изобретение относится к изучению океана. Известно устройство для регистрации микроперемещений морской воды, использующее ионную проводимость водной среды и содержащее электроды, соединенные с мостовыми схемами сравнения (1). Известное устройство имеет недостатки, которые заключаются в температурной нестабильности и невозможности работы в пресной воде.

Известен способ виузализации течения жидкости, заключающийся в оптической регистрации перемещения микрочастиц среды (2). Данный способ предназначен для исследования поверхностных течений жидкости и не применим для контроля глубинных процессов в океане.

Целью настоящего предложения является возможность исследования морских течений и регистрации инфранизкочастотных колебаний на любых глубинах и водах любой солености.

Поставленная цель в способе достигается тем, что в известном способе, заключающемся в оптической регистрации перемещения микрочастиц среды, регистрируют времена прохождения одной частицы между тремя точками, находящимися на одной линии на равном расстоянии друг от друга, и при их равенстве делают отсчет скорости. Волновые процессы в водной среде регистрируют путем выделения частотной модуляции импульсов, возникающих от выделенной частицы на датчиках ее прохождения. При этом находят среднее значение скорости и частотной модуляции от размеров частиц 2-5 и 20-50 микрон.

Поставленная цель в известном устройстве, содержащем оптические излучатель и регистратор, достигается тем, что оно выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится плоский оптический излучатель, а на противоположной стороне выполнены отверстия разного диаметра для оптических датчиков, при этом отверстия различного диаметра для частиц одного размера расположены на параллельных линиях, перпендикулярных торцам отрезка.

Кроме того, датчики частиц одного размера подключены через усилители-ограничители к устройству сравнения времени прихода импульсов относительно центральной точки, первый выход которого подключен к управляющему входу первого вычислительного устройства, входы которого соединены с каналами датчиков крайних точек, второй выход устройства сравнения подключен к частотному детектору.

Анализаторы сигналов датчиков частиц одного размера подключены ко второму вычислительному устройству, сравнивающему параметры скорости и частотной модуляции от сигналов частиц разных размеров.

Возможность реализации.

Известно, что вода в океане содержит взвесь частиц осадочного, биологического, геологического и пр. происхождения. Размер частиц (взвеси) от 0,5 до 50 микрон. При этом наблюдается два максимума числа частиц в 1 куб. сантиметре. Первый - в диапазоне 0,5-3 мкм, второй - 25-50 мкм. Все частицы непрозрачны для видимого спектра оптического излучения. Поскольку частицы взвешены в воде и однозначно отражают перемещение среды, имеет смысл использовать их для регистрации движения воды. Следует отметить, что даже в инфранизкочастотном диапазоне колебаний 1-10 Гц амплитуда перемещений в волне на уровне шума в океане (40 дБ) достигает нескольких микрон.

На фиг.1 показано устройство для измерения скорости течений и волновых процессов в океане, реализующее предложенный способ. Оно выполнено в виде прямоугольного отрезка из жесткого материала - 1, высотой а, шириной с и длиной в. На широкой (высотной) стороне находится плоский источник света - 2. На противоположной стороне отрезка находятся оптические датчики 3, 4 и 5 (в данном случае отверстия для них). Диаметр отверстий - D составляет 30 мкм. Эти отверстия служат для контроля движения частиц большого размера (20-50 мкм). Такая частица, оказавшись перед оптическим датчиком, перекрывает световой поток перед ним от источника света - 2, тем самым отмечая время ее прохождения первой точки 3. Под действием потока - V частица перемещается к точке (датчику) 4 и далее - к пятому. Расстояние между отверстиями 3, 4 и 5 одинаковое и составляет 100 мкм. При скорости потока, например, 10 см/с частица вызовет отклик датчиков в отверстиях 4 и 5 через 10 и 20 мс соответственно. Учитывая ламинарный поток в отрезке - 1, за такое время частица не сможет значительно отклониться от прямой линии перемещения.

Для создания условий ламинарности даже для частиц меньших (2-5 мкм) целесообразно выбрать размеры а - 3 мм, б - 10 мм и с - 1 мм. Стенки отрезка - 1 должны быть достаточно тонкими и иметь направляющие с обеих сторон. Внутри отрезка, на стороне расположения оптических датчиков, ее внутренняя поверхность должна быть абсолютно гладкой (полированной), чтобы не создавать препятствий движению микрочастиц.

В среднем количество взвеси (частиц) в океане составляет для размера 20-50 мкм - 50-500, для размера 2-5 мкм - 5-50 тысяч в одном куб.см. Исходя из того, что частица «перекрытия» потока света может находиться только в слое, соизмеримом с ее величиной, можно вычислить, что частота прохождения для больших частиц мимо датчика при взятой скорости 10 см/с составит 0,05 част./сек. Для малых частиц (2-5 мкм) частота прохождения мимо датчика(точки) тех же размеров составит 5 част./сек.

Поскольку в месте исследования может быть не известна структура взвеси, отрезок - 1 имеет ряд отверстий малого диаметра - d, величиной 3 мкм, расположенных на линии, параллельной линии больших отверстий, на расстоянии 1 мм от нее. Расстояние - l между ними - 10 мкм. При уже взятой скорости потока время прохождения между малыми отверстиями малой частицы составит 1 и 2 мс соответственно.

Из изложенного понятна работа анализатора скорости потока и волновых процессов в океане, блок-схема которого показана на фиг.2. Она содержит усилители-ограничители - 6, соединенные каждым каналом с устройством сравнения - 7, первый выход которого подключен ко входу управления первого вычислительного устройства - 8, а второй выход - к частотному детектору - 9.

Анализатор работает следующим образом. Импульсы от оптических датчиков поступают на входы 3, 4, 5, обозначенные соответственно отверстиям, в которых они находятся на отрезке - 1. Сигнал на входах усилителя-ограничителя показан на фиг.3, на его выходах - на фиг.4. Ограничение происходит по уровню шумовых процессов. На фиг.3 - U огр. Импульсы на эпюрах соответствуют прохождению частицы мимо датчиков. Устройство сравнения 6 сравнивает времена прохождения частицы между точками 3-4 и 4-5, которые обозначены на фиг.4 временами Δt1 и Δt2. При равенстве этих времен (а они должны быть равны, поскольку отверстия 3, 4 и 5 находятся на равных расстояниях) устройство сравнения выдает сигнал на управляющий вход первого вычислительного устройства - 8, которое на выходе дает показание скорости потока, деля расстояние 2L на Δt1+Δt2. На вход частотного детектора - 9 поступает последовательность импульсов от каждого датчика линии прохождения частицы. И он выделяет изменение времени запаздывания (опережения) приходов импульсов, вызванное прохождением волны, частицы среды которой, как было отмечено ранее, также перемещаются в ее фронте.

Таким образом, на выходах анализатора образуются сигналы, отражающие скорость потока, где он установлен, и волновой процесс инфранизкочастотных колебаний, распространяющихся в воде.

Для более надежного и точного фиксирования перечисленных процессов устройство, как уже отмечалось, имеет два набора датчиков, рассчитанных на контроль перемещения частиц разных размеров. Фиг.5 содержит дополнительную схему, на которой обозначены анализаторы крупных частиц - 10 и мелких - 11. Они подключены своими выходами ко второму вычислительному устройству - 12, которое, сравнивая сигналы от обоих анализаторов (а они, как понятно из изложенного ранее, должны быть одинаковы), дает надежную и точную информацию о скорости и волновых процессах в среде, где установлен датчик. Таким образом, на выходе V мы получаем сигнал значения скорости потока, а на выходе М (модуляция), сигнал, отражающий инфранизкочастотные колебания.

При этом, как уже отмечалось, ни уровень солености, ни температура на показания устройства не влияют. Тем самым предложенные способ и устройство достигают намеченной цели.

Источники информации

1. Патент России №2390784.

2. Патент России №2288476.

1. Способ измерения скорости течений и волновых процессов в океане, заключающийся в оптической регистрации перемещения микрочастиц среды, отличающийся тем, что регистрируют времена прохождения одной частицы между тремя точками, находящимися на одной линии направления течения на равном расстоянии друг от друга, и при их равенстве делают отсчет скорости.

2. Способ по п.1, отличающийся тем, что волновые процессы в водной среде регистрируют путем выделения частотной модуляции импульсов, возникающих от выделенной частицы на датчиках ее прохождения.

3. Способ по пп.1, 2, отличающийся тем, что находят среднее значение скорости и частотной модуляции от размеров частиц 2-5 микрон и 20-50 микрон.

4. Устройство для регистрации скорости течений и волновых процессов в океане, содержащее оптические излучатель и регистратор, отличающееся тем, что оно выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится плоский оптический излучатель, а на противоположной стороне выполнены отверстия разного диаметра для оптических датчиков, при этом отверстия различного диаметра для частиц одного размера расположены на параллельных линиях, перпендикулярных торцам отрезка.

5. Устройство по п.4, отличающееся тем, что датчики частиц одного размера подключены через усилители-ограничители к устройству сравнения времени прихода импульсов относительно центральной точки, первый выход которого подключен к управляющему входу первого вычислительного устройства, входы которого соединены с каналами датчиков крайних точек, второй выход устройства сравнения подключен к частотному детектору.

6. Устройство по п.4 или 5, отличающееся тем, что анализаторы датчиков частиц одного размера подключены ко второму вычислительному устройству, сравнивающему параметры скорости и частотной модуляции от сигналов частиц разных размеров.



 

Похожие патенты:

Изобретение относится к технической физике и может быть использовано для исследования измерителей потока насыщенного и влажного пара. Заявлен способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала. .

Изобретение относится к методам расчета экстремальных значений гидрометеорологических параметров окружающей среды, которые используются при оценках риска индустриальной деятельности человека.

Настоящее изобретение относится к области измерения параметров потока текучей среды, протекающей по трубопроводу. Измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей мере частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1.

Изобретение относится к устройству для измерения скорости текучей среды в трубе. Устройство для измерения скорости текучей среды в трубе содержит турбину и гидродинамический подшипник, содержащий подвижный полый стакан (30), один конец которого является глухим и который соединен с лопастями (10.1, 10.2, 10.3), и зафиксированный относительно трубы ствол (32), расположенный в полом стакане и содержащий, по меньшей мере, один первый канал (320), называемый каналом для впуска смазочной жидкости, и, по меньшей мере, один второй канал (325), называемый каналом для отвода смазочной жидкости.

Использование: в приборостроении, а именно, в технике измерения параметров ветра, в частности для измерения горизонтальных скоростей и направления ветра, для вертикальной компоненты скорости ветра, а также в аэропортах для обеспечения безопасности полетов воздушных судов.

Изобретение относится к области сельского хозяйства, а именно к почвоведению и экологии, в частности к способам измерения эмиссии парниковых газов из почвы и растений с использованием камер для отбора проб.

Изобретение относится к устройствам для измерения воздушных сигналов вертолета. Система воздушных сигналов вертолета содержит многоканальный аэрометрический приемник, имеющий 2n трубок полного давления и 2n приемных отверстий статического давления, выходы 2n трубок полного давления сообщены пневмопроводами со входами пневмоэлектрических преобразователей с электроизмерительными схемами, которые подключены к мультиплексору, выход которого через последовательно соединенные АЦП и микропроцессор подключен к системе отображения информации, выход которой является выходом системы по высотно-скоростным параметрам.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости летательного аппарата.

Изобретение относится к судовым средствам измерения скорости, основанным на излучении электромагнитных волн и приеме отраженных волн от подстилающей поверхности (вода, суша, лед), преимущественно для судов ледового плавания.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата. Устройство содержит два клиновидных тела, установленные своими основаниями встречно набегающему потоку, два устройства регистрации частот вихреобразования за телами и устройство обработки, выход которого является выходом датчика. Клиновидные тела расположены на одной оси друг над другом, на верхнем и нижнем основаниях перпендикулярно к общей оси клиновидных тел установлены струевыпрямители в виде тонких пластин, выделяющих зоны вихреобразования клиновидных тел. На верхней поверхности одного, например верхнего, струевыпрямителя установлен отверстие-приемник, который через пневмоканал связан с входом пневмоэлектрического преобразователя (датчика) абсолютного давления, выход которого подключен к входу устройства обработки. Устройство обработки выполнено в виде вычислителя, реализующего как алгоритмы определения аэродинамического угла и истинной воздушной скорости, так и алгоритмы определения других высотно-скоростных параметров. 3 ил.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата, определяющих движение относительно окружающей воздушной среды. Устройство содержит генератор ионных меток, канал регистрации ионных меток в виде системы приемных электродов, расположенных по окружности с центром в точке генерации ионных меток, и блока предварительных усилителей, измерительной схемы в виде канала определения рабочего сектора, являющегося каналом грубого отсчета, канала точного измерения угла в рабочем секторе и канала истинной воздушной скорости, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми выходами по аэродинамическому углу и истинной воздушной скорости. На металлической пластине-маске системы приемных электродов установлено отверстие-приемник для забора статического давления набегающего воздушного потока, которое пневмоканалом связано со входом датчика абсолютного давления, выход которого подключен ко входу вычислительного устройства. Вычислительное устройство выполнено в виде вычислителя, реализующего как алгоритмы определения аэродинамического угла и истинной воздушной скорости, так и алгоритмы определения других высотно-скоростных параметров движения относительно окружающей воздушной среды согласно уравнениям: где i - номер рабочего сектора грубого канала, в котором находится ионная метка; αo - угол, охватывающий рабочий сектор грубого канала отсчета аэродинамического угла (при αo = 90°); Asinαi и Acosαi - значения синусоидального и косинусоидального информативных сигналов, регистрируемых каналом точного отсчета угла в i-м рабочем секторе; R - расстояния от точки генерации ионной метки до окружности с приемными электродами; τν - интервал времени пролета ионной метки расстояния от точки генерации ионной метки до окружности с приемными электродами; α и VB, Н, ρH, Vпр, М - определяемые высотно-скоростные параметры; Р0 = 101325 Па = 760 мм рт.ст. и Т0 = 288,15 К - среднее абсолютное давление и средняя абсолютная температура стандартной атмосферы при Н = 0; τ = 0,0065 К/м - температурный градиент, определяющий изменение абсолютной температуры воздуха TH при изменении высоты H; R = 29,27125 м/К - газовая постоянная; k = 1,4 - показатель адиабаты воздуха; ρ0 = 0,125 кгс2/м4 - массовая плотность воздуха на высоте Н = 0. 4 ил.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата (ЛА), определяющих движение ЛА относительно окружающей воздушной среды. Технический результат - расширение функциональных возможностей. Предложенное устройство содержит генератор ионных меток, канал регистрации ионных меток в виде системы приемных электродов, расположенных по окружности с центром в точке генерации ионных меток, и блока предварительных усилителей, измерительную схему в виде канала определения рабочего сектора, являющегося каналом грубого отсчета, канала точного измерения угла в рабочем секторе и канала истинной воздушной скорости, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми выходами по аэродинамическому углу и истинной воздушной скорости. 4 ил.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования. Уточнение профиля скорости ветра в пределах длинного участка проводят с учетом полной формы доплеровских спектров по двум или нескольким направлениям зондирования, в которых ширина спектра максимальна и с учетом закона ослабления принимаемой мощности от расстояния до приемопередатчика. Технический результат заключается в повышении чувствительности измерительной системы. 1 ил.

Изобретение относится к области авиационного метеорологического оборудования. Бортовая система измерения параметров вектора скорости ветра содержит неподвижное ветроприемное устройство, преобразователи информативных сигналов, канал аналого-цифрового преобразования, вычислительное устройство, соединенные определенным образом. Ветроприемное устройство содержит неподвижный многоканальный проточный аэрометрический приемник, на наружной поверхности верхнего экранирующего диска которого расположен осесимметричный, например полусферический, аэрометрический приемник с определенным образом расположенными отверстиями. Вычислительное устройство содержит микропроцессор. Обеспечивается определение вектора скорости ветра на стоянке до запуска силовой установки, на стартовых и взолетно-посадочных режимах вертолета. 5 ил.
Наверх