Бортовая коротковолновая антенна подвижного объекта



Бортовая коротковолновая антенна подвижного объекта
Бортовая коротковолновая антенна подвижного объекта
Бортовая коротковолновая антенна подвижного объекта
Бортовая коротковолновая антенна подвижного объекта
Бортовая коротковолновая антенна подвижного объекта
Бортовая коротковолновая антенна подвижного объекта

 

H01Q9/00 - "Короткие" (в электрическом смысле) антенны с размерами, не превышающими удвоенную рабочую длину волны и составленные из электропроводящих активных излучающих элементов (петлевые антенны H01Q 7/00; волноводные рупоры или раструбы H01Q 13/00; щелевые антенны H01Q 13/00; комбинированные конструкции из активных элементов со вторичными устройствами, выполняемые с целью формирования требуемой диаграммы направленности антенны H01Q 19/00; комбинированные конструкции из двух и более активных элементов H01Q 21/00)

Владельцы патента RU 2556446:

федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации (RU)
Открытое акционерное общество "Российский институт мощного радиостроения" (RU)

Изобретение относится к радиотехнике, а именно к антенной технике, и бортовая коротковолновая антенна (БКВА) подвижного объекта (ПО) может быть использована в качестве передающей ненаправленной антенны для работы как ионосферными, так и поверхностными волнами совместно с KB радиостанцией средней мощности, установленной на борту ПО. Техническим результатом при использовании БКВА является повышение ее КПД в режиме поверхностных волн и исключение демаскирующих признаков, указывающих на факт установки антенны на ПО. Для этого БКВА состоит из промежуточного возбудителя (ПрВ)1, выполненного из двух включенных параллельно П-образных проводников, установленных вертикально и параллельно боковым поверхностям ПО. Проекция периметра каждого П-образного проводника вписана в пределы площади боковой поверхности ПО. Средняя часть крышевой поверхности 3 ПО выполнена диэлектрической, а периферийные - металлическими. Над горизонтальной частью каждого П-образного проводника установлены экранирующие элементы (ЭЭ). Один конец ПрВ 1 подключен к блоку настройки и согласования 9, другой - к блоку дискретных реактивных нагрузок. Изменением распределения амплитуд тока вдоль ПрВ 1 обеспечивается диапазонная работа антенны как ионосферными, так и поверхностными волнами. Повышение КПД антенны достигается возбуждением корпуса ПО. 3 з.п. ф-лы, 6 ил.

 

Изобретение относится к радиотехнике, а именно к антенной технике, и, в частности, заявленная бортовая коротковолновая антенна (БКВА) подвижного объекта (ПО) может быть использована в качестве передающей ненаправленной антенны зенитного излучения совместно с коротковолновой (KB) радиостанцией средней мощности, установленной на борту ПО, например автомобиля.

Известны БКВА, установленные на борту ПО, описанные в книге Гвоздев И.Н. и др. Характеристики антенн радиосистем связи. - Л.: ВАС, 1978, Табл. 77, 78. - С.101-105. Указанные БКВА представляют собой малогабаритные излучатели (МГИ) емкостного типа: в виде двух параллельно включенных несимметричных вибраторов (с.101), симметричного вибратора, горизонтально закрепленного на металлической крыше ПО, или магнитного типа (с.103-105); в виде одной или нескольких включенных в параллель вертикальных рамок, установленных на металлической крыше ПО. Излучатели емкостного и магнитного типов подключены к блоку настройки и согласования (БНС), вход которого подключен к выходу бортовой радиостанции.

Недостатком указанных аналогов является их низкая эффективность, характеризуемая коэффициентом полезного действия (КПД), что обусловлено высоким уровнем нескомпенсированного связанного реактивного ноля. Это в свою очередь приводит к дополнительным тепловым потерям в органах настройки и элементах конструкции антенны.

Известна также БКВА, описанная в книге: Виноградов Б.А. и др. Радиочастотная служба и антенные устройства. - Л.: ВАС, 1982.- С.113-114. Антенна состоит из П-образной щели, вырезанной в боковых и верхней стенках металлического кузова автомобиля, промежуточного возбудителя, установленного в металлизированном подкрышевом пространстве ПО непосредственно у раскрыва горизонтальной части щели. Промежуточный возбудитель выполнен в виде многовитковой рамки с возможностью изменения числа витков путем их замыкания на корпус ПО. Вход промежуточного возбудителя подключен к БНС, который в свою очередь подключен к выходу бортовой радиостанции.

Недостатком рассмотренного аналога является также относительная низкая эффективность (КПД) как из-за тепловых потерь в витках промежуточного возбудителя, так и из-за малой действующей длины щелевого излучателя.

Наиболее близким аналогом (прототипом) к заявленной БКВА является известная Бортовая декаметровая антенна подвижного объекта по патенту РФ №2484560, МПК H01Q 9/00, опубл. 10.06.2013 г.

Антенна-прототип состоит из промежуточного возбудителя (ПрВ) в виде изогнутого в вертикальной плоскости проводника, установленного над металлической поверхностью в пределах металлизированного подкрышевого пространства (МПКП) вдоль его предельной оси симметрии. Один конец ПрВ подключен к блоку реактивных дискретных нагрузок (БРДН), второй - к БНС. Средняя часть крышевой поверхности ПО выполнена диэлектической. К примыкающим к центру МПКП кромкам металлических частей крышевой поверхности подключены экранирующие элементы (ЭЭ) в виде ленточных проводников. На кузове ПО шарнирно закреплены концевые емкостные нагрузки, обеспечивающие работу антенны в режиме земных волн.

Благодаря установке промежуточного возбудителя в подкрышевом пространстве и использованию экранирующих элементов обеспечивается возбуждение корпуса ПО, что повышает эффективность БКВА в целом.

Однако ближайший аналог имеет недостатки, заключающиеся в относительно низкой эффективности работы в режиме земных волн; в наличии демаскирующих признаков факта размещения на борту ПО KB антенны, обусловленные необходимостью использования громоздких концевых емкостных нагрузок.

Целью изобретения является разработка БКВА, обеспечивающей повышение ее КПД в режиме земной волны при одновременном исключении демаскирующих признаков, указывающих на факт установки на ПО KB бортовой антенны.

Поставленная цель достигается тем, что в известной БКВА ПО, средняя треть металлической крышевой поверхности которого выполнена диэлектрической, содержащей ПрВ с ЭЭ, подключенный одним концом к БДРН, а другим - к БНС, вход которого подключен к выходу бортовой радиостанции, ПрВ выполнен в виде двух параллельно включенных вертикальных П-образных проводников. П-образные проводники установлены параллельно боковым стенкам ПО вне его экранированного внутреннего объема. Горизонтальная часть каждого П-образного проводника расположена в металлизированном подкрышевом пространстве ПО. Каждая пара ЭЭ установлена над горизонтальной частью П-образного проводника, и каждый ЭЭ одним концом подключен к кромке металлической части крышевой поверхности, примыкающей к ее диэлектической части. Между примыкающими к друг другу торцами ЭЭ в середине горизонтальной части каждого П-образного проводника установлен зазор Δ=(0,9-l,5)d, где d - диаметр поперечного сечения П-образного проводника. ЭЭ выполнены в виде ленточных проводников и установлены на расстоянии (2-4)·10-4 λmax, где λmax - максимальная длина волны рабочего диапазона волн, от поверхности П-образного проводника.

Благодаря новой совокупности существенных признаков за счет изменения распределения амплитуд тока вдоль П-образного проводника обеспечивается либо формирование диаграммы направленности (ДН) с максимумом излучения в зенит (режим ионосферных волн), либо ДН с максимумом, ориентированным вдоль поверхности земли, чем обеспечивается эффективная работа антенны в каждом из режимов.

Одновременно практически исключаются демаскирующие признаки факта установки на борту ПО KB антенны.

Заявленная БКВА поясняется чертежами, на которых показано:

на фиг.1 - общий вид БКВА (вид сбоку);

на фиг.2 - вид БКВА сверху;

на фиг.3 - эквивалентная схема антенны;

на фиг.4 - распределение амплитуд тока:

а) в режиме ионосферных волн;

б) в режиме земных волн;

фиг.5 - диаграммы направленности БКВА в режиме ионосферных и земных волн;

фиг.6 - результаты сравнительных измерений уровня излучаемого электрического поля.

Бортовая коротковолновая антенна подвижного объекта, показанная на фиг.1, состоит из ПрВ 1, выполненного в виде двух параллельно включенных П-образных проводников с диаметром поперечного сечения d, с горизонтальной частью lг и вертикальными частями с высотами по lв, П-образные проводники установлены вертикально и параллельно боковым поверхностям ПО вне его экранированного внутреннего объема 2. Проекция периметра каждого П-образного проводника вписана в пределы площади боковой поверхности ПО. Средняя часть крышевой поверхности 3 длиной Lд выполнена диэлектической, а ее две периферийные части с длинами по Lм - металлическими. По два ЭЭ 4 в виде ленточных проводников шириной «вэ» установлены над горизонтальной частью каждого П-образного проводника, которая в свою очередь размещена в подкрышевом пространстве 5 высотой Hп, экранированном от внутреннего объема 2 ПО. Один конец каждого ЭЭ 4 подключен к кромке металлической части крышевой поверхности 6, примыкающей к ее диэлектической части 3 (сечения О-О′ на фиг.1, 2). Между примыкающими друг к другу торцами ЭЭ 4 в середине горизонтальной части каждого П-образного проводника 1 установлен зазор Δ=(0,9-1,5)d. В частности, ЭЭ 4 могут быть выполнены в виде полуцилиндрического проводника, установленного соосно с П-образным проводником 1 (см. фиг.1а). ЭЭ 4 установлены на высоте tэ от поверхности горизонтальной части П-образного проводника 1. П-образные проводники 1 с помощью горизонтальных отрезков проводника длиной lпр 7 соединены в параллель и подключены одним концом к БДРН 8, а другим - к БНС 9. Вход БНС 9 подключен к выходу бортовой радиостанции (на фиг.2 не показана).

БНС 9 предназначен для настройки и согласования антенны во всем рабочем диапазоне частот. БНС 9 может быть выполнен в различных вариантах, в частности в виде Г-образной схемы, показанной на фиг.3. В данном варианте БНС 9 включает конденсатор переменной емкости Cн (элемент настройки) и конденсатор переменной емкости Cс (элемент согласования). Порядок расчета Cн и Cс известен и описан, например, в книге: Гавеля Н.П., Истрашкин А.Д. и др. Антенны. Часть I. Под ред. Ю.К. Муравьева. - Л.: ВКАС 1963. - С.538-542.

БДРН 8 предназначен для подключения к ПрВ реактивной нагрузки, при которой с помощью дискретных емкостных элементов (ДРЭ) в соответствующем поддиапазоне частот обеспечивается формирование пучности (режим ионосферных волн) или узла (режим земных волн) тока в центре горизонтальных частей П-образных проводников 1. В качестве БРДН 8 может быть использовано известное техническое решение: «Дискретная реактивная цепь» по патенту РФ №2355102, опубл. 10.05.2009 г.

Заявленная БКВА работает следующим образом.

При подключении входа БНС 9 к выходу радиостанции высокочастотный (в.ч.) ток протекает по параллельно включенным П-образным проводникам 1. Распределение амплитуд в.ч. токов по проводникам 1 будет определяться выбранной рабочей частотой fp и номинальным значением емкостной нагрузки, подключенной в БДРН 8 с помощью замыкания (размыкания) контактов соответствующих выключателей (см. фиг.3). Значение реактивной нагрузки на заданной рабочей частоте определяют в зависимости от выбранного режима работы. При работе ионосферными волнами максимум ДН необходимо формировать в зенит, следовательно пучность в.ч. тока должна быть установлена в центре горизонтальной части П-образных проводников, как показано на фиг.4а. При необходимости работы в режиме земных волн максимум ДН необходимо формировать под углами, близкими к горизонту. В этом случае в центре горизонтальной части П-образных проводников устанавливают узел в.ч. тока, как показано на фиг.4б. При этом площадь тока вдоль вертикальных сторон П-образных проводников максимальна и основная энергия излученного поля будет ориентирована вдоль поверхности земли. В то же время, на горизонтальных проводниках имеют место противофазные участки в.ч. токов, что существенно снижает уровень излучения в зенит.

При протекании в.ч. токов по горизонтальному участку П-образных проводников 1 в зазорах Δ между торцами ЭЭ 4 с некоторым коэффициентом трансформации Кт возбуждается ЭДС, под действием которой в.ч. ток растекается по металлической поверхности кузова ПО. Таким образом, эквивалентная схема заявленной антенны, показанная на фиг.3, представляет собой (в режиме ионосферных волн) эквивалентный симметричный вибратор с плечами длиной DА. Входное сопротивление ZА эквивалентного симметричного вибратора, образованного металлической поверхностью кузова ПО, с коэффициентом трансформации Кт подключено к выходу радиостанции, к которому также подключено комплексное сопротивление, образованное П-образными проводниками с подключенными к ним емкостными нагрузками БДРН 8, БНС 9 и индуктивностями Lв вертикальных частей П-образных проводников. В режиме ионосферных волн пучность тока устанавливают с помощью БДРН 8 в центре горизонтальной части П-образных проводников 1 у зазора Δ (фиг.4а). При переходе на другую рабочую частоту для сохранения пучности тока в зазоре между ЭЭ 4 необходимо изменить суммарное значение емкостной нагрузки, подключенной к выходу БДРН 8. В режиме поверхностной волны в центре горизонтальной части П-образных проводников 1 устанавливают узел тока (фиг.4б) подключением соответствующего суммарного значения емкостной нагрузки БДРН 8. При этом на вертикальных частях П-образных проводников направления протекания в.ч. токов совпадают, а на горизонтальных противоположны. При этом основная излучаемая энергия будет ориентирована под углами, близкими к горизонту.

В режимах ионосферной и поверхностной волн возможна работа как в движении, так и на остановках ПО.

Возможность достижения сформулированного технического результата проверялась путем сравнительной оценки эффективности заявленной антенны и прототипа с использованием метода масштабного моделирования.

Исходные значения элементов заявленной антенны для работы в диапазоне 3-20 МГц (λmax=100 м) приняты следующими: lв=1,9 м; lг=4,1 м; (2Lм+Lд)=4,5 м; Нп=0,6 м; d=0,06 м; tэ=0,03 м; Δ=0,06 м; lпр=0,8 м; lэ=0,72 м.

Сравнительные измерения уровней напряженности электрического поля излучения заявленной антенны EЗА, ∂Б и прототипа Eпр, ∂Б проводилась в дальней зоне излучения. На каждой частоте измерения контролировалось равенство мощности, подводимой к сравнимым антеннам. Результаты измерений, приведенные на фиг.6, показывают, что в диапазоне частот 3-20 МГц относительный выигрыш ΔЕ, ∂Б=EЗА, ∂Б - Eпр, ∂Б в режиме ионосферных волн составляет 1-3 ∂Б, а в режиме земных волн - 4-8, ∂Б. При равенстве подводимой к антеннам мощности увеличение уровня излученной мощности означает, что заявленная антенна имеет во столько же раз более высокий КПД. Измеренные характеристики направленности антенны в режиме ионосферных (фиг.5а) и поверхностных (фиг.5б) волн подтверждают возможность двухмодовой работы заявленной антенны как в движении, так и на остановках. Следовательно, подтверждается возможность достижения сформулированного технического результата при использовании заявленного устройства.

1. Бортовая коротковолновая антенна подвижного объекта (ПО), средняя треть металлической крышевой поверхности которого выполнена диэлектрической, содержащая промежуточный возбудитель с экранирующими элементами, подключенный одним концом к блоку дискретных реактивных нагрузок, а другим - к блоку настройки и согласования, вход которого подключен к выходу бортовой радиостанции, отличающаяся тем, что промежуточный возбудитель выполнен в виде двух параллельно включенных вертикальных П-образных проводников, установленных параллельно боковым металлизированным поверхностям ПО вне его экранированного внутреннего объема, над горизонтальной частью каждого П-образного проводника, расположенной в металлизированном подкрышевом пространстве ПО, установлены экранирующие элементы, каждый экранирующий элемент одним концом подключен к кромке металлической части крышевой поверхности, примыкающей к ее диэлектической части, причем между примыкающими друг к другу торцами экранирующих элементов в середине горизонтальной части каждого П-образного проводника установлен зазор Δ.

2. Бортовая коротковолновая антенна по п.1, отличающаяся тем, что экранирующие элементы выполнены в виде ленточных проводников.

3. Бортовая коротковолновая антенна по п.1, отличающаяся тем, что величина зазора Δ выбрана в пределах (0,9-1,5)d, где d - диаметр поперечного сечения П-образного проводника.

4. Бортовая коротковолновая антенна по п.1, отличающаяся тем, что расстояние tэ между поверхностью экранирующего элемента и поверхностью П-образного проводника выбрано в пределах tэ=(2-4)·10-4 λmax, где λmax - максимальная длина волны рабочего диапазона волн.



 

Похожие патенты:

Изобретение относится к антенной технике, в частности к дипольным антеннам с отражающим экраном с полунаправленной диаграммой направленности, и может быть использовано в технике связи для приема сигналов навигационных систем и для организации приемо-передающего канала с Землей в командно-телеметрических системах.

Изобретение относится к радиотехнике и может быть использовано в качестве приемной и/или передающей УКВ антенны совместно с широкодиапазонными УКВ радиостанциями.

Изобретение относится к антенной технике и может быть использовано для исследования магнитосферы Земли и для задач дальней НЧ радиосвязи. Технический результат - повышение мощности НЧ источника электромагнитного излучения, улучшение качества НЧ радиосвязи.

Изобретение относится к радиотехнике и предназначено для использования в качестве приемной и/или передающей антенны совместно с широкополосными радиостанциями. Технический результат - расширение рабочего диапазона путем обеспечения функционирования антенны в диапазоне низких частот.

Изобретение относится к радиотехнике и предназначено для использования в качестве приемной и/или передающей антенны совместно с широкодиапазонными УКВ радиостанциями.

Изобретение относится к антенной технике и может быть использовано в качестве приемных и/или передающих антенн широкодиапазонных УКВ-радиостанций и навигационных систем типа "GPS" и "ГЛОНАСС".

Изобретение относится к радиосвязи и предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи в ВЧ- и ОВЧ-диапазонах.

Изобретение относится к сверхширокополосной (СШП) радиолокации и может быть использовано для решения задач, требующих определения трехмерной формы объектов или определения положения объектов.

Антенна // 2492560
Изобретение относится к области радиотехники, а именно к антеннам сферическо-спиральной конструкции, и может быть использовано в составе беспроводных систем связи и передачи данных, а также в системах телеметрии.

Изобретение относится к антенной технике и может быть использовано для приема в радиовещании, телевидении и пеленгации. .

Изобретение относится к антенной технике, в частности к антеннам для космических аппаратов (КА), функционирующих на орбите высотой от 400 км до 1000 км. Диаграмма направленности (ДН) таких антенн должна иметь максимум в направлениях ±(60°÷70°) и коэффициент эллиптичности (КЭ) не менее 0.4 в секторе углов от -70° до 70° от оси антенны. Техническим результатом является создание антенны (для КА) с возможностью максимального излучения электромагнитных волн с эллиптической поляризацией под углами ±(60°÷70°) от оси антенны. Антенна космического аппарата содержит отражатель, вспомогательное зеркало и расположенный соосно с ними излучатель в виде открытого конца круглого волновода диаметром dB. Отражатель выполнен из нескольких соосных и примыкающих к друг другу металлических поверхностей усеченных конусов, при этом большее основание каждого предыдущего конуса является меньшим основанием каждого последующего конуса, а меньшее основание первого конуса образовано открытым концом круглого волновода, над которым на высоте h=dB÷2.5dB закреплено вспомогательное зеркало, выполненное в виде металлического диска диаметром dЗ≤1.2dB. При выполнении отражателя в виде трех соосных поверхностей усеченных конусов угол при основании первого конуса составляет 0°<β<15°, угол при основании второго конуса составляет 20°≤γ≤75°, а угол при основании третьего конуса составляет 1°≤α≤20°. При β=0°, когда отражатель состоит из 2-х конусов, углы при основании конусов находятся в следующих диапазонах 1°≤α≤5° и 40°≤γ≤50°. За счет предложенной многоконусной формы поверхности отражателя, а также размещения плоского вспомогательного зеркала над отражателем обеспечивается оптимальная ДН антенны с требуемым коэффициентом эллиптичности более 0.4 и с максимальным излучением в секторе углов ±(60°÷70°), что позволяет использовать эту антенну на космическом аппарате. 2 з.п. ф-лы, 3 ил.

Изобретение предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи в УВЧ- и СВЧ-диапазонах. Технический результат - многократное использование площади, занимаемой антенной, что способствует увеличению направленности антенны на некоторых частотах. Для этого предлагается совмещенная многовибраторная микрополосковая антенна, состоящая из объединенных в симметричные вибраторы пар плеч, выполненных в виде тонкого слоя металла, нанесенного на непроводящую подложку. При этом пары плеч имеют различные размеры, причем большие плечи имеют полую форму, а пары плеч меньшего размера могут быть целиком размещены внутри плеча симметричного вибратора большего размера. 2 ил.

Использование: для передающей или приемной антенны летательного аппарата в дециметровом диапазоне длин волн. Сущность изобретения заключается в том, что вибраторная антенна содержит излучатель, размещенный над экраном, коаксиальный соединитель, размещенный под экраном и включающий центральный проводник, при этом вдоль продольной оси антенны дополнительно установлен корпус антенны, в котором между излучателем и коаксиальным соединителем установлено согласующее устройство, включающее центральный проводник и изолятор, расположенный между корпусом антенны и центральным проводником, при этом излучатель и центральные проводники согласующего устройства и коаксиального соединителя выполнены за одно целое, излучатель и часть корпуса антенны, расположенная над экраном, опрессованы радиопрозрачным теплозащитным материалом, а корпус антенны выполнен с возможностью фиксирования в экране, часть корпуса антенны, расположенная под экраном, выполнена в виде внешнего контакта коаксиального соединителя. Технический результат: упрощение конструкции, повышение технологичности изготовления, уменьшение габаритов, улучшение эксплуатационных характеристик, повышение надежности. 4 ил.

Изобретение относится к малогабаритной сверхнаправленной антенне ВЧ диапазона с кардиоидной диаграммой направленности (ДН), предназначенной для использования в конструкциях малогабаритных направленных антенных систем, включая ФАР ВЧ диапазона. Технический результат - повышение эффективности и качества согласования кардиоидной антенны в широком диапазоне частот за счет реализации сверхнаправленности и эффекта бегущей волны. Для этого антенна включает двухпроводную линию с бегущей волной, где роль излучающих элементов, формирующих ДН, выполняют вертикальные отрезки, в один из которых включен малошумящий усилитель или генератор, а в другой - нагрузка, согласованные с линией, что снижает реактивность антенны и улучшает ее согласование с радиосредствами. Для увеличения действующей высоты и коэффициента усиления излучателя двухпроводной линии может быть придана форма малогабаритного ромбического излучателя с нагрузкой при расположении плоскости ромба вертикально относительно земли, и предусмотрено включение в механизм излучения, помимо вертикальных проводов, также всех сторон ромба пропорционально проекциям векторов тока на вертикальную ось координатной системы. 4 ил.

Изобретение относится к области антенной техники и может быть использовано в приемопередающей радиоаппаратуре, преимущественно в средневолновых и коротковолновых системах радиосвязи. Технический результат изобретения заключается в повышении мощности излучения при сохранении малых габаритов антенны. Малогабаритная резонансная рамочная коаксиальная антенна состоит из схемы настройки и согласования и коаксиального излучателя. Схема настройки и согласования содержит настроечные катушки индуктивности L1-LN+2, настроечные конденсаторы переменной емкости C1-CN+2, разделительный конденсатор Ср, трансформатор Тр. Коаксиальный излучатель состоит из N+1 коаксиальных рамок, соединенных между собой на концах оболочками электрически так, что образуется общая оболочка. Коаксиальный излучатель подключен к настроечным конденсаторам переменной емкости C1-CN+2 общей оболочкой и внутренними проводниками каждой рамки в отдельности с одного конца и к настроечным катушкам индуктивности L1-LN+2 - с другого. 1 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике. Планарная фазированная антенная решетка с формированием и сканированием луча содержит: планарный волновод, образованный верхним и нижним проводящими экранами с диэлектрическим слоем между ними; фазированную решетку, содержащую излучатели для формирования фронта электромагнитной волны внутри планарного волновода; по меньшей мере одну заднюю отражающую структуру, расположенную позади фазированной решетки; по меньшей мере одну отклоняющую структуру, выполненную в диэлектрическом слое таким образом, чтобы отклонять фронт электромагнитной волны внутри волновода, при этом значение диэлектрической проницаемости упомянутой отклоняющей структуры не равно значению диэлектрической проницаемости упомянутого диэлектрического слоя волновода. Верхний проводящий экран может быть короче нижнего проводящего экрана. Планарная фазированная антенная решетка может дополнительно содержать средство для преобразования вертикально поляризованной волны в упомянутом планарном волноводе в горизонтально поляризованную пространственную волну, формируемую вдоль внешней границы планарного волновода. Технический результат заключается в возможности получения компактной фазированной антенной решетки, обеспечивающей максимальный угол сканирования луча не меньше ±75 градусов. 3 н., 64 з.п. ф-лы, 10 ил.

Изобретение относится к антенной технике. Заявленный промежуточный возбудитель коротковолновой антенны подвижного объекта содержит индуктивный проводник, размещенный в экранированном подкрышевом пространстве подвижного объекта и подключенный одним концом к блоку дискретных реактивных нагрузок, а другим - через блок настройки и согласования к выходу бортовой коротковолновой радиостанции, причем периферийные трети индуктивного проводника, размещенного в подкрышевом пространстве, выполнены в виде сосредоточенных индуктивных нагрузок. Техническим результатом является расширение диапазона рабочих частот без увеличения габаритов подкрышевого пространства подвижного объекта и без снижения уровня трансформаторной связи с корпусом подвижного объекта. 3 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике, а именно к антенной технике и, в частности, предназначена для работы с УКВ радиостанциями, размещенными на подвижных объектах: летательных аппаратах (ЛА), автомобилях и т.п. Техническим результатом является разработка самолетной УКВ антенны, обеспечивающей более широкодиапазонную работу по согласованию. Самолетная УКВ антенна состоит из нижней 1 и верхней 2 частей, разделенных диэлектрической вставкой 3. Нижняя часть 2 выполнена в виде полого проводника, в полости которого размещены два отрезка 5, 6 коаксиального фидера, выполняющие роль трансформирующих элементов, нижние концы которых соответственно подключены к соответствующим входам сумматора 7, обеспечивающего согласование их суммарного сопротивления с волновым сопротивлением фидера 11 от бортовой радиостанции. Экранные оболочки отрезков 5, 6 электрически соединены друг с другом и с верхней кромкой нижней части 1 антенны, а их центральные проводники подключены к верхней части 2 антенны. 3 з.п. ф-лы, 5 ил.

Изобретение относится к антенной технике и может быть использовано при создании малогабаритных широко перестраиваемых антенных устройств для аппаратуры связи и передачи данных в СВ, KB диапазонах частот. Антенна содержит первый (1) и второй (2) соосно расположенные токопроводящие цилиндры, катушку индуктивности (4), а также N коммутаторов (4) и N дополнительных цилиндров (3), соосно расположенных с первым (1) и вторым (2) токопроводящими цилиндрами, соединенными таким образом, что в совокупности они образуют колебательный контур, настроенный на частоту излучаемого или принимаемого сигнала. Первый вывод катушки индуктивности (4) подключен к первому цилиндру (1), второй вывод катушки индуктивности (4) подключен к центральному проводнику (6) фидерной линии (7), питающей антенну, а к оплетке фидерной линии (7) подключен второй цилиндр (2). Второй цилиндр (2) расположен между первым цилиндром (1) и катушкой индуктивности (4). Дополнительные цилиндры (3) все вместе или в определенной комбинации, каждый через отдельный коммутатор из N коммутаторов (5), могут иметь электрическое соединение со вторым цилиндром (2), тем самым увеличивая длину второго цилиндра (2). Технический результат заключается в увеличении перестройки резонансной частоты антенны при сохранении эффективности, что позволяет обеспечить надежную связь в СВ, KB диапазонах частот мобильным и стационарным абонентам. 2 ил.
Наверх