Способ плакирования композиционных порошковых материалов

Изобретение относится к технологии плакирования композиционных порошковых материалов, которые могут быть использованы для напыления покрытий. Порошок зернистостью менее 20 мкм обрабатывают в растворе плакирования, содержащем соль осаждаемого металла, комплексообразователь и восстановитель. Причем перед обработкой смачивают порошок изопропиловым спиртом, перемешивают, вводят в раствор плакирования и ведут обработку порошка в нем при перемешивании сначала при температуре 25-30°C в течение 15-20 мин, затем при температуре 55-60°C с обеспечением полного восстановления ионов осаждаемого металла из раствора плакирования. Изопропиловый спирт используют в количестве 50 мл/л. Обеспечивается повышение качества плакирования. 2 з.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к технологии нанесения металлического покрытия на поверхность различных порошковых материалов, используемых для напыления покрытий со специальными свойствами, плазмохимическим, детонационным и другими методами.

Известны следующие способы нанесения металлического покрытия на поверхность порошковых материалов: осаждение из паровой фазы (патент РФ №2103112, МПК B22F 1/02, опубл. 27.01.1998 г., патент РФ №2087254, МПК B22F 1/02, опубл. 20.08.1997 г.); механическая обработка абразивных частиц и частиц металлических соединений, способных разлагаться или восстанавливаться (патент РФ №2149217, МПК С23С 24/04, опубл. 20.05.2000 г.); плазмохимическим методом (патент РФ №2493938, МПК B22F 9/16, опубл. 10.09.2013); нанесение покрытия с использованием твердофазных реакций. Этими способами наносятся покрытия при повышенных температурах, требуют дополнительных затрат на довольно сложное оборудование по устройству и эксплуатации и дорогостоящие материалы.

Электрохимический способ требует предварительного нанесения на диэлектрические материалы металлического подслоя с помощью других методов, что усложняет процесс плакирования.

Химическое нанесения металлического покрытия на поверхность порошковых материалов осуществляется без наложения электрического тока, что в основном и определяет специфику процесса. В основе способа лежит реакция восстановления иона металла с помощью восстановителя (Лататуев В.И. и др. Металлические покрытия химическим способом. Барнаул. Алтайское книжное издательство, 1968, с. 208).

В качестве восстановителя применяется гипофосфит натрия (калия), боразины, боразолы, боргидриды, соли гидразина, гидразин-гидрат, водород и другие.

Осадки, полученные из растворов, содержащих гипофосфит натрия, имеют в своем составе от 3% до 12% фосфора, что ограничивает их применение на деталях, работающих в условиях высоких температур, так как образующиеся сплавы никеля и фосфора имеют низкую температуру плавления. Для получения осадков никеля, не содержащих вредных примесей, применяют в качестве восстановителя гидразин-гидрат или водород.

При использовании в качестве восстановителя взрывоопасного водорода необходимо соблюдать особые требования к оборудованию (процесс плакирования проходит в автоклаве при повышенных давлениях и температуре), что осложняет его применение.

Химический способ восстановления металла из раствора гидразин-гидратом (Козлова Н.И., Коровин Н.В. О восстановлении соли никеля до металла гидразин-гидратом «Журнал прикладной химии» 1967, т. 40, с. 902-904) предусматривает обезжиривание, очистку, активацию и сенсибилизацию поверхности диэлектрика с последующим восстановлением металла на поверхности диэлектрика из раствора соли металла. Способ является медленным; повышение концентрации металла в растворе приводит к получению крупнодисперсного металла, выпадающего в осадок отдельно от покрываемого материала; степень покрытия низка (коэффициент покрытия 50-70%), что связано с низкой плотностью центров кристаллизации металла на поверхности диэлектрика; в этом способе трудно контролировать толщину слоя металла. Скорость осаждения металла возрастает с увеличением pH и температуры раствора и с уменьшением концентрации комплексообразователя.

Наиболее близким аналогом, выбранным в качестве прототипа, является способ (а.с. СССР №821063 МПК B22F 1/02, опубл. 15.04.1981 г.), в котором исключены предварительные операции подготовки поверхности порошка в специальных растворах. Предварительная подготовка поверхности порошка проводится в растворе химического осаждения, содержащем соли осаждаемого металла, комплексообразователь и восстановитель при активном перемешивании при температуре 30-60°C в течение 10-30 мин, затем повышают температуру до 75-90°C и продолжают процесс нанесения покрытия до полного восстановления ионов осаждаемого металла. Щелочная среда раствора и активное перемешивание способствуют очистке поверхности порошка. Наличие в растворе соли осаждаемого металла комплексообразователя и восстановителя при температурах, когда раствор термодинамически устойчив, активирует поверхность порошка и способствует образованию зародышей, являющихся каталитическими центрами, на которых начинается восстановление химически осаждаемого металла. Процесс покрытия сопровождается обильным выделением азота и ведется до полного восстановления ионов осаждаемых металлов. Необходимый химический состав готового продукта может быть обеспечен соотношением количества исходного порошка и соли осаждаемого металла в растворе.

Данный способ нанесения покрытий применим для порошков зернистостью не менее 20 мкм.

При нанесении покрытий на порошковые материалы зернистостью менее 20 мкм, благодаря большой развитой поверхности, наблюдается интенсивное выделение азота, что приводит к обильному пенообразованию. Частицы порошка, иногда плохо смачиваемые, увлекаются пузырьками выделяемого азота, переносятся в пену, коагулируются и не покрываются, что приводит к низкой степени покрытия, т.е. снижению качества порошка. Снижение температуры процесса существенно не влияет на процесс пенообразования и плакирования. Кроме того, в зависимости от технологии

получения порошка, на поверхности его частиц могут находиться примеси масел различного происхождения и других соединений, препятствующих переносу ионов металла непосредственно к поверхности частицы порошка.

Цель изобретения состоит в том, чтобы повысить степень покрытия и качество плакированных композиционных порошковых материалов зернистостью менее 20 мкм, получаемых путем обработки порошка в растворе плакирования, содержащем соли осаждаемого металла, комплексообразователь и восстановитель.

Поставленная цель достигается тем, что сухой порошок перед обработкой смачивают изопропиловым спиртом, перемешивают, вводят в раствор плакирования и ведут обработку в нем при перемешивании сначала при температуре 25-30°C в течение 15-20 мин, затем при температуре 55-60°C с обеспечением полного восстановления ионов осаждаемого металла из раствора плакирования, при этом изопропиловый спирт используют в количестве 50 мл/л.

Изопропиловый спирт - универсальный растворитель. Он является хорошим сольвентом для животных, растительных, эфирных и минеральных масел, а также для некоторых восков и смол. Предварительная обработка исходного порошкового материала изопропиловым спиртом обеспечивает обезжиривание поверхности частиц порошка, увеличивает ее смачиваемость и уменьшает поверхностное натяжение, что приводит к уменьшению пенообразования. Кроме того, он играет роль стабилизатора раствора. Он быстро испаряется и относительно нетоксичен, по сравнению с альтернативными растворителями.

Пример 1. В реактор, представляющий собой коническую емкость, покрытую эмалью, наливают раствор, содержащий 48 г/л хлористого никеля, 70 г/л лимоннокислого натрия, 200 мл/л гидразин-гидрата.

Обрабатываемый порошок в количестве 220 г/л смачивают изопропиловым спиртом в количестве 50 мл/л, перемешивают и переносят в раствор плакирования. С помощью трубчатого электронагревателя доводят температуру раствора до 30°C, включают механическую мешалку, устанавливают pH раствора 13-14 добавлением концентрированного раствора NaOH. При данных условиях обрабатывают покрываемый порошок в течение 20 мин. Затем нагревают раствор до 60°C и процесс никелирования ведут до полной выработки ионов никеля (обесцвечивание раствора). Цвет раствора проверяют с помощью стеклянной трубочки. Не удаляя порошка из реактора, раствор регенерируют путем добавления в него 48 г/л хлористого никеля. После восстановления новой порции ионов никеля регенерацию повторяют. Общее количество регенераций зависит от необходимого процентного содержания никеля в готовом продукте, но не более 9 раз, поскольку в растворе происходит накопление хлорида натрия, препятствующего протеканию процессу никелирования. По окончании процесса раствор сливают, а полученный порошок методом декантации тщательно промывают сначала 6-7 раз водопроводной водой, затем 1-2 раза дистиллированной водой. Сушат порошок при температуре 120-150°C.

Содержание никеля в готовом продукте 34,8%. Расчетное содержание никеля 35%. Для никелирования используются порошки карбидов, окислов, боридов, силицидов, нитридов, двойных боридов, карбонитрид титана и другие бинарные соединения, нерастворимые в данном электролите. При рассмотрении полученного порошка под микроскопом непокрытые частицы не выявлены. Полученный порошок легко сыпуч.

1. Способ плакирования композиционных порошковых материалов зернистостью менее 20 мкм, включающий обработку порошка в растворе плакирования, содержащем соль осаждаемого металла, комплексообразователь и восстановитель, причем перед обработкой сначала смачивают порошок изопропиловым спиртом, перемешивают, вводят в раствор плакирования и ведут обработку порошка в нем при перемешивании сначала при температуре 25-30°C в течение 15-20 мин, затем при температуре 55-60°C с обеспечением полного восстановления ионов осаждаемого металла из раствора плакирования, при этом изопропиловый спирт используют в количестве 50 мл/л.

2. Способ по п. 1, отличающийся тем, что в процессе обработки порошка в растворе плакирования при температуре 55-60°C в раствор плакирования дополнительно вводят новые порции соли осаждаемого металла с обеспечением заданного содержания металла в плакированном композиционном порошковом материале.

3. Способ по п. 1, отличающийся тем, что в процессе обработки порошка в растворе плакирования при температуре 55-60°C в раствор плакирования дополнительно вводят соли легирующих компонентов.



 

Похожие патенты:

Группа изобретений относится к способу получения органических частиц субстрата, связанных с переключаемыми ферромагнитными наночастицами со средним диаметром частиц в интервале от 10 до 1000 нм, к применению таких частиц для гипертермического лечения организма и к медикаменту для гипертермического лечения.
Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН).

Изобретение относится к ферромагнитной порошковой композиции и способу ее получения. Предложена ферромагнитная порошковая композиция, включающая магнитно-мягкие частицы сердцевины на основе железа, имеющие насыпную плотность 3,2-3,7 г/мл, и при этом поверхность частиц сердцевины снабжена неорганическим изоляционным слоем на основе фосфора и по меньшей мере одним металлоорганическим слоем из металлоорганического соединения предложенной структуры, расположенным снаружи первого неорганического изоляционного слоя на основе фосфора.

Изобретение относится к области металлургии, в частности к плазмохимическим способам получения нанодисперсных порошков методом переконденсации в низкотемпературной азотной плазме.
Изобретение относится к области электрохимии, а именно к способу перемешивания в вакууме частиц электрокатализаторов на углеродной основе, заключающемуся в том, что перемешивание производят в вакуумной рабочей камере, снабженной устройством подачи инертного газа и держателем порошка частиц электрокатализаторов.

Изобретение относится к нанотехнологии, в частности к способу получения модифицированных наночастиц железа, которые могут быть использованы при создании магнитоуправляемых материалов.

Изобретение относится к порошковой металлургии, в частности к получению модифицированных наночастиц железа. Может использоваться для изготовления магнитоуправляемых материалов/магнитореологических жидкостей, радиопоглощающих покрытий, уменьшающих радиолокационную заметность объектов.

Изобретение относится к порошковой металлургии, в частности к получению ферромагнитной порошковой композиции. Может использоваться в качестве сердечника в катушках индуктивности, статорах и роторах электрических машин, силовых приводах, датчиках и сердечниках трансформаторов.

Изобретение относится к порошковой металлургии, в частности к порошковой композиции на основе железа и используемой в ней композитной смазке. Порошковая композиция содержит железный порошок или порошок на основе железа и частицы композитной смазки.

Изобретение относится к порошковой металлургии, в частности к получению модифицированных нанопорошков оксида цинка. Может использоваться в качестве строительных герметиков, работающих при высоких деформирующих нагрузках и требующих повышенных значений обратимых относительных удлинений.

Изобретение относится к области управления переносом тепловой энергии через материалы, а именно к термобарьерному покрытию и способу его нанесения. Термобарьерное покрытие, нанесенное на подложку, содержит металлические наночастицы с нанесенным на них стекловидным составом, образующие упорядоченную структуру и вплавленные в стекловидную матрицу для удержания в ней. Наночастицы расположены на расстояниях друг от друга, равных длине волны фононов, переносящих тепловую энергию через упомянутое покрытие. Способ нанесения термобарьерного покрытия на подложку включает нанесение стекловидного состава на металлические наночастицы, расположенные на расстояниях друг от друга, равных длине волны фононов, переносящих тепловую энергию через упомянутое покрытие, и вплавление стекловидного состава, нанесенного на металлические наночастицы, в стеклянную матрицу для удерживания в ней упомянутых наночастиц. Обеспечивается термобарьерное покрытие, регулирующее поток тепла через материал с помощью механизма фононной интерференции, которое является надежным и прочным и которое может быть нанесено на относительно большие поверхности. 2 н. и 13 з.п. ф-лы, 14 ил.

Изобретение относится к нанесению боросиликатного покрытия на частицы порошкообразного гидрида титана, применяемого в ядерной энергетике в качестве нейтронопоглощающего материала. Частицы гидрида титана обрабатывают сначала раствором, содержащим метилсиликанат натрия и воду, затем частицы высушивают и обрабатывают раствором, содержащим борную кислоту и воду, после чего частицы высушивают и проводят их термообработку при температуре 175-200°C с образованием на частицах боросиликатного покрытия. Обеспечивается увеличение температуры термического разложения гидрида титана до 585°С при сохранении удельного содержания водорода. 2 ил., 1 табл., 1 пр.

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь дополнительно вводят тонкодисперсный порошок оксидов алюминия, или оксидов кремния, или оксидов титана с размером частиц 20-40 мкм в количестве 5-10 мас.%. Проводят механическую обработку порошковой смеси в высокоэнергетической истирательной установке в течение 30 мин при скоростях вращения 1400-2000 об/мин. В качестве армирующего нанопорошка используют карбиды, нитриды и карбонитриды в количестве 50 мас.%. В качестве матричного порошка используют порошки металлов или их сплавов с твердостью не выше 235 HV и с размером частиц, определяемым по заданному соотношению. Обеспечивается повышение твердости и снижение пористости покрытий, получаемых с использованием армированного порошкового материала. 3 ил., 1 табл., 2 пр.

Изобретение может быть использовано при электродуговой сварке для модифицирования металла сварного шва наноразмерными тугоплавкими частицами. Рубленую сварочную проволоку диаметром 1-2 мм и длиной 1-2 мм смешивают с модифицирующей добавкой диоксида титана с помощью высокоэнергетической планетарной мельницы с ускорением частиц не менее 20 g. Компоненты берут в следующем соотношении, мас.%: модифицирующая добавка диоксида титана 0,3-0,8, рубленая сварочная проволока остальное. В процессе обработки происходит дробление гранулята с образованием ювенильных поверхностей, а также измельчение химической добавки до наноразмерного порядка. Образуются химические связи между добавкой и гранулятом, что повышает стабильность состава, а нанодисперсные частицы модифицирующей добавки служат готовыми центрами кристаллизации в процессе модифицирования. Техническим результатом изобретения является повышение стабильности механических свойств и сопротивляемости металла шва хрупкому разрушению сварных соединений. 3 ил., 4 табл., 3 пр.

Изобретение относится к получению наночастиц с ядром из ферромагнитного металла и диэлектрической оболочкой из оксида алюминия. В способе по варианту 1 проводят плазменную переконденсацию в токе инертного газа частиц порошка оксида алюминия с нанесенным на их поверхность покрытием из ферромагнитного металла с массовой долей от 25 до 75 мас.%, при этом обеспечивают послойное испарение упомянутых частиц и последующее образование наночастиц путем первичной конденсации кластеров из ферромагнитного металла и конденсации на них паров оксида алюминия. В способе по варианту 2 проводят плазменную переконденсацию в токе инертного газа смеси порошков, состоящей из порошка оксида алюминия с нанесенным на его поверхность покрытием из ферромагнитного металла и порошка ферромагнитного металла. Обеспечивается равномерность распределения компонентов во всей массе получаемых наночастиц. 2 н. и 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к реакторам для осаждения материалов на поверхности при последовательном использовании самоограниченных поверхностных реакций. Способ атомно-слоевого осаждения (АСО) покрытия на поверхность частиц дисперсного материала включает установку картриджа для атомно-слоевого осаждения (картриджа АСО) в приемник реактора АСО посредством осуществления быстроразъемного соединения, причем картридж АСО сконфигурирован с возможностью выполнения функции реакционной камеры АСО, обработку поверхности дисперсного материала в картридже АСО путем обработки дисперсного материала в расположенных одно над другим отделениях картриджа, каждое из которых отделено от смежного отделения пластинчатым фильтром. Реактор АСО покрытия на поверхность частиц дисперсного материала содержит приемник, сконфигурированный для установки в реактор АСО, посредством осуществления быстроразъемного соединения картриджа АСО, сконфигурированного с возможностью выполнения функции реакционной камеры АСО, и линию или линии подачи, сконфигурированную или сконфигурированные с возможностью подачи в картридж АСО паров прекурсоров для осуществления обработки поверхности дисперсного материала в картридже АСО. Картридж АСО представляет собой съемный картридж, который посредством приемника с помощью быстроразъемного соединения прикреплен к корпусу реактора АСО, при этом обеспечивается возможность обработки поверхности дисперсного материала внутри картриджа. Указанный картридж содержит пластинчатые фильтры, установленные друг над другом, с образованием между ними отделений для нанесения покрытия на дисперсный материал. Аппарат для АСО покрытия на поверхность частиц дисперсного материала содержит упомянутые реактор АСО и картридж АСО. Обеспечивается тонкое покрытие на мелких частицах, позволяющее изменить их поверхностные свойства при сохранении их объемных свойств. 4 н. и 13 з.п. ф-лы, 12 ил.

Изобретение относится к порошку сплава, содержащему уран и молибден в метастабильной γ-фазе, композиции порошков, заключающей в себе указанный порошок, а также к вариантам использования упомянутого порошка сплава и упомянутой композиции порошков для изготовления тепловыделяющих элементов, в частности топливных элементов для экспериментальных ядерных реакторов, и мишеней, предназначенных для получения радиоактивных элементов, в частности, для формирования изображений в области медицины. Порошок сплава образован частицами, состоящими из ядра из сплава на основе урана, содержащего молибден в метастабильной γ-фазе, которое покрыто слоем оксида алюминия, находящимся в контакте с ядром. Композиция порошков для изготовления тепловыделяющего элемента или мишени для получения радиоактивного элемента включает порошок сплава на основе урана, содержащий молибден в метастабильной γ-фазе, смешанный с порошком, содержащим алюминий, причем порошок сплава на основе урана, содержащий молибден, составляет 65-90 мас.% от массы композиции порошков, а порошок, содержащий алюминий, имеет массовое содержание алюминия, равное по меньшей мере 80%. Изобретение направлено на повышение стойкости композиции к воздействию нейтронного излучения. 13 н. и 18 з.п. ф-лы, 2 пр., 1 табл., 9 ил.

Изобретение относится к пассивированию тонкого порошка алюминия. Способ включает термическую обработку и последующее охлаждение порошка, при этом порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м3 в течение 30-150 мин. Обеспечивается образование на поверхности частиц порошка оксидной пленки Al2O3 при сохранении содержания активного алюминия в порошке более 98%. 1 ил., ; пр.

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками. В качестве начального компонента выбирают наноразмерный порошок аэросила (SiO2) с удельной поверхностью 350-380 м2/г, сушат в вакууме в течение 1-3 часов. На порошок аэросила наносят пленки оксида железа и оксида лития толщиной от 1-3 нм методом молекулярного наслаивания до достижения стехиометрического состава Li2FeSiO4 и проводят диффузионное перемешивание полученного состава Li2FeSiO4 при температуре от 300°C до 500°C в течение 8-15 часов. Изобретение позволяет получать катодный материал на основе Li2FeSiO4, обладающий высокой удельной поверхностью и высокой удельной емкостью, с равномерным распределением химического состава по объему всего порошка и бездефектной кристаллической структурой. 1 табл.

Группа изобретений относится к получению наночастиц типа сердцевина/оболочка и материалам для термоэлектрического преобразования. Способ получения наночастиц включает генерирование плазмы в растворе, содержащем два типа растворенных солей металлов, с обеспечением высаживания первого металла и второго металла. Сначала генерируют плазму путем приложения первой мощности с обеспечением селективного высаживания упомянутого первого металла, который имеет больший окислительно-восстановительный потенциал, чем упомянутый второй металл, для формирования сердцевин наночастиц. Затем генерируют плазму путем приложения второй мощности, которая больше первой мощности, с обеспечением высаживания упомянутого второго металла, который имеет меньший окислительно-восстановительный потенциал, чем упомянутый первый металл, на поверхности упомянутых сердцевин из первого металла для формирования оболочек наночастиц. Материал для термоэлектрического преобразования получают спеканием наночастиц. Обеспечивается предотвращение испарения легкоиспаряющегося элемента в процессе спекания, а также отсутствие примесей от восстановителя. 3 н. и 6 з.п. ф-лы, 10 ил., 3 табл., 3 пр.
Наверх