Интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния надземных переходов магистральных трубопроводов, а также автоматического восстановления геометрии трубы надземного перехода по результатам диагностики. Целью настоящего изобретения является повышение информационной эффективности существующих систем мониторинга надземных переходов магистральных трубопроводов, в том числе получение информации о реальном изменении геометрии трубы надземного перехода с одновременной ее корректировкой, для поддержания уровня НДС в заданных пределах, с помощью саморегулируемых опор, что приведет к снижению вероятности возникновения аварийных ситуаций. Интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов содержит аппаратно-программный комплекс, измерительный блок с датчиками уровня напряженно-деформированного состояния и диспетчерское оборудование. Дополнительно содержит систему оптического наблюдения за геометрией трубопровода, саморегулируемые опоры, и дополнительный блок к аппаратно-программному комплексу, отвечающий за автоматическое регулирование вышеуказанных опор. 1 ил.

 

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния надземных переходов магистральных трубопроводов, а также автоматического восстановления геометрии трубы надземного перехода по результатам диагностики.

Известна система мониторинга трансферных линий трубопроводов установки ЭЛОУ+АВТ6 [1] (http://nadegnost.ucoz.rn/index/0-88).

В известной системе используются тензодатчики для измерения деформаций патрубков трубопровода. Данные с датчиков передаются на компьютерный блок. Далее формируется база данных, рассчитываются параметры напряженно-деформированного состояния (НДС) контролируемых участков, оценивается напряженное состояние, выдается протокол результатов анализа. В режиме реального времени на дисплее отражаются все технологические параметры эксплуатации, состояние объекта по результатам мониторинга.

Недостатками настоящей системы является отсутствие информации о фактическом изменении геометрии трубы надземного перехода, а также отсутствие системы незамедлительного восстановления исходной геометрии и допустимых уровней НДС. Для определения причины возникновения деформации трубопровода требуется выезд специалистов на объект. Это увеличивает финансовые затраты на обслуживание трубопроводной системы и снижает темп проведения ремонтных работ на участке деформированного трубопровода, что может привести к аварийной ситуации.

Наиболее близкой по технической сущности и достигаемому результату к заявляемой системе мониторинга технического состояния магистрального трубопровода на участках надземных переходов является система контроля переходов магистральных газопроводов через естественные и искусственные препятствия [2] (http://www.gasjoumal.ru/gij7gij_detailed_work.php? GIJ_ELEMENT_ID=10226&WORK_ELEMENT_ID=10232).

Известная система содержит аппаратно-программный комплекс, измерительный блок с датчиком уровня НДС, которые устанавливаются на переходах магистральных газопроводов и диспетчерское оборудование.

Для решения задачи мониторинга известная система автоматически в реальном времени измеряет параметры технического состояния контролируемого перехода, в частности, уровень НДС.

Известная система производит обработку, хранение и анализ получаемых данных о НДС с измерительного блока. Сведения о техническом состоянии переходов выводятся на экран монитора. Известная система проводит анализ несоответствий фактических условий эксплуатации переходов требованиям нормативной документации.

Недостатками настоящей системы является отсутствие информации о фактическом изменении геометрии трубы надземного перехода, а также отсутствие системы незамедлительного восстановления исходной геометрии и допустимых уровней НДС.

Целью настоящего изобретения является повышение информационной эффективности существующих систем мониторинга надземных переходов магистральных трубопроводов, в том числе получение информации о реальном изменении геометрии трубы надземного перехода с одновременной ее корректировкой, для поддержания уровня НДС в заданных пределах, с помощью саморегулируемых опор, что приведет к снижению вероятности возникновения аварийных ситуаций.

Сущность настоящего изобретения заключается в том, что заявленная интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов, содержащая аппаратно-программный комплекс, измерительный блок с датчиками уровня напряженно-деформированного состояния и диспетчерское оборудование, согласно изобретению, дополнительно содержит систему оптического наблюдения за геометрией трубопровода, саморегулируемые опоры, и дополнительный блок к аппаратно-программному комплексу, отвечающий за автоматическое регулирование вышеуказанных опор.

На чертеже показана интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов, где:

1 - аппаратно-программный комплекс;

2 - измерительный блок;

3 - датчики уровня НДС;

4 - мишени;

5 - труба надземного перехода;

6 - диспетчерское оборудование

7 - дополнительный блок к аппаратно-программному комплексу;

8 - опоры саморегулируемые;

9 - оптическое устройство;

10 - экран монитора.

Интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов содержит: аппаратно-программный комплекс 1; измерительный блок 2 с датчиками уровня НДС 3 и мишенями 4, закрепленными на трубе надземного перехода 5; диспетчерское оборудование 6; дополнительный блок к аппаратно-программному комплексу 7, отвечающий за автоматическое регулирование саморегулируемых опор 8; оптическое устройство 9. Информация о состоянии надземного перехода выводится на экран монитора оператора 10.

Заявляемая интерактивная система работает следующим образом.

Оптическое устройство 9 направляется в автоматическом режиме на мишени 4. По отклонению попадания перекрестия оптического устройства 9 на мишени 4 судят об изменении геометрии трубы надземного перехода 5 (например, о величине провисания трубы). Датчики уровня НДС 3 сигнализируют о выходе уровня НДС за допустимые пределы. Информация с измерительного блока 2, в который входят датчики уровня НДС 3 и мишени 4, прошедшая первичную обработку в аппаратно-программном комплексе 1 и в диспетчерском оборудовании 6, поступает в дополнительный блок к аппаратно-программному комплексу 7. Программное обеспечение дополнительного блока к аппаратно-программному комплексу 7 обрабатывает полученные данные и, в случае изменения геометрии трубы надземного перехода 5, в сочетании с выходом значений уровня НДС за допустимые пределы, дает команду на автоматическую регулировку саморегулируемых опор 8. Тип привода саморегулируемых опор 8 - любой. Во время регулировки отслеживаются уровни НДС, регулировка прекращается при достижении их оптимальных значений. При этом дополнительный блок к аппаратно-программному комплексу 7, по результатам обработки данных, выводит на экран монитора 10, в режиме реального времени, данные об уровне НДС, графическое изображение перехода, информацию о произведенной автоматической регулировке опор.

Источники информации

1. http://nadegnost.ucoz.ru/index/0-88.

2. http://www.gasjoumal.ru/gij/gij_detailed_work.php? GIJ ELEMENT ID=10226&WORK ELEMENT ID=10232.

Интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов, содержащая аппаратно-программный комплекс, измерительный блок с датчиками уровня напряженно-деформированного состояния и диспетчерское оборудование, отличающаяся тем, что дополнительно содержит систему оптического наблюдения за геометрией трубопровода, саморегулируемые опоры, и дополнительный блок к аппаратно-программному комплексу, отвечающий за автоматическое регулирование вышеуказанных опор.



 

Похожие патенты:

Изобретение относится к устройствам измерения распределения температуры, в котором оптическое волокно используется в качестве чувствительного элемента, а именно является чувствительным элементом распределенного датчика температуры, в котором используется способ, основанный на явлении вынужденного рассеяния Мандельштамма-Бриллюэна (ВРМБ), возникающего в оптическом волокне.

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических моделей на основании заранее известных геометрических закономерностей исследуемого объекта, характеризующих форму, положение, движение, деформацию.

Способ относится к исследованиям деформации материала в процессе механической обработки резанием. Деформируемую в процессе резания поверхность образца освещают когерентным монохроматическим излучением.

Изобретение относится к области авиации, в частности к системам контроля состояния летательных аппаратов в процессе эксплуатации. Система контроля технического состояния конструкций летательного аппарата содержит датчики технического состояния лопастей винта вертолета или консолей крыла самолета и блок-регистратор, размещенный на их борту.

Изобретение относится к области неразрушающего контроля и касается способа диагностирования состояния конструкции. Способ включает в себя формирование на участке вероятного возникновения дефекта конструкции датчика.

Изобретение относится к области экспериментальных методов исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделия в машиностроении, авиастроении и других отраслях промышленности. Способ осуществляют следующим образом.

Изобретение относится к контрольно-измерительной технике и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение относится к области разработки, производства и монтажа строительных конструкций преимущественно из бетона, покрытого армирующим композиционным материалом.

Изобретение относится к приспособлениям для регистрации сигналов с набора волоконно-оптических брэгговских датчиков системы встроенного неразрушающего контроля (ВНК) объекта.

Изобретение относится к приборостроению для легкой и текстильной промышленности и предназначено для исследования деформационных свойств легкодеформируемых материалов типа тканей и трикотажных полотен.

Изобретение относится к контрольно-измерительной технике, в частности для измерения деформаций (напряжений) в различных конструкциях посредством поляризационно-оптических преобразователей, и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре. Предложена конструкция тензометрического преобразователя, включающего нагрузочный элемент цилиндрической формы с разрезами, не нарушающими целостности цилиндра, и закрепляемый на контролируемом объекте, размещенный в нем пьезооптический преобразователь, состоящий из закрепленного в заведомо нагруженном состоянии фотоупругого элемента (ФЭ) с системой преобразования величины напряжений на ФЭ в электрический сигнал и блока обработки сигнала, причем фотоупругий элемент имеет в плане крестообразную форму, фронтальные поверхности которого, параллельные направлению измеряемых усилий, являются оптически плоскими, а боковые поверхности ФЭ имеют постоянный и/или переменный радиус кривизны, при этом пьезооптический преобразователь имеет собственный корпус, который представляет собой цилиндр диаметром меньше, чем внешний диаметр ФЭ, и в котором выполнены отверстия, сквозь которые торцы боковых поверхностей ФЭ выступают за внешние габариты цилиндра, а в нагрузочном элементе напротив этих выступов на уровне размещения ФЭ выполнены четыре сквозных резьбовых отверстия, расположенные в плоскости, перпендикулярной оси цилиндра, и под углом 90 градусов относительно друг друга, под винты, обеспечивающие изначальную силовую нагрузку на ФЭ, при этом система преобразования величины напряжений на ФЭ в электрический сигнал пьезооптического преобразователя включает механизмы вращения поляризатора и четвертьволновой пластины. Технический результат - упрощение конструкции, повышение ее надежности и точности измерения деформаций, уменьшение габаритов - достигается за счет того, что создание изначальной силовой нагрузки на ФЭ в двух взаимно ортогональных направлениях осуществляется контролируемым способом, пьезооптический преобразователь имеет собственный унифицированный корпус и может быть использован с нагрузочными элементами разных конструкций, при этом габаритный размер пьезооптического преобразователя в плоскости измеряемых напряжений не превышает размер ФЭ. 3 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к средствам измерения относительной продольной деформации на поверхности материальных тел. Экстензометр содержит два референтных тела в виде заостренных инденторов, при этом один индентор жестко связан с корпусом прибора, другой установлен с возможностью перемещения, а также систему передачи этих перемещений. В корпусе прибора дополнительно установлены лазер с оптической системой коллимации излучения, фокусирующая линза, фокус которой совпадает с контролируемой поверхностью, светоделительное зеркало, линза, координатно-чувствительный фотоэлектрический преобразователь и арретир для маятника. Подвижный индентор выполнен с оптическим референтным элементом, центр кривизны которого совмещен с острием индентора и с контролируемой поверхностью, и жестко установлен на шарнирно подвешенном в верхней части корпуса маятнике. Между подвижным и неподвижным инденторами подвешен электромагнит. Сущность: расстояние «А» между острыми кромками двух инденторов измеряют до установки на поверхность. Маятник арретируют, подключают источник света, мнимый фокус луча которого совмещают с острием подвижного индентора, при этом изображение фокальной точки лазерного луча, отраженного от сферического зеркала, с оптическим увеличением «К» фокусируют в положении, соответствующем среднему положению светового пятна на координатно-чувствительном фотоэлектрическом преобразователе, и регистрируют условно нулевую координату «Б» энергетического центра светового пятна. В заарретированном состоянии устанавливают экстензометр на деформируемую поверхность и разарретируют маятник, далее поджимают маятник с подвижным индентором и сферическим зеркалом к деформируемой поверхности посредством электромагнита. Регистрируют координату энергетического центра светового пятна «В», нагружают деформируемую балку и регистрируют координату энергетического центра светового пятна «Г». Относительную продольную деформацию вычисляют по формуле. Технический результат: повышение степени точности определения координат выбранных базовых точек, точности измерения расстояния между острыми кромками инденторов и их взаимных перемещений из-за деформации поверхности, в том числе с учетом структурной неоднородности деформируемого материала. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области геодезического контроля вертикальных цилиндрических резервуаров. В заявленном способе определения величин деформаций стенки резервуара производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Передают полученную цифровую информацию в компьютерную программу, производят построение цифровой точечной трехмерной модели внешней поверхности стенки резервуара, далее выполняют развертывание полученной объединенной цифровой точечной трехмерной модели на плоскость, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара в виде изолиний, оценивают характер и величину деформаций стенки резервуара путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений. Технический результат - повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического. 1 ил.

Изобретение относится к области прецизионного приборостроения и может быть использовано при создании первичных чувствительных элементов оптических преобразователей деформаций спектрального типа. В заявленном способе изготовления чувствительного элемента спектрального преобразователя деформации на поверхности упругого элемента располагают нефоточувствительное оптическое волокно и наносят слой оптически-прозрачного нефоточувствительного стеклокристаллического материала, сборку из упругого элемента, оптического волокна и стеклокристаллического материала помещают в печь, где производят пайку соединения металл-стекло. Далее извлекают из печи и остужают со скоростью не более 5-8°C/мин в структуре нефоточувствительного оптического волокна, покрытого слоем затвердевшего оптически-прозрачного нефоточувствительного стеклокристаллического материала. При этом в зоне максимальной деформации упругого элемента формируют решетку Брэгга, а материалы конструктивных составляющих чувствительного элемента спектрального преобразователя деформации выбирают с близкими значениями коэффициента температурного расширения. Технический результат - упрощение технологии изготовления чувствительного элемента спектрального преобразователя деформации и повышение точности спектрального преобразования. 2 ил.

Изобретение относится к определению напряженно-деформированного состояния металлических конструкций высокорисковых объектов нефтяной, газовой и химической отраслей промышленности, систем транспорта и переработки нефти и газа с помощью тензочувствительных хрупких покрытий, что позволяет получить наглядную картину наибольшей концентрации напряжений, получить данные для оценки и прочности потенциально опасных объектов. Хрупкое покрытие для исследования деформаций и напряжений выполнено из смеси эпоксидной смолы ЭД-20, отвердителя полиэтиленполиамина (ПЭПА) и фреона-26 при следующем соотношении компонентов, мас. %: смола 20-60, отвердитель 1-3, фреон 79-37. Техническим результатом изобретения является обеспечение возможности ранней диагностики и увеличение чувствительности метода. 1 табл.

Изобретение относится к подземной, открытой и строительной геотехнологиям и может быть использовано как деформационный способ комплексного определения параметров напряженного состояния и упругих характеристик массива пород, крепи горных выработок, метрополитенов и тоннелей, а также конструкций мостов и гидротехнических сооружений. Заявленный комплексный способ определения напряженно-деформированного состояния объектов геотехнологии заключается в измерении деформаций между стенками разгрузочной щели, отличающийся тем, что с целью исследования напряженно-деформированного состояния объектов разработан комплексный способ определения его параметров, основанный на применении кольцевой разгрузочной щели для измерения деформаций частичной разгрузки со стороны массива и деформаций полной разгрузки в обуренном керне, в центральном шпуре которого затем устанавливают прессиометр, задают пошаговую нагрузку в керне и измеряют наведенные деформации; при этом деформации трех видов: частичной разгрузки массива, полной разгрузки и наведенные в керне измеряют по схеме установки реперных линий, составляющих тензор плоских деформаций. Технический результат заключается в повышении эффективности исследований, в повышении информативности способа разгрузки за счет единовременной ее фиксации в конкретной плоскости по определенным линиям, которые представляют компоненты тензора плоской деформаций, а также в снижении трудоемкости эксперимента за счет применения современного автономного бурового оборудования, а также измерительных средств и аппаратуры. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области метрологии, в частности к системам для определения положения неровностей поверхности, их размеров и количества на расстоянии. Заявленный способ бесконтактного определения рельефа поверхности материалов включает получение информации об объекте с помощью считывающего устройства, обработку информации путем формирования универсальной матрицы поверхности, состоящей из информационных ячеек, содержащих информацию об эталонных и фактических координатах меток поверхности. При этом дополнительно формируют колористическую матрицу путем считывания информации с поверхности, освещенной двумя встречными световыми потоками с различной длиной волны, направленными к ней под острыми углами, информацию идентифицируют в соответствии с последовательностью цветов «первый цвет - смешение первого и второго цвета - второй цвет» как выпуклость на поверхности объекта, а последовательность «первый цвет - отсутствие цвета - второй цвет» как углубление на поверхности объекта. Далее колористическую матрицу поверхности объекта накладывают на универсальную матрицу поверхности и фактическую матрицу объекта и получают топографическую карту поверхности объекта, затем по информации об эталонных координатах каждой метки, содержащейся в универсальной матрице поверхности, определяют размеры идентифицированных выпуклостей и углублений на поверхности объекта и рассчитывают их высоту, глубину и количество. Технический результат - расширение и уточнение показателей, характеризующих сложную поверхность. 1 з.п. ф-лы, 2 ил.

Система контроля угловых деформаций крупногабаритных платформ содержит крупногабаритную платформу, с закрепленными на ней базовым контрольным элементом и двумя контрольными элементами, представляющими собой призмы с аттестованными между собой зеркальными гранями и размещенными в вершинах треугольника, образованного нормалями к граням контрольных элементов. На каждой стороне треугольника расположено по одному двухкоординатному автоколлиматору. Дополнительно в систему контроля угловых деформаций крупногабаритных платформ включен двухкоординатный автоколлиматор, размещенный между двумя контрольными элементами с другой стороны платформы. Технический результат заключается в повышении точности системы контроля угловых деформаций крупногабаритных платформ, упрощение ее конструкции и алгоритма обработки информации. 4 ил.

Изобретение относится к волоконно-оптическим измерителям. Система на основе тензодатчика, а также способ его изготовления и применения включают в себя: оптическое волокно, генератор оптических сигналов, передающий оптический сигнал через указанное оптическое волокно. Фотонно-кристаллические пластинчатые элементы в указанном оптическом волокне, разделенные участком оптического волокна. Фотодатчик, обнаруживающий отраженный оптический сигнал от указанных фотонно-кристаллических пластинчатых элементов. Обрабатывающее устройство, вычисляющее механическую деформацию, на основании отраженного оптического сигнала, обнаруженного фотодатчиком. Технический результат заключается в создании оптоволоконного тензодатчика с возможностью выбора длины волны испускаемого света, работы с лазерными источниками или без них и взаимодействия с несколькими тензодатчиками на одном и том же оптоволокне. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к определению скорости распространения поверхностной волны. Устройство для определения скорости распространения поверхностной волны содержит источник когерентного света для формирования по меньшей мере первого и второго световых пятен на поверхности. Камера захватывает по меньшей мере одно несфокусированное изображение по меньшей мере части поверхности, содержащей световые пятна. Несфокусированное изображение содержит объекты изображений световых пятен для световых пятен, при этом объекты изображений световых пятен имеют спекл-структуры. Анализатор определяет скорость распространения в соответствии с разностью во времени между изменениями двух спекл-структур. Изобретение позволяет обеспечивать определение скорости распространения на основании пространственного анализа спекл-структур и осуществлять эффективное дистанционное измерение скоростей пульсовой волны, например, в тканях животного или человека. 2 н. и 11 з.п. ф-лы, 14 ил.

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния надземных переходов магистральных трубопроводов, а также автоматического восстановления геометрии трубы надземного перехода по результатам диагностики. Целью настоящего изобретения является повышение информационной эффективности существующих систем мониторинга надземных переходов магистральных трубопроводов, в том числе получение информации о реальном изменении геометрии трубы надземного перехода с одновременной ее корректировкой, для поддержания уровня НДС в заданных пределах, с помощью саморегулируемых опор, что приведет к снижению вероятности возникновения аварийных ситуаций. Интерактивная система мониторинга технического состояния магистрального трубопровода на участках надземных переходов содержит аппаратно-программный комплекс, измерительный блок с датчиками уровня напряженно-деформированного состояния и диспетчерское оборудование. Дополнительно содержит систему оптического наблюдения за геометрией трубопровода, саморегулируемые опоры, и дополнительный блок к аппаратно-программному комплексу, отвечающий за автоматическое регулирование вышеуказанных опор. 1 ил.

Наверх