Способ и система обнаружения преамбулы

Изобретение относится к системам беспроводной связи и предназначено для повышения эффективности обнаружения преамбулы в системе широкополосного множественного доступа с кодовым разделением каналов и предоставляет способ обнаружения преамбулы. Изобретение раскрывает в частности способ обнаружения преамбулы, включающий следующие действия: чипы преамбулы разделяются на множество блоков чипов, и коррелятивное накопление выполняется на множестве блоков чипов для получения множественных групп частичных произведений компонентов сигнатур; компенсация положительного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и компенсация отрицательного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняются для множественных групп результатов компенсации положительного сдвига частоты, и когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняются на множественных группах результатов компенсации отрицательного сдвига частоты. 2 н. и 12 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Описание относится к области коммуникаций и, в частности к способу и системе определения преамбулы.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

В системе широкополосного множественного доступа с кодовым разделением каналов (WCDMA) пользовательское оборудования (UE) получает доступ к системе WCDMA через физический канал случайного доступа (PRACH).

Перед тем, как UE получает доступ к ячейке системы WCDMA, UE должно передать преамбулу на базовую станцию через PRACH. Базовая станция обнаруживает преамбулу для определения того, присутствует ли UE, запрашивающее доступ. Если базовая станция не обнаруживает присутствие UE, запрашивающего доступ, базовая станция не передает индикатор получения (AI) на UE. Затем, UE увеличивает мощность передачи преамбулы в соответствии с длиной шага, обозначенной базовой станцией, и повторно передает преамбулу в следующий таймслот распределенного доступа до тех пор, пока UE не примет AI от базовой станции, или количество раз передачи преамбулы не достигнет допустимого максимального количества, или мощность передачи не превысит максимальную допустимую мощность. Если базовая станция обнаруживает, что присутствует UE, запрашивающее доступ, базовая станция передает AI через канал индикатора получения (AICH) для уведомления UE о необходимости передачи сообщения случайного доступа. На этот момент, процесс обнаружения преамбулы завершается.

На фиг.1 изображена блок-схема схемы обнаружения преамбулы в уровне техники. Как показано на фиг.1, существующая схема обнаружения преамбулы главным образом включает выполнение коррелятивного накопления, вращение фаз, компенсацию сдвига частоты (элемент разрешения по частоте), когерентное накопление, согласование сигнатур и некогерентное накопление над преамбулой, успешно использующей алгоритм интегральной операции обнаружения преамбулы. Профиль амплитудной задержки (ADP) получают в каждой точке дискретизации. Если присутствуют множественные сдвиги частот, необходимо повторить вышеуказанный процесс операции для каждого сдвига частоты.

В существующей схеме обнаружения преамбулы, интегральная операция обнаружения преамбулы для одной антенны может быть выражена как:

где y(256k+m*Nc+16i+j) представляет основные данные чипа; c*(256k+m*Nc+16i+j) представляет сопряженное значение кода скремблирования; i представляет порядковый номер 16-чиповых данных, используемых для дескремблирования (каждый компонент сигнатуры содержит 16 чипов); в e j ( π 4 + π 2 ( 256 k + m N c + 16 i + j ) ) , первая j представляет мнимую единицу, а вторая j представляет порядковый номер компонента сигнатуры (каждая сигнатура содержит 16 компонентов сигнатур); k представляет порядковый номер символов когерентного накопления; m представляет порядковый номер групп, участвующих в некогерентном накоплении, и m=0, 1 … 4096/Nc-1; fe представляет компенсированный сдвиг частоты; Nc представляет длину когерентного накопления; и s n j представляет j-й компонент сигнатуры n, и n=0, 1, …, 15.

В реальном применении системы WCDMA, как правило, необходимо выбрать число сдвигов частоты и положение, основанное на числе секторов и радиусе ячейки. Для одного того же PRACH, когда обнаружение преамбулы выполняется с использованием разных сдвигов частот, используемая преамбула и окно поиска являются теми же. При этих условиях существующая схема обнаружения преамбулы вызывала бы две следующие проблемы.

1. Так как вращение фаз связано с каждым из 4096 чипов, процесс вычисления является сложным, занимается большое количество аппаратных ресурсов, и процесс обработки проходит медленно.

2. Ряд аппаратных ресурсов последовательно завершает процесс обнаружения преамбулы сдвига частоты. При переключении на другой сдвиг частоты для выполнения обнаружения преамбулы, операция выбора 4096 чипов, операция выбора данных окна поиска и результат обработки коррелятивного накопления не могут быть разделены, таким образом, необходимо совершить большое количество повторяющейся работы. Ряд аппаратных ресурсов должен добавляться каждый раз, когда добавляется сдвиг частоты. Следовательно, эффективность работы низкая.

Краткое изложение сущности изобретения

С учетом вышеизложенного, изобретение предназначено для обеспечения способа и системы обнаружения преамбулы, которые могут эффективно выполнить обнаружение преамбулы в системе WCDMA.

С этой целью технические решения изобретения реализуются следующим образом.

Изобретение предоставляет способ обнаружения преамбулы, который включает этапы, на которых:

чипы преамбулы разделяются на множество блоков чипов, и коррелятивное накопление выполняется на множестве блоков чипов для получения множественных групп частичных произведений компонентов сигнатур;

компенсация положительного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и компенсация отрицательного сдвига частоты выполняется на множественных группах частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; и

когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняют на множественных группах результатов компенсации положительного сдвига частоты, и когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняют на множественных группах результатов компенсации отрицательного сдвига частоты.

В способе, этап, на котором выполняют компенсацию положительного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур и выполняют компенсацию отрицательного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур, может включать:

умножение каждой группы частичных произведений компонентов сигнатур 16 групп частичных произведений компонентов сигнатур, полученных после коррелятивного накопления на значения компенсации сдвига частоты e j 2 π f e t k и e j 2 π ( f e ) t k соответственно.

В способе, этап, на котором выполняют когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны на множественных группах результатов компенсации положительного сдвига частоты и когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации отрицательного сдвига частоты, может включать:

выполнение когерентного накопления на 16 группах результатов компенсации положительного сдвига частоты и выполнение когерентного накопления на 16 группах результатов компенсации отрицательного сдвига частоты;

выполнение вращения фаз соответственно на результатах, полученных после когерентного накопления, с использованием коэффициента вращения фаз e j ( π 4 + π 2 j ) ;

выполнение согласования сигнатур и вычисления комплексного модуля соответственно на результате, полученном после вращения фаз; и

выполнение объединения двойной антенны соответственно на результатах, полученных после согласования сигнатур и вычисления комплексного модуля.

В способе, этап, на котором выполняют когерентное накопление на множественных группах результатов компенсации положительного сдвига частоты и когерентное накопление выполняют на множественных группах результатов компенсации отрицательного сдвига частоты, может включать:

выполнение когерентного накопления частичных произведений тех же компонентов сигнатур на 16 группах результатов компенсации положительного сдвига частоты и выполнение когерентного накопления частичных произведений тех же компонентов сигнатур на 16 группах результатов компенсации отрицательного сдвига частоты; если длина когерентного накопления Nc равна 4096, выполнение когерентного накопления на 16 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты, произведений тех же компонентов сигнатур на 16 группах результатов компенсации положительного сдвига частоты и выполнение когерентного накопления частичных произведений тех же компонентов сигнатур на 16 группах результатов компенсации отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, выполнение когерентного накопления на первых 8 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты, и выполнение когерентного накопления на последних 8 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты, для вывода двух групп из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывода двух групп 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты.

В способе, этап, на котором выполняют вращение фаз соответственно на результатах, полученных после когерентного накопления, может включать:

вращение частичных произведений компонентов сигнатур, соответствующих j, на ( π 4 + π 2 j ) градусов в соответствии со значением порядкового номера j 16 компонентов сигнатур; если длина когерентного накопления Nc равна 4096, вывод группы из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывод группы из 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, вывод двух групп из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывод двух групп из 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты.

В способе, этап, на котором выполняют согласование сигнатур и вычисление комплексного модуля соответственно на результате, полученном после вращения фаз, может включать:

умножение результата вращения фаз положительного сдвига частоты и результата вращения фаз отрицательного сдвига частоты соответственно на матрицу Адамара:

где rot(15), rot(14), …, rot(0) представляют 16 частичных произведений компонентов сигнатур, выведенных после вращения фаз; hat(15), hat(14), …, hat(0) представляют результаты, полученные после согласования сигнатур; и s n j представляет j-й компонент сигнатуры n, где n=0, 1, 15, и j=0, 1, 15; и

выполнение вычисления комплексного модуля на результат, полученный после согласования сигнатур; если длина когерентного накопления Nc равна 4096, вывод группы из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод группы из 16 частичных произведений сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, вывод двух групп из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод двух групп из 16 частичных произведений сигнатур для отрицательного сдвига частоты.

В способе, этап, на котором выполняют объединение двойной антенны соответственно на результатах, полученных после согласования сигнатур и вычисления комплексного модуля, может включать:

после завершения согласования сигнатур и вычисления комплексного модуля, вычисление среднего из результатов двух антенн, подвергаемых согласованию сигнатур, и вычисление комплексного модуля в каждом частичном произведении компонентов сигнатур; если длина когерентного накопления Nc равна 4096, вывод группы из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод группы из 16 частичных произведений сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, вывод двух групп из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод двух групп из 16 частичных произведений сигнатур для отрицательного сдвига частоты.

В способе, способ может дополнительно включать: когда длина когерентного накопления Nc равна 2048,

выполнение некогерентного накопления на двух группах из множественных частичных произведений сигнатур, при этом две группы множественных частичных произведений сигнатур получают посредством завершения объединения двойной антенны для того же сдвига частоты.

В способе, этап, на котором выполняют некогерентное накопление на двух группах множественных частичных произведениях сигнатур, может включать то, что:

для каждого положительного сдвига частоты и отрицательного сдвига частоты, после завершения согласования сигнатур присутствует две группы из 16 частичных произведений сигнатур; выполняют некогерентное накопление на двух группах из 16 частичных произведений сигнатур, полученных после объединения двойной антенны для того же сдвига частоты, для вывода группы из 16 профилей амплитудной задержки (ADPs) для положительного сдвига частоты и вывода группы из 16 ADPs для отрицательного сдвига частоты.

Способ может дополнительно включать:

вычисление максимального ADP и данных о шуме, и сообщение максимального ADP и данных о шуме соответствующей подсистеме.

В вышеописанном способе, этап, на котором вычисляют максимальный ADP и данные о шуме и сообщают максимальный ADP и данные о шуме соответствующей подсистеме, может включать:

упорядочивание ADPs, соответствующих тем же сигнатурам и тому же сдвигу частоты, которые получают посредством выполнения обнаружения преамбулы на всех положениях для поиска той же задачи обнаружения преамбулы, для получения 16 максимальных ADPs; получение 512 максимальных ADPs в соответствии с 256 максимальными ADPs, соответствующими положительному сдвигу частоты, и 256 максимальными ADPs, соответствующими отрицательному сдвигу частоты; выполнение кумулятивного накопления на остальных ADPs, полученных после удаления 256 максимальных ADPs, соответствующих положительному сдвигу частоты, из всех ADPs, соответствующих положительному сдвигу частоты, для получения данных о шуме положительного сдвига частоты, и выполнение кумулятивного накопления на остальных ADPs, полученных после удаления 256 максимальных ADPs, соответствующих отрицательному сдвигу частоты, из всех ADPs; соответствующих отрицательному сдвигу частоты, для получения данных о шуме отрицательного сдвига частоты; и упаковывание 512 максимальных ADPs и двух наборов данных о шуме и сообщение упакованных 512 максимальных ADPs и двух наборов данных о шуме соответствующей подсистеме.

Изобретение также предоставляет систему обнаружения преамбулы, которая содержит: блок коррелятивного накопления, блок компенсации и блок параллельной обработки, при этом

блок коррелятивного накопления сконфигурирован для разделения чипов преамбулы на множество блоков чипов и выполнения коррелятивного накопления на блоках чипов для получения множественных групп частичных произведений компонентов сигнатур;

блок компенсации сконфигурирован для: выполнения компенсации положительного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и выполнения компенсации отрицательного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; и

блок параллельной обработки сконфигурирован для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисление комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации положительного сдвига частоты, и выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации отрицательного сдвига частоты.

В системе блок параллельной обработки может дополнительно содержать:

первый блок обработки, сконфигурированный для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации положительного сдвига частоты; и

второй блок обработки, сконфигурированный для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации отрицательного сдвига частоты.

Система может дополнительно содержать:

блок некогерентного накопления, сконфигурированный для выполнения, когда длина когерентного накопления Nc равна 2048, некогерентного накопления на двух группах множественных частичных произведений сигнатур, при этом две группы множественных частичных произведений сигнатур получены посредством завершения объединения двойной антенны для того же сдвига частоты; и

блок упорядочивания и накопления данных о шуме, сконфигурированный для вычисления максимального ADP и данных о шуме и для сообщения максимального ADP и данных о шуме соответствующей подсистеме.

В способе и системе обнаружения преамбулы, предоставляемых изобретением, чипы преамбулы разделяются на множество блоков чипов, и коррелятивное накопление выполняется на множестве блоков чипов для получения множественных групп частичных произведений компонентов сигнатур; компенсация положительного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и компенсация отрицательного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняются для множественных групп результатов компенсации положительного сдвига частоты, и когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняются на множественных группах результатов компенсации отрицательного сдвига частоты. То есть, компенсация положительного сдвига частоты и последующая обработка и соответствующие операции выполняются на каждой группе множественных групп частичных произведений компонентов сигнатур, и компенсация отрицательного сдвига частоты и последующая обработка и соответствующие операции выполняются на каждой группе множественных групп частичных произведений компонентов сигнатур, так что скорость обработки может удваиваться для эффективного осуществления обнаружения преамбулы в системе WCDMA. При добавлении обработки типа сдвига частоты требуется добавить только один набор аппаратных ресурсов на этапах когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны. По сравнению с существующим способом добавления полного набора ресурсов, в изобретении скорость обработки удваивается без удвоения аппаратных ресурсов. Поэтому, изобретение может снизить стоимость, имеет хорошую расширяемость, и может гибко настроить число сдвигов частоты для параллельной обработки.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На фиг.1 изображена блок-схема схемы обнаружения преамбулы в уровне техники;

на фиг.2 изображена блок-схема способа обнаружения преамбулы согласно изобретению;

на фиг.3 изображен специальный процесс способа обнаружения преамбулы согласно изобретению; и

на фиг.4 изображена структурная схема системы обнаружения преамбулы согласно изобретению.

ПОДРОБНОЕ ОПИСАНИЕ

Основная идея изобретения заключается в следующем: чипы преамбулы разделяются на множество блоков чипов, и коррелятивное накопление выполняется на множестве блоков чипов для получения множественных групп частичных произведений компонентов сигнатур; компенсация положительного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и компенсация отрицательного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняются для множественных групп результатов компенсации положительного сдвига частоты, и когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняются на множественных группах результатов компенсации отрицательного сдвига частоты.

Далее изобретение детально рассматривается со ссылкой на графические материалы и конкретные варианты осуществления.

Изобретение предоставляет способ обнаружения преамбулы. На фиг.2 изображена блок-схема способа обнаружения преамбулы согласно изобретению. Как изображено на фиг.2, способ включает следующие этапы:

Этап 201: Алгоритм интегральной операции обнаружения преамбулы упрощается.

А именно, коэффициент вращения фаз e j ( π 4 + π 2 ( 256 k + m N c + 16 i + j ) ) в существующем алгоритме интегральной операции обнаружения преамбулы упрощается как e j ( π 4 + π 2 j ) . Упрощенный алгоритм интегральной операции обнаружения преамбулы следующий:

Таким образом, коэффициент вращения фаз, который изначально коррелируется с каждым чипом, теперь коррелируется только с компонентом сигнатуры j, таким образом упрощая алгоритм интегральной операции обнаружения преамбулы.

Этап 202: Чипы преамбулы разделяются на множество блоков чипов, и коррелятивное накопление выполняется на множестве блоков чипов для получения множественных групп частичных произведений компонентов сигнатур.

А именно, согласно порядку блок 15, блок 14, …, блок 0, 4096 чипов преамбулы разделяются на 16 256-чиповых блоков и помещаются в кэш. Каждый 256-чиповый блок содержит 16 строк и 16 столбцов 256 чипов. Как показано на фиг.3, в 16 256-чиповых блоках, чипы упорядочиваются в каждый 256-чиповый блок справа налево и снизу вверх по возрастанию порядкового номера 4096 чипов.

Согласно протоколу 3GPP, может быть сгенерировано 4096 Clong,1,n скремблирующих кодов. Сгенерированные скремблирующие коды помещаются в кэш таким же образом как и 4096 чипов преамбулы.

Помещенные в кэш 4096 чипов и помещенные в кэш 4096 скремблирующих кодов соответственно перемножаются, то есть, p-й чип умножается на p-й скремблирующий код, где р=0, 1, …4095. Как показано на фиг.3, произведения каждого чипа и соответствующего скремблирующего кода в одной и той же строке каждого 256-чипового блока суммируются для получения 16 групп из 16 частичных произведений компонентов сигнатур.

В данном варианте осуществления, частичное произведение относится к накопленному значению, полученному после каждого этапа в процессе обнаружения преамбулы.

Этап 203: Компенсация положительного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и компенсация отрицательного сдвига частоты выполняется на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты.

А именно, компенсация положительного сдвига частоты и компенсация отрицательного сдвига частоты выполняются соответственно на каждой группе 16 из частичных произведений компонентов сигнатур 16 групп из 16 частичных произведений компонентов сигнатур, полученных после коррелятивного накопления на основании точности соответствующей 256 чипам. То есть, каждая группа частичных произведений компонентов сигнатур умножается на значения компенсации сдвига частоты e j 2 π f e t k и e j 2 π ( f e ) t k соответственно. Как показано на фиг.3, после завершения компенсации положительного сдвига частоты и компенсации отрицательного сдвига частоты, выводятся 16 групп результатов компенсации положительного сдвига частоты и 16 групп результатов компенсации отрицательного сдвига частоты соответственно.

Этап 204: Когерентное накопление выполняется на множественных группах результатов компенсации положительного сдвига частоты, и когерентное накопление выполняется на множественных группах результатов компенсации отрицательного сдвига частоты.

Конкретно, в реальном применении может добавляться набор аппаратных ресурсов для выполнения соответствующим образом когерентного накопления частичных произведений тех же компонентов сигнатур на 16 группах результатов компенсации положительного сдвига частоты и 16 группах результатов компенсации отрицательного сдвига частоты. Длина когерентного накопления Nc может иметь различные значения при вычислении когерентного накопления. В варианте осуществления, в качестве примеров приняты Nc=4096 и Nc=2048. Во время когерентного накопления, если длина когерентного накопления Nc равна 4096, когерентное накопление выполняется на 16 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты. Если длина когерентного накопления Nc равна 2048, когерентное накопление выполняется на первых 8 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты, и когерентное накопление выполняется на последних 8 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты. Как показано на фиг.3, после завершения когерентного накопления, если длина когерентного накопления Nc равна 4096, группа из 16 частичных произведений компонентов сигнатур выводится для положительного сдвига частоты, и группа из 16 частичных произведений компонентов сигнатур выводится для отрицательного сдвига частоты. Если длина когерентного накопления Nc равна 2048, две группы из 16 частичных произведений компонентов сигнатур выводятся для положительного сдвига частоты, и две группы из 16 частичных произведений компонентов сигнатур выводятся для отрицательного сдвига частоты.

Этап 205: Вращение фаз выполняется соответственно на результатах, полученных после когерентного накопления, с использованием коэффициента вращения фаз e j ( π 4 + π 2 j ) .

Конкретно, так как алгоритм интегральной операции обнаружения преамбулы упрощается на Этапе 201, вращение фаз выполняется соответственно на результатах положительного сдвига частоты и отрицательного сдвига частоты, полученных после когерентного накопления, с использованием упрощенного коэффициента вращения фаз e j ( π 4 + π 2 j ) . То есть, частичные произведения компонентов сигнатур, соответствующие j вращаются на ( π 4 + π 2 j ) градусов согласно значению порядкового номера (вторая j в упрощенном алгоритме интегральной операции обнаружения преамбулы) 16 компонентов сигнатур в каждой группе компонентов сигнатур. Как показано на фиг.3, после завершения вращения фаз, если длина когерентного накопления Nc равна 4096, группа из 16 частичных произведений компонентов сигнатур выводится для положительного сдвига частоты, и группа из 16 частичных произведений компонентов сигнатур выводится для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, две группы из 16 частичных произведений компонентов сигнатур выводятся для положительного сдвига частоты, и две группы из 16 частичных произведений компонентов сигнатур выводятся для отрицательного сдвига частоты.

Этап 206: Согласование сигнатур и вычисление комплексного модуля выполняются соответственно на результате, полученном после вращения фаз.

Конкретно, согласование сигнатур выполняется на результате вращения фаз положительного сдвига частоты и результате вращения фаз отрицательного сдвига частоты соответственно. То есть, результат вращения фаз положительного сдвига частоты и результат вращения фаз отрицательного сдвига частоты умножаются на матрицу Адамара соответственно; здесь матрица Адамара может иметь вид:

где rot(15), rot(14), …… rot(0) представляют 16 частичных произведений компонентов сигнатур, выведенных после вращения фаз; hat(15), hat(14), ……, hat(0) представляют результаты, полученные после согласования сигнатур; и s n j представляет j-й компонент сигнатуры n, где n=0, 1, 15, и j=0, 1, 15; и

Как показано на фиг.3, вычисление комплексного модуля должно быть выполнено после согласования сигнатур. Если длина когерентного накопления Nc равна 4096, группа из 16 частичных произведений сигнатур выводится для положительного сдвига частоты, и группа из 16 частичных произведений сигнатур выводится для отрицательного сдвига частоты. Если длина когерентного накопления Nc равна 2048, две группы из 16 частичных произведений сигнатур выводятся для положительного сдвига частоты, и две группы из 16 частичных произведений сигнатур выводятся для отрицательного сдвига частоты.

Этап 207: Объединение двойной антенны выполняется соответственно на результатах, полученных после согласования сигнатур и вычисления комплексного модуля.

Конкретно, каждый чип содержит группу данных двойной антенны. После завершения согласования сигнатур и вычисления комплексного модуля, объединение двойной антенны выполняется соответственно на результатах, полученных после согласования сигнатур и вычисления комплексного модуля. То есть, средний из результатов двух антенн, подвергаемых согласованию сигнатур и вычислению комплексного модуля, вычисляется в каждом частичном произведении компонентов сигнатур. Как показано на фиг.3, после завершения объединения двойной антенны, если длина когерентного накопления Nc равна 4096, группа из 16 частичных произведений сигнатур выводится для положительного сдвига частоты, и группа из 16 частичных произведений сигнатур выводится для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, две группы из 16 частичных произведений сигнатур выводятся для положительного сдвига частоты и две группы из 16 частичных произведений сигнатур выводятся для отрицательного сдвига частоты.

Этап 208: Если длина когерентного накопления Nc равна 4096, после завершения объединения двойной антенны, группа из 16 частичных произведений сигнатур получается для положительного сдвига частоты, и группа из 16 частичных произведений сигнатур получается для отрицательного сдвига частоты. Здесь не требуется выполнять обработку некогерентного накопления, так как присутствует только одна группа из 16 частичных произведений сигнатур для положительного сдвига частоты, и присутствует только одна группа из 16 частичных произведений сигнатур для отрицательного сдвига частоты.

Как показано на фиг.3, если длина когерентного накопления Nc равна 2048, не когерентное накопление выполняется на двух группах множественных частичных произведений сигнатур, при этом две группы из множественных частичных произведений сигнатур получаются посредством завершения объединения двойной антенны для того же сдвига частоты. Конкретно, для каждого положительного сдвига частоты и отрицательного сдвига частоты, после завершения согласования сигнатур присутствуют две группы из 16 частичных произведений сигнатур, в этом случае некогерентное накопление выполняется на двух группах из 16 частичных произведений сигнатур, полученных после завершения объединения двойной антенны для того же сдвига частоты, для вывода группа из 16 ADPs для положительного сдвига частоты и вывода группы из 16 ADP для отрицательного сдвига частоты.

Этапы 203-208 являются необходимыми для 4096 чипов из всех положений для поиска преамбулы той же задачи обнаружения преамбулы, и результаты, полученные после Этапов 203-208, объединяются на этапе 209.

Этап 209: Вычисляют максимальный ADP и данные о шуме, и максимальный ADP и данные о шуме сообщаются соответствующей подсистеме.

Конкретно, ADPs, соответствующие тем же сигнатурам и тому же сдвигу частоты, которые получаются посредством выполнения обнаружения преамбулы на всех положениях для поиска той же задачи обнаружения преамбулы, упорядочиваются для получения 16 максимальных ADPs. 512 максимальных ADPs получаются согласно 256 максимальным ADPs, соответствующим положительному сдвигу частоты, и 256 максимальным ADPs, соответствующим отрицательному сдвигу частоты. Затем, кумулятивное накопление выполняется на остальных ADPs, полученных после удаления 256 максимальных ADPs, соответствующих положительному сдвигу частоты, из всех ADPs, соответствующих положительному сдвигу частоты, для получения данных о шуме положительного сдвига частоты, и кумулятивное накопление выполняется на остальных ADPs, полученных после удаления 256 максимальных ADPs, соответствующих отрицательному сдвигу частоты, из всех ADPs, соответствующих отрицательному сдвигу частоты, для получения данных о шуме отрицательного сдвига частоты. Наконец, 512 максимальных ADPs и два набора данных о шуме упаковываются и затем сообщаются соответствующей подсистеме, так что соответствующая подсистема может определить наличие преамбулы, при этом вычисляется положение преамбулы и рассчитывается сдвиг.

Чтобы выполнить вышеуказанный способ, изобретение также обеспечивает систему обнаружения преамбулы, которая применяется к системе WCDMA. На фиг.4 изображена структурная схема системы обнаружения преамбулы согласно изобретению. Как показано на фиг.4, система содержит: блок 41 коррелятивного накопления, блок 42 компенсации и блок 43 параллельной обработки.

Блок 41 коррелятивного накопления сконфигурирован для разделения чипов преамбулы на множество блоков чипов и выполнения коррелятивного накопления на блоках чипов для получения множественных групп частичных произведений компонентов сигнатур.

Блок 42 компенсации сконфигурирован для: выполнения компенсации положительного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и выполнения компенсации отрицательного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты.

Блок 43 параллельной обработки сконфигурирован для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисление комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации положительного сдвига частоты, и выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации отрицательного сдвига частоты.

Блок 43 параллельной обработки дополнительно содержит:

первый блок 431 обработки, сконфигурированный для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации положительного сдвига частоты; и

второй блок обработки 432, сконфигурированный для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения двойной антенны на множественных группах результатов компенсации отрицательного сдвига частоты.

Система дополнительно включает:

блок 44 некогерентного накопления, сконфигурированный для выполнения, когда длина когерентного накопления Nc равна 2048, некогерентного накопления на двух группах множественных частичных произведений сигнатур, при этом две группы множественных частичных произведений сигнатур получены посредством завершения объединения двойной антенны для того же сдвига частоты; и

блок 45 упорядочивания и накопления данных о шуме, сконфигурированный для вычисления максимального ADP и данных о шуме и для сообщения максимального ADP и данных о шуме соответствующей подсистеме.

Этап, на котором выполняют компенсацию положительного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур и выполняют компенсацию отрицательного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур, включает: умножение каждой группы частичных произведений компонентов сигнатур 16 групп частичных произведений компонентов сигнатур, полученных после коррелятивного накопления на значения компенсации сдвига частоты e j 2 π f e t k и e j 2 π ( f e ) t k соответственно.

Этап, на котором когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняют на множественных группах результатов компенсации положительного сдвига частоты, и когерентное накопление, вращение фаз, согласование сигнатур и вычисление комплексного модуля, и объединение двойной антенны выполняют на множественных группах результатов компенсации отрицательного сдвига частоты, включает:

выполнение когерентного накопления на 16 группах результатов компенсации положительного сдвига частоты и выполнение когерентного накопления на 16 группах результатов компенсации отрицательного сдвига частоты; выполнение вращения фаз соответственно на результатах, полученных после когерентного накопления, с использованием коэффициента вращения фаз e j ( π 4 + π 2 j ) ; выполнение согласования сигнатур и вычисления комплексного модуля соответственно на результате, полученном после вращения фаз; и выполнение объединения двойной антенны соответственно на результатах, полученных после согласования сигнатур и вычисления комплексного модуля.

Выше указаны только предпочтительные варианты осуществления изобретения, и они не могут ограничивать объем защиты, определяемый формулой изобретения. Любые изменения, эквивалентные замены, усовершенствования и т.д., выполненные в рамках концепции и принципа изобретения, должны попадать в объем правовой охраны, определяемый формулой изобретения.

1. Способ обнаружения преамбулы, включающий:
разделение чипов преамбулы на множество блоков чипов и выполнение коррелятивного накопления на множестве блоков чипов для получения множественных групп частичных произведений компонентов сигнатур;
выполнение компенсации положительного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты и выполнение компенсации отрицательного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; и
выполнение когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации положительного сдвига частоты, и выполнение когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации отрицательного сдвига частоты.

2. Способ по п.1, отличающийся тем, что этап выполнения компенсации положительного сдвига частоты для каждой группы множественных групп частичных произведений компонентов сигнатур и выполнения компенсации отрицательного сдвига частоты для каждой группы множественных групп частичных произведений компонентов сигнатур включает:
умножение каждой группы частичных произведений компонентов сигнатур 16 групп частичных произведений компонентов сигнатур, полученных после коррелятивного накопления на значения компенсации сдвига частоты e j 2 π f e t k и e j 2 π ( f e ) t k соответственно.

3. Способ по п.1, отличающийся тем, что этап выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации положительного сдвига частоты и выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации отрицательного сдвига частоты включает:
выполнение когерентного накопления на основании 16 групп результатов компенсации положительного сдвига частоты и выполнение когерентного накопления на основании 16 групп результатов компенсации отрицательного сдвига частоты;
выполнение вращения фаз соответственно на основании результатов, полученных после когерентного накопления, с использованием коэффициента вращения фаз e j ( π 4 + π 2 j ) ;
выполнение согласования сигнатур и вычисления комплексного модуля соответственно на основании результатов, полученных после вращения фаз; и
выполнение объединения сигналов двойной антенны соответственно на основании результатов, полученных после согласования сигнатур и вычисления комплексного модуля.

4. Способ по п.3, отличающийся тем, что этап выполнения когерентного накопления на основании множественных групп результатов компенсации положительного сдвига частоты и выполнения когерентного накопления на основании множественных групп результатов компенсации отрицательного сдвига частоты включает:
выполнение когерентного накопления частичных произведений тех же компонентов сигнатур на основании 16 групп результатов компенсации положительного сдвига частоты и выполнение когерентного накопления частичных произведений тех же компонентов сигнатур на основании 16 групп результатов компенсации отрицательного сдвига частоты; если длина когерентного накопления Nc равна 4096, выполнение когерентного накопления на основании 16 частичных произведений компонентов j сигнатур, принадлежащих тому же сдвигу частоты, для вывода группы из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывода группы из 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, выполнение когерентного накопления на первых 8 частичных произведениях компонентов j сигнатур, принадлежащих тому же сдвигу частоты, и выполнение когерентного накопления на основании последних 8 частичных произведений компонентов j сигнатур, принадлежащих тому же сдвигу частоты, для вывода двух групп из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывода двух групп из 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты.

5. Способ по п.3, отличающийся тем, что этап выполнения вращения фаз, соответственно, на результатах, полученных после когерентного накопления, включает:
вращение частичных произведений компонентов сигнатур, соответствующих j, на ( π 4 + π 2 j ) градусов в соответствии со значением порядкового номера j 16 компонентов сигнатур; если длина когерентного накопления Nc равна 4096, вывод группы из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывод группы из 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, вывод двух групп из 16 частичных произведений компонентов сигнатур для положительного сдвига частоты и вывод двух групп из 16 частичных произведений компонентов сигнатур для отрицательного сдвига частоты.

6. Способ по п.3, отличающийся тем, что этап выполнения согласования сигнатур и вычисления комплексного модуля соответственно на результатах, полученных после вращения фаз, включает:
умножение результата вращения фаз положительного сдвига частоты и результата вращения фаз отрицательного сдвига частоты соответственно на матрицу Адамара:

где rot(15), rot(14), …, rot(0) представляют 16 частичных произведений компонентов сигнатур, выведенных после вращения фаз; hat(15), hat(14), …, hat(0) представляют результаты, полученные после согласования сигнатур; и
s n j представляет j-й компонент сигнатуры n, где n=0, 1, …15; и j=0, 1, …15; и
выполнение вычисления комплексного модуля на основании результатов, полученных после согласования сигнатур; если длина когерентного накопления Nc равна 4096, вывод группы из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод группы из 16 частичных произведений сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, вывод двух групп из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод двух групп из 16 частичных произведений сигнатур для отрицательного сдвига частоты.

7. Способ по п.3, отличающийся тем, что выполнение объединения сигналов двойной антенны соответственно на основании результатов, полученных после согласования сигнатур и вычисления комплексного модуля, включает:
после завершения согласования сигнатур и вычисления комплексного модуля, вычисление среднего из результатов двух антенн, подвергаемых согласованию сигнатур, и вычисление комплексного модуля в каждом частичном произведении компонентов сигнатур; если длина когерентного накопления Nc равна 4096, вывод группы из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод группы из 16 частичных произведений сигнатур для отрицательного сдвига частоты; если длина когерентного накопления Nc равна 2048, вывод двух групп из 16 частичных произведений сигнатур для положительного сдвига частоты и вывод двух групп из 16 частичных произведений сигнатур для отрицательного сдвига частоты.

8. Способ по п.1, дополнительно включающий: когда длина когерентного накопления Nc равна 2048,
выполнение некогерентного накопления на основании двух групп из множественных частичных произведений сигнатур, при этом две группы множественных частичных произведений сигнатур получают посредством завершения объединения сигналов двойной антенны для одного и того же сдвига частоты.

9. Способ по п.8, отличающийся тем, что этап выполнения некогерентного накопления на основании двух групп множественных частичных произведений сигнатур включает:
для каждого положительного сдвига частоты и отрицательного сдвига частоты, после завершения согласования сигнатур присутствуют две группы из 16 частичных произведений сигнатур; выполнение некогерентного накопления на основании двух групп из 16 частичных произведений сигнатур, полученных после завершения объединения сигналов двойной антенны для одного и того же сдвига частоты, для вывода группы из 16 профилей амплитудной задержки (ADPs) для положительного сдвига частоты и вывода группы из 16 ADPs для отрицательного сдвига частоты.

10. Способ по п.8 или 9, дополнительно включающий:
вычисление максимального ADP и данных о шуме, и сообщение максимального ADP и данных о шуме соответствующей подсистеме.

11. Способ по п.10, отличающийся тем, что вычисление максимального ADP и данных о шуме и сообщение максимального ADP и данных о шуме соответствующей подсистеме включает:
упорядочивание ADPs, соответствующих тем же сигнатурам и тому же сдвигу частоты, которые получают посредством выполнения обнаружения преамбулы на всех положениях для поиска той же задачи обнаружения преамбулы, для получения 16 максимальных ADPs; получение 512 максимальных ADPs в соответствии с 256 максимальными ADPs, соответствующими положительному сдвигу частоты, и 256 максимальными ADPs, соответствующими отрицательному сдвигу частоты; выполнение кумулятивного накопления на остальных ADPs, полученных после удаления 256 максимальных ADPs, соответствующих положительному сдвигу частоты, из всех ADPs, соответствующих положительному сдвигу частоты, для получения данных о шуме положительного сдвига частоты, и выполнение кумулятивного накопления на остальных ADPs, полученных после удаления 256 максимальных ADPs, соответствующих отрицательному сдвигу частоты, из всех ADPs, соответствующих отрицательному сдвигу частоты, для получения данных о шуме отрицательного сдвига частоты; и упаковывание 512 максимальных ADPs и двух наборов данных о шуме и сообщение упакованных 512 максимальных ADPs и двух наборов данных о шуме соответствующей подсистеме.

12. Система обнаружения преамбулы, содержащая: блок коррелятивного накопления, блок компенсации и блок параллельной обработки, отличающаяся тем, что
блок коррелятивного накопления сконфигурирован для разделения чипов преамбулы на множество блоков чипов и выполнения коррелятивного накопления на блоках чипов для получения множественных групп частичных произведений компонентов сигнатур;
блок компенсации сконфигурирован для: выполнения компенсации положительного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации положительного сдвига частоты, и выполнения компенсации отрицательного сдвига частоты на каждой группе множественных групп частичных произведений компонентов сигнатур для получения множественных групп результатов компенсации отрицательного сдвига частоты; и
блок параллельной обработки сконфигурирован для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации положительного сдвига частоты, и выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации отрицательного сдвига частоты.

13. Система по п.12, отличающаяся тем, что блок параллельной обработки дополнительно содержит:
первый блок обработки, сконфигурированный для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации положительного сдвига частоты; и
второй блок обработки, сконфигурированный для выполнения когерентного накопления, вращения фаз, согласования сигнатур и вычисления комплексного модуля, и объединения сигналов двойной антенны на основании множественных групп результатов компенсации отрицательного сдвига частоты.

14. Система по п.12 или 13, дополнительно содержащая:
блок некогерентного накопления, сконфигурированный для выполнения, когда длина когерентного накопления Nс равна 2048, некогерентного накопления на основании двух групп множественных частичных произведений сигнатур, при этом две группы множественных частичных произведений сигнатур получены посредством завершения объединения сигналов двойной антенны для одного и того же сдвига частоты; и
блок упорядочивания и накопления данных о шуме, сконфигурированный для вычисления максимального ADP и данных о шуме и для сообщения максимального ADP и данных о шуме соответствующей подсистеме.



 

Похожие патенты:
Изобретение относится к области беспроводной связи (в частности, радиосвязи), а именно к системам и способам идентификации пользователей устройств мобильной связи.

Изобретение относится к системе беспроводной связи для установления прямой связи среди множества подключенных к сети устройств, которые не осведомлены о сети и сервисных адресах.

Изобретение относится к системе мобильной связи и позволяет терминальному устройству предотвратить ухудшение качества приема управляющей информации даже в случае применения системы передачи SU-MIMO.

Изобретение относится к области радиосвязи. Техническим результатом является улучшение эффективности использования частот системы в целом.

Изобретение относится к мобильной связи. Технический результат заключается в обеспечении возможности осуществлять управление таким образом, чтобы команда осуществлять MDT (минимизирование выездных тестов) не передавалась в мобильную станцию UE, находящуюся в роуминге.

Изобретение относится к технологии настройки частоты в беспроводной связи. Технический результат изобретения заключается в упрощении настройки линии связи по категории терминала, в повышении быстродействия настройки частоты.

Изобретение относится к области технологий передачи данных и, в частности, к способу и соответствующему устройству совместного использования трафика при групповой передаче.

Изобретение относится к области пейджингового вызова оконечных устройств в сети связи. Технический результат состоит в устранении перегрузки сети.

Изобретение относится к области технологий связи. Технический результат изобретения заключается в увеличении степени использования ресурсов радиосвязи.

Изобретение относится к устройству, способам и компьютеру для аутентификации потребителя и проведения платежной транзакции. Технический результат заключается в повышении скорости проведения платежной транзакции.

Изобретение относится к области передачи данных. Технический результат заключается в усовершенствовании способа инициализации фемтоячейки. В соответствии с изобретением предоставляют возможность точке доступа фемтоячейки автоматически устанавливать связь с провайдером сети связи; представляют возможность этой точке доступа автоматически загружать первоначальную конфигурацию от сервера инициализации, принадлежащего указанному провайдеру сети связи, и автоматическое используют сервер системы доменных имен для получения адреса сервера инициализации. 3 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к мобильной связи. Технический результат заключается в оптимизировании диаграммы направленности антенны базовой станции. Технический результат достигается за счет разделения географической области на множество географических ячеек, установления множества зон для соты на основе множества граничных пороговых значений, приема множества измерений сигнала из множества абонентских устройств по географическим ячейкам, классификации географических ячеек как различных зон посредством сравнения измерений сигнала с граничными пороговыми значениями зон, вычисления множества регулировок усиления для соответствующих географических ячеек в зонах и формирования рисунка направленности антенны на основе регулировок усиления. 3 н. и 20 з.п. ф-лы, 10 ил.

Изобретение относится к области связи. Технический результат заключается в улучшении эффективности работы BS. Способ и устройство для изменения настройки передачи/приема базовой станции (BS) в сети связи на другую настройку передачи/приема (например, использующую меньше передающих антенн и/или более узкую полосу пропускания канала), не воздействуя на связь с пользовательским оборудованием, включают в себя "замещение" существующей BS на "виртуальную" BS, у которой другая настройка передачи/приема. Замещение может быть осуществлено, например, с помощью снижения мощности существующей, либо первой BS, которая имеет соответствующую идентификацию (ID) первой соты либо первого узла, и одновременно повышения мощности виртуальной, либо второй BS, которая имеет соответствующий ID второй соты либо второго узла. 3 н. и 15 з.п. ф-лы, 6 ил.

Изобретение относится к сетям передачи данных. Технический результат заключается в обеспечении глобальной маршрутизации в сети. Система организации сети, содержащая контроллер виртуальных групп в информационно ориентированной сети, выполненный с возможностью обеспечивать возможность мобильности и безопасности для множества групп пользователей информационно ориентированной сети, множество групп пользователей, присоединенных к контроллеру виртуальных групп и ассоциированных с пользователями, множество агентов, каждый из которых ассоциирован с одной из групп пользователей, и базу данных для профиля доверенных услуг, присоединенную к контроллеру виртуальных групп, при этом контроллер виртуальных групп выполнен с возможностью взаимодействовать с агентами, чтобы обеспечивать возможность мобильности для групп пользователей с использованием бессерверной и основанной на доменах схемы присвоения имен. 3 н. и 21 з.п. ф-лы, 11 ил.

Изобретение относится к мобильной связи. Технический результат заключается в выполнении переноса сеанса из сети доступа с коммутацией пакетов в сеть доступа с коммутацией каналов, при котором переносятся корректные несущие каналы, независимо от того, были или нет идентификаторы, такие как значения QCI (Индикатор Класса Качества Услуги), приписаны другим типам услуг. Объект Управления Мобильностью принимает индикатор типа услуги от шлюзового узла. Индикатор типа услуги указывает тип услуги для сеанса и ассоциирован с несущими каналами, используемыми для сеанса. Затем Объект Управления Мобильностью принимает от eNodeB указание, что сеанс должен быть перенесен из сети с коммутацией пакетов в сеть доступа с коммутацией каналов. Объект Управления Мобильностью определяет несущие каналы, ассоциированные с сеансом, с использованием индикатора типа услуги и инициирует перенос сеанса с использованием этих несущих каналов. 6 н. и 7 з.п. ф-лы, 8 ил.

Изобретение относится к технологии беспроводной мобильной связи. Техническим результатом является обеспечение способа переключения с загрузки услуг мультимедийной, широковещательной и многоадресной передачи (MBMS) на доставку на основе протокола передачи гипертекста (HTTP) динамичной адаптивной потоковой передачи поверх HTTP (DASH)-форматированного содержания в сети мультимедийной подсистемы (IMS) на базе Интернет-протокола. Предложенный способ включает в себя модуль функции управления услугой (SCF), принимающий повторное приглашение протокола инициирования сеанса (SIP), при приеме мобильным устройством загрузки MBMS в сеансе доставки содержания, включающего DASH-форматированное содержание, при этом SCF-модуль может отправлять приглашение SIP на адаптер HTTP/SIP для выбора HTTP-сервера для доставки на основе HTTP. SCF-модуль может принимать подтверждение SIP от адаптера HTTP/SIP, показывающее выбор HTTP-сервера для сеанса доставки содержания. SCF-модуль может пересылать подтверждение SIP на мобильное устройство, показывающее переключение на HTTP-сервер для сеанса доставки содержания. 4 н. и 26 з.п. ф-лы, 8 ил.

Изобретение относится к радиотехнике, в частности к технике цифровой сотовой радиосвязи, и может быть использовано для создания цифровых радиотелефонных сетей нового поколения. Технический результат заключается в создании радиотракта с цифровым (номерным) способом вызова и адресации корреспондентов, обеспечивающего конфиденциальность передачи информации. Предложены способ адресации корреспондентов мобильной радиосети, основанный на принципе кодового разделения каналов, и устройство динамической адресации радиосредств мобильной радиосети. Устройство состоит из Регистра передаваемых команд, Регистра принимаемых команд, Регистра динамической адресации передатчика, Регистра динамической адресации приемника, Генератора псевдослучайных кодовых последовательностей передатчика, Генератора псевдослучайных кодовых последовательностей приемника, Модулятора и Демодулятора радиочастотных сигналов, Блока вычислителя-преобразователя кодов. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к системе беспроводной передачи. Технический результат состоит в обеспечении предписанного качества связи во время беспроводной связи при использовании методики агрегирования каналов. Для этого в системе 100 беспроводной передачи первое устройство 101 и второе устройство 102 осуществляют беспроводную передачу данных, используя тракт беспроводной передачи, который использует множество физических каналов параллельно. В каждом из устройств порты 111-113 ввода/вывода вводят и выводят данные. Множество средств 141-143 обработки беспроводных сигналов, соответственно, управляют разными физическими каналами. Средства 141-143 обработки беспроводных сигналов, соответственно, измеряют уровни принимаемого сигнала физических каналов и сообщают ответному устройству об уровнях принимаемого сигнала. Средство 130 управления агрегированием каналов определяет приоритет для каждого из физических каналов на основе уровня сигнала для каждого из физических каналов. Средства 141-143 обработки передачи пакетов выбирают среди физических каналов, структурирующих тракт беспроводной передачи, физический канал, имеющий пригодную для использования полосу предписанной емкости и высокий приоритет как приемник данных. 6 н. и 4 з.п. ф-лы, 4 ил.

Изобретение относится к переносным полевым инструментам для технического обслуживания. Технический результат - более точное определение местоположения полевого устройства за счет совместного использования GPS и триангуляции. Инструмент (52, 102) включает в себя, среди прочего, модуль (121) протокола беспроводной связи технологического процесса, сконфигурированный с возможностью поддержания связи в соответствии с протоколом беспроводной связи технологического процесса. Инструмент (52, 102) также включает в себя дисплей (120) и устройство (122) ввода. Контроллер (130) соединен с модулем протокола беспроводной связи технологического процесса, дисплеем (120) и устройством (122) ввода. Контроллер (130) сконфигурирован с возможностью выработки карты на дисплее (120), показывающей положение переносного полевого устройства (52, 102) относительно, по меньшей мере, одного объекта, такого как полевое устройство (22, 23, 104). Контроллер (130) дополнительно сконфигурирован с возможностью определения положения переносного полевого устройства (52, 102) для технического обслуживания путем триангуляции с использованием беспроводной связи технологического процесса с рядом известных беспроводных полевых устройств (104) с фиксированным местоположением. 7 н. и 25 з.п. ф-лы, 8 ил.

Изобретение относится к средствам звуковой аутентификации для регистрации в беспроводной сети. Технический результат заключается в улучшении эргономичности регистрации в защищенной беспроводной сети. Неавторизованное беспроводное устройство излучает слышимый звуковой секретный код уникальной идентификации (например, персональный идентификационный номер (PIN-код)). В некоторых реализациях пользователь слышит звуковой код и вручную вводит его через интерфейс пользователя для регистрации в сети. В других реализациях устройство авторизации в сети автоматически воспринимает звуковой код и проверяет правильность кода. Если проверка правильности прошла успешно, беспроводное устройство регистрируется в беспроводной сети. 4 н. и 11 з.п. ф-лы, 3 ил.
Наверх