Система преобразования электропитания и способ ее работы

Авторы патента:


Система преобразования электропитания и способ ее работы
Система преобразования электропитания и способ ее работы
Система преобразования электропитания и способ ее работы
Система преобразования электропитания и способ ее работы

 


Владельцы патента RU 2557100:

АББ ТЕКНОЛОДЖИ АГ (CH)

Группа изобретений относится к электрическим тяговым системам транспортных средств с питанием от линий энергоснабжения различного типа. Система преобразования электропитания для транспортного средства содержит по меньшей мере две линии (5, 6, 7) напряжения постоянного тока, несколько сетевых силовых преобразователей (8) для преобразования входного напряжения переменного тока в напряжение питания постоянного тока, питающий трансформатор (21) для вырабатывания вспомогательного напряжения питания и несколько вспомогательных силовых преобразователей (20). Коммутационный блок (11, 13) выполнен с возможностью, в первом режиме работы, подачи имеющегося напряжения переменного тока на преобразователи (8), а во втором режиме работы, подачи напряжения питания постоянного тока на линии (5, 6, 7). Система содержит переключатель (22) для подключения, во втором режиме работы, по меньшей мере, одного из преобразователей (8) к питающему трансформатору (21). Способ заключается в том, что подают входное напряжение переменного тока на преобразователи (8) в первом режиме работы. Подают входное напряжение питания постоянного тока на линии (5, 6, 7) во втором режиме работы. Подключают по меньшей мере один из преобразователей (8) к питающему трансформатору (21) во втором режиме работы. Технический результат заключается в снижении затрат на выработку вспомогательного напряжения для питания потребителей в транспортном средстве. 3 н. и 7 з.п. ф-лы, 4 ил.

 

Область техники

Изобретение относится к системам преобразования электропитания для использования в тяговых преобразователях для приводных систем, например для рельсовых транспортных средств. В частности, изобретение относится к системам преобразования электропитания, которые могут работать как с постоянным напряжением, так и с переменным.

Уровень техники

Система преобразования электропитания для работающего на электричестве транспортного средства содержит обычно несколько сетевых силовых преобразователей, которые могут преобразовывать переменное напряжение, например воздушной контактной сети, в постоянное напряжение. Обычно сетевые силовые преобразователи обеспечивают, таким образом, постоянное напряжение питания по нескольким линиям. Кроме того, эти системы преобразования электропитания могут предусматривать, чтобы альтернативно передаваемое по контактному проводу постоянное напряжение поступало непосредственно в линии напряжения постоянного тока через индуктивность.

Приложенное к линиям постоянного напряжения питающее постоянное напряжение приложено к вспомогательным силовым преобразователям и силовым преобразователям двигателя. Последние вырабатывают из постоянного напряжения электрическое переменное поле из нескольких фазных токов, которые для работы одной или нескольких электрических машин образуют вращающееся трехфазное поле. Вспомогательные силовые преобразователи вырабатывают из приложенного питающего постоянного напряжения многофазное переменное напряжение, прикладываемое к вспомогательному трансформатору тока. Такой трансформатор может быть выполнен в виде трансформатора «треугольник-звезда» и требует обычно входного напряжения около 650 VAC, чтобы на вторичной стороне вырабатывать переменное напряжение 400 VAC.

Если со стороны входа приложено питающее постоянное напряжение, то оно подается непосредственно вспомогательным силовым преобразователям, так что они могут вырабатывать 650 VAC. Чтобы сэкономить один вспомогательный силовой преобразователь, трехфазный вспомогательный трансформатор тока эксплуатируется в 2,5-фазном режиме, в котором одна фаза соединена с потенциалом промежуточной цепи, вырабатываемым из приложенного питающего постоянного напряжения, а вспомогательные силовые преобразователи вырабатывают соответствующие фазные напряжения, модулируемые так, что устанавливаются нужные разностные напряжения между тремя фазами.

В системах преобразования электропитания для приводных систем рельсовых транспортных средств нередко возникает та проблема, что снимаемое с воздушной контактной сети напряжение постоянного тока сильно колеблется. В случае колебаний напряжения постоянного тока воздушной контактной сети со стороны входа, в частности в случае его падения, при определенных обстоятельствах может быть, однако, затруднительным вырабатывать необходимые 650 VAC со стороны входа трансформатора «треугольник-звезда».

За счет постоянного в двухфазном режиме напряжения третьей фазы напряжение от фазы к фазе на выходе преобразователя может соответствовать максимум половине напряжения промежуточной цепи. Максимальный коэффициент модуляции составляет, тем самым, 0,577. Поскольку напряжение промежуточной цепи в режиме переменного тока составляет, например по меньшей мере 3000 VDC, а максимальное выходное напряжение вспомогательных силовых преобразователей - 690 VAC, необходимый коэффициент модуляции составляет всего 0,38. В режиме постоянного тока напряжение промежуточной цепи падает, однако, до 1000 VDC. Необходимое выходное напряжение требует при этом коэффициента модуляции до 1,127, которого нельзя достичь в двухфазном режиме вспомогательного силового преобразователя.

Одно решение может состоять в том, чтобы между контактным проводом и линиями постоянного напряжения предусмотреть DC/DC-силовой преобразователь. Однако это сложное решение, которое снижает также эффективность и надежность. Однако если смириться с изменяющимся постоянным напряжением на линиях постоянного напряжения, то это, как правило, не сильно затрагивает силовые преобразователи двигателя, поскольку обычно скорость и требования к мощности при сетевой операции 1,5 кВ намного ниже, чем при 3 кВ или при сетевой операции с постоянным током, когда питающее постоянное напряжение выше. Проблема возникает, главным образом, у вспомогательного силового преобразователя (вспомогательного силового инвертора), который независимо от сетевого напряжения должен вырабатывать постоянную мощность. Одно весьма распространенное решение этой проблемы состоит в том, чтобы предусмотреть вспомогательный трансформатор с переключателями ответвлений, который дорог и к тому же имеет большую массу. Другое решение состоит в том, чтобы предусмотреть вспомогательный силовой преобразователь для постоянного низкого выходного напряжения при изменяющемся входном напряжении по всему возможному диапазону изменений. Поскольку этот силовой преобразователь требует тогда как высокой электрической прочности к входному напряжению, так и высокой нагружаемости выходным током, необходимо больше число полупроводниковых элементов.

В DE 19614627 А1 раскрыта общая система преобразования электропитания для рельсового транспортного средства, используемая во многих системах энергоснабжения. Эта система преобразования электропитания включает в себя:

- линии постоянного напряжения для вырабатывания потенциалов постоянного напряжения;

- несколько сетевых силовых преобразователей 2.1, 2.2, …, 2.n для преобразования переменного напряжения со стороны входа в питающее постоянное напряжение на линиях постоянного напряжения;

- предусмотренный для каждого сетевых силовых преобразователей 2.1, 2.2, …, 2.n сетевой трансформатор 20.

На фиг.1 этой публикации система преобразования электропитания эксплуатируется на сетях питающих переменного и постоянного напряжений, причем для эксплуатации на сети питающего переменного напряжения замыкается главный выключатель 11, чтобы питающее переменное напряжение приложить, в частности, к трансформаторам 20 сетевых силовых преобразователей 2.1, 2.2, …, 2.n.

Кроме того, в DE 102006033046 А1 также раскрыта родовая система преобразования электропитания.

Раскрытие изобретения

Задачей изобретения является создание системы преобразования электропитания для использования в тяговом транспортном средстве, в частности рельсовом транспортном средстве, подходящей для использования во многих системах энергоснабжения, у которой с небольшими затратами можно было бы вырабатывать вспомогательное питающее напряжение для питания потребителей в транспортном средстве и которая даже при сильных колебаниях питающего постоянного напряжения со стороны входа вырабатывала бы постоянное вспомогательное питающее напряжение.

Эта задача решается посредством системы преобразования электропитания, в частности для транспортного средства, по п.1 и посредством способа эксплуатации такой системы по п.10 формулы.

Другие предпочтительные варианты приведены в зависимых пунктах формулы.

Согласно первому аспекту предусмотрена система преобразования электропитания для транспортного средства, в частности рельсового транспортного средства, выполненная с возможностью эксплуатации во многих системах энергоснабжения. Система преобразования электропитания включает в себя:

- по меньшей мере, две линии постоянного напряжения для вырабатывания потенциалов постоянного напряжения;

- несколько сетевых силовых преобразователей для преобразования переменного напряжения со стороны входа в питающее постоянное напряжение на линиях постоянного напряжения;

- питающий трансформатор, в частности многофазный трансформатор «треугольник-звезда», для вырабатывания вспомогательного питающего напряжения;

- несколько вспомогательных силовых преобразователей для вырабатывания фазных напряжений для питающего трансформатора;

- коммутационный блок, выполненный с возможностью приложения переменного напряжения в первом режиме работы к сетевым силовым преобразователям и, кроме того, с возможностью приложения питающего постоянного напряжения во втором режиме работы к линиям постоянного напряжения;

- переключатель для соединения во втором режиме работы по меньшей мере одного из сетевых силовых преобразователей с питающим трансформатором и приложения к нему фазного напряжения, выработанного по меньшей мере в одном сетевом силовом преобразователе из питающего постоянного напряжения.

Коммутационный блок содержит предпочтительно два коммутационных элемента. Идея системы преобразования электропитания состоит в том, чтобы использовать питающий трансформатор для вырабатывания электрической энергии для прочих потребителей мощности при приложении переменного напряжения со стороны входа только посредством вспомогательных силовых преобразователей. Если используются меньше тактирующих вспомогательных силовых преобразователей, например только два, то в качестве дополнительного фазного напряжения можно снимать постоянный потенциал постоянного напряжения линий постоянного напряжения. В режиме постоянного напряжения используется по меньшей мере один дополнительный сетевой силовой преобразователь, который больше не используется для преобразования переменного напряжения со стороны входа, вместе со вспомогательными силовыми преобразователями, чтобы вырабатывать фазные напряжения для многофазного управления питающим трансформатором. С помощью сетевого и вспомогательных силовых преобразователей все фазные напряжения для питающего трансформатора могут вырабатываться независимо друг от друга, так что колебания питающего постоянного напряжения (напряжения воздушной контактной сети) со стороны входа, непосредственно используемого во втором режиме работы в качестве питающего постоянного напряжения, могут компенсироваться улучшенным образом.

Кроме того, переключатель может быть выполнен с возможностью соединения в первом режиме работы одной из линий постоянного напряжения, в частности линии напряжения промежуточной цепи, с питающим трансформатором.

В частности, может быть предусмотрен блок управления вспомогательными силовыми преобразователями в первом режиме работы для вырабатывания фазных напряжений для приложения к питающему трансформатору, причем фазные напряжения по сравнению с потенциалом напряжения соединенной переключателем линии постоянного напряжения модулируются так, что к питающему трансформатору приложены напряжения от фазы к фазе, имеющие одинаковый фазовый угол.

Согласно одному варианту, переключатель может быть предусмотрен для соединения во втором режиме работы сетевых силовых преобразователей с питающим трансформатором, число которых соответствует числу фаз питающего трансформатора, для приложения к нему фазного напряжения, выработанного по меньшей мере в одном сетевом силовом преобразователе из питающего постоянного напряжения.

Кроме того, может быть предусмотрен блок управления сетевыми силовыми преобразователями так, что в первом режиме работы они вырабатывают питающее постоянное напряжение из приложенного переменного напряжения, а во втором режиме работы - фазные напряжения из питающего постоянного напряжения для приложения к питающему трансформатору.

Могут быть предусмотрены один или несколько силовых преобразователей двигателя, питаемых питающим постоянным напряжением на линиях постоянного напряжения. В частности, сетевые и вспомогательные силовые преобразователи могут быть выполнены одинаковыми.

Сетевые и вспомогательные силовые преобразователи могут быть выполнены, например, в виде инверторных схем.

Согласно другому аспекту предусмотрено применение описанной системы преобразования электропитания в тяговой системе рельсового транспортного средства.

Согласно другому аспекту предусмотрен способ эксплуатации системы преобразования электропитания для транспортного средства, в частности рельсового транспортного средства, эксплуатируемой во многих системах энергоснабжения. Система преобразования электропитания включает в себя:

- по меньшей мере две линии постоянного напряжения для вырабатывания потенциалов постоянного напряжения;

- несколько сетевых силовых преобразователей для преобразования переменного напряжения со стороны входа в питающее постоянное напряжение на линиях постоянного напряжения;

- питающий трансформатор, в частности многофазный трансформатор «треугольник-звезда», для вырабатывания вспомогательного питающего напряжения;

- несколько вспомогательных силовых преобразователей для вырабатывания фазных напряжений для питающего трансформатора,

причем способ включает в себя следующие этапы:

- приложение переменного напряжения со стороны входа к сетевым силовым преобразователям (8) в первом режиме работы;

- приложение питающего постоянного напряжения со стороны входа к линиям (5, 6, 7) постоянного напряжения во втором режиме работы;

- соединение по меньшей мере одного из сетевых силовых преобразователей (8) с питающим трансформатором (21) во втором режиме работы для приложения к питающему трансформатору (21) фазного напряжения, выработанного по меньшей мере в одном сетевом силовом преобразователе (8) из питающего постоянного напряжения.

Краткое описание чертежей

Предпочтительные варианты осуществления изобретения более подробно поясняются ниже со ссылкой на прилагаемые чертежи, на которых изображают:

фиг.1 - схематично систему преобразования электропитания для применения в рельсовом транспортном средстве;

фиг.2 - схематично строение силового преобразователя системы преобразования электропитания из фиг.1;

фиг.3 - схематично систему преобразования электропитания в отличающемся от фиг.1 состоянии коммутации для эксплуатации на питающем постоянном напряжении;

фиг.4 - схематично систему преобразования электропитания в другом варианте.

Используемые на чертежах ссылочные позиции и их значение приведены в перечне. В принципе, одинаковые детали обозначены одинаковыми ссылочными позициями. Описанные варианты являются примером объекта изобретения и не обладают ограничивающим действием.

Осуществление изобретения

На фиг.1 изображена система 1 преобразования электропитания для применения в рельсовом транспортном средстве и т.п. Рельсовое транспортное средство работает от приводного двигателя 2, который берет свою электрическую мощность от трех силовых преобразователей 3, выполненных, в основном, одинаковыми. Управление силовыми преобразователями 3 осуществляется посредством блока управления 4 двигателя, так что они эксплуатируются в качестве DC/AC-преобразователей. Силовые преобразователи 3 вырабатывают три фазных напряжения для работы приводного двигателя 2. В случае многофазных электрических машин число силовых преобразователей 3, как правило, соответствует числу фаз электрической машины.

Со стороны входа к силовым преобразователям 3 прикладывается питающее постоянное напряжение. Питающее постоянное напряжение со стороны входа подается по первой линии 5 постоянного напряжения для вырабатывания высокого потенциала постоянного напряжения, по второй линии 6 постоянного напряжения для вырабатывания низкого потенциала постоянного напряжения, который преимущественно связан с потенциалом массы, и по линии 7 напряжения промежуточной цепи для вырабатывания потенциала промежуточной цепи.

Управление силовыми преобразователями 3 осуществляется посредством первого блока управления 4 для преобразования приложенных к линиям 5, 6, 7 потенциалов постоянного напряжения в соответствующие фазные напряжения.

Кроме того, предусмотрены сетевые силовые преобразователи 8 (LC1-LC4), которые должны преобразовывать питающее переменное напряжение в питающее постоянное напряжение, которое должно вырабатываться между линиями 5, 6. Питающее переменное напряжение снимается, например, с контактного провода 9 через первый токоприемник 15 и подается к первичной стороне входного трансформатора 10, а соответствующее переменное напряжение, снимаемое с его вторичной стороны, подается, соответственно, к двум входным силовым преобразователям 8.

Управление сетевыми силовыми преобразователями 8 осуществляется посредством второго блока управления 17 для преобразования в режиме работы с питающим переменным напряжением выработанного входным трансформатором 10, приложенного к сетевым силовым преобразователям 8 переменного напряжения в соответствующее питающее постоянное напряжение.

Для гальванического отделения входного трансформатора 10 от сетевых силовых преобразователей 8 между контактным проводом 9 и входным трансформатором 10 предусмотрен первый коммутационный элемент 11, а на вторичной стороне входного трансформатора 10 - второй коммутационный элемент 12, чтобы отделить вторичную сторону входного трансформатора 10 от сетевых силовых преобразователей 8.

Кроме того, предусмотрен третий коммутационный элемент 13 между вторым токоприемником 14 и линией 5 постоянного напряжения, который замыкается тогда, когда контактный провод 9 несет питающее постоянное напряжение. Между коммутационным элементом 13 и линией 5 постоянного напряжения предусмотрена индуктивность 16 для сглаживания колебаний постоянного напряжения за счет его действия в качестве фильтра нижних частот.

Коммутационный блок включает в себя первый 11 и третий 13 коммутационные элементы и выполнен так, что в первом режиме работы он прикладывает переменное напряжение к сетевым силовым преобразователям 8, а во втором режиме работы - питающее постоянное напряжение к линиям 5, 6, 7.

Кроме того, предусмотрены два вспомогательных силовых преобразователей 20 (AUX1, AUX2), также подключенных к линиям 5, 6, 7. Вспомогательные силовые преобразователи 20 соединены с трехфазным питающим трансформатором 21, причем каждый из вспомогательных силовых преобразователей 20 вырабатывает фазу для питающего трансформатора 21, а его третья фаза соединена с потенциалом промежуточной цепи линии 7.

Между питающим трансформатором 21 и линией 7 напряжения промежуточной цепи предусмотрен переключатель 22, который в режиме работы с питающим переменным напряжением, т.е. при прижатии токоприемника 15 к контактному проводу 9 и при замыкании коммутационных элементов 11, 12, прикладывает потенциал промежуточной цепи к питающему трансформатору 21. Таким образом, последний работает в 2,5-фазном режиме.

Управление вспомогательными силовыми преобразователями 20 осуществляется посредством третьего блока управления 18 для преобразования приложенных к линиям 5, 6, 7 потенциалов в соответствующие фазные напряжения для питающего трансформатора 21. Два фазных напряжения вырабатываются так, что в сочетании с приложенным к третьему выводу первичной стороны питающего трансформатора 21 потенциалом промежуточной цепи возникают разности напряжений, как они возникли бы в его трехфазном режиме работы. Другими словами, обе тактирующие фазы модулируются так, что между тремя фазами устанавливаются нужные разностные напряжения. При этом в трехфазной системе возникает высокое синфазное напряжение, которое не может пройти через выполненный в конфигурации «треугольник-звезда» питающий трансформатор 21 и потому не является недостатком.

Напряжение промежуточной цепи на линии 7 возникает из управления силовыми преобразователями 3 двигателя, сетевыми 8 и вспомогательными 20 силовыми преобразователями посредством соответственно первого 4, второго 17 и третьего 18 блоков управления. За счет них соответствующие силовые преобразователи работают так, что потенциал линии 7, в основном, соответствует среднему потенциалу между потенциалами линий 5, 6. Для сглаживания колебаний на линии 7 предусмотрены емкости 23 промежуточной цепи, которые расположены между линиями 5, 7 и 6, 7.

Кроме того, предусмотрен блок 24 ограничения напряжения, который может ограничивать перенапряжение на линиях 5, 6, 7.

Силовые преобразователи 3, 8, 20 выполнены преимущественно одинаковыми. Они могут быть выполнены в виде инверторных схем и содержат, в основном, последовательную схему из четырех силовых полупроводниковых выключателей 31a-31d. Первый вывод выключателя 31а соединен с линией 5, а второй - с первым. Второй вывод выключателя 31b соединен с первым выводом выключателя 31с и является одновременно выходом или выводом соответствующего силового преобразователя 3, 8, 20. Второй вывод выключателя 31с соединен с первым выводом выключателя 31d. Его второй вывод соединен с линией 6.

Кроме того, соответствующий силовой преобразователь 3, 8, 20 содержит первый диод 32а, который своим анодом соединен с линией 7, а своим катодом - со вторым выводом выключателя 31а. Линия 7 соединена с катодом второго диода 32b, анод которого соединен со вторым выводом выключателя 31с. В каждом из силовых преобразователей 3, 8, 20 предусмотрены дополнительные емкости 33а, 33b промежуточного контура, подключенные соответственно между одной из линий 5, 6 и линией 7.

Такие инверторные схемы обладают тем преимуществом, что они могут эксплуатироваться в двух направлениях и в соответствии со своим управлением могут преобразовывать переменное напряжение в постоянное или постоянное напряжение в переменное.

На фиг.3 показано коммутационное положение системы 1 в режиме постоянного напряжения. В этом режиме коммутационный элемент 13 замкнут, а токоприемник 14 контактирует с контактным проводом 9. Коммутационные элементы 11 и 12 разомкнуты, и токоприемник 15 отделен от контактного провода 9. Таким образом, питающие силовые преобразователи 8 не получают переменного напряжения через контактный провод 9. Вместо этого питающее постоянное напряжение контактного провода 9 со стороны входа приложено к линии 5.

Поскольку в случае колебаний питающего постоянного напряжения на контактном проводе 9 2,5-фазный режим работы обеспечить нельзя, предусмотрена коммутация переключателя 22 так, что он соединен с одним из питающих силовых преобразователей 8, в данном случае с питающим силовым преобразователем LC3. Блок управления 17 управляет соответствующим сетевым силовым преобразователем 8 так, что последний в реверсивном режиме по отношению к режиму переменного напряжения преобразует питающее постоянное напряжение на линиях 5, 6, 7 в соответствующее фазное напряжение для питающего трансформатора 21. Последний работает тогда через оба вспомогательных силовых преобразователей 20 и питающий силовой преобразователь 8 в трехфазном режиме. Этим достигается то, что даже если в режиме постоянного напряжения напряжение промежуточной цепи падает слишком сильно, чтобы в 2,5-фазном режиме работы питающего трансформатора 21 выработать необходимое первичное напряжение 650 VAC, в трехфазном режиме вместо напряжения промежуточной цепи вырабатывается третье фазное напряжение, в результате чего уменьшаются требования к вырабатыванию фазного напряжения за счет вспомогательных силовых преобразователей 20.

Такое решение обладает тем преимуществом, что сильно изменяющиеся в многосистемном силовом преобразователе требования к вспомогательным силовым преобразователям 20 могут быть выполнены только за счет переключателя 22, с помощью которого из неиспользуемых в этом режиме сетевых силовых преобразователей 8 возникает дополнительный силовой преобразователь, вырабатывающий фазное напряжение для питающего трансформатора 21.

В трехфазном режиме вместе со вспомогательными силовыми преобразователями 20 (AUX1, AUX2) в распоряжении имеется мощный инструмент для симметрирования промежуточной цепи, который в обычном режиме с использованием ее потенциала не удалось бы реализовать для 2,5-фазного режима работы при обычном расположении. Другое преимущество заключается в использовании для сетевого силового преобразователя 8 силового преобразователя 3 двигателя и вспомогательных силовых преобразователей 20 идентичных силовых преобразователей, так что на всех силовых преобразователях 3, 8, 20 возникает очень схожая термическая нагрузка.

Как показано на фиг.4, переключатель 22 может быть дополнительно предусмотрен также для переключения между одним или несколькими сетевыми силовыми преобразователями 8 и соответствующими вспомогательными силовыми преобразователями 20. На фиг.4 предусмотрен, например, модифицированный переключатель 22', который в режиме постоянного напряжения полностью отделяет вспомогательные силовые преобразователи 20 от питающего трансформатора 21 и вместо этого соединяет три сетевых силовых преобразователя 8 для вырабатывания трех фазных напряжений с питающим трансформатором 21 с целью их приложения к его первичной стороне. Это имеет то преимущество, что при использовании отделенных друг от друга блоков управления сетевыми 8 и вспомогательными 20 силовыми преобразователями вырабатывание фазных напряжений для питающего трансформатора 21 может осуществляться тремя сетевыми силовыми преобразователями 8, которыми управляет блок управления 17.

Перечень ссылочных позиций

1 - система преобразования электропитания

2 - тяговый двигатель

3 - силовой преобразователь двигателя

4 - первый блок управления

5 - первая линия напряжения постоянного тока

6 - вторая линия напряжения постоянного тока

7 - линия напряжения промежуточной цепи

8 - сетевой силовой преобразователь

9 - контактный провод

10 - сетевой трансформатор

11 - первый коммутационный элемент

12 - второй коммутационный элемент

13 - третий коммутационный элемент

14 - второй токоприемник

15 - первый токоприемник

16 - индуктивность

17 - второй блок управления

18 - третий блок управления

20 - вспомогательный силовой преобразователь

21 - питающий трансформатор

22 - переключатель

23 - емкость промежуточной цепи

31а-31d - первый-четвертый силовые полупроводниковые выключатели

32а, 32b - первый, второй диоды

33а, 33b - первая, вторая емкости промежуточной цепи

1. Система (1) преобразования электропитания для транспортного средства, в частности рельсового транспортного средства, которая может использоваться во многих системах энергоснабжения, содержащая:
по меньшей мере две линии (5, 6, 7) напряжения постоянного тока для обеспечения потенциалов напряжения постоянного тока;
несколько сетевых силовых преобразователей (8) для преобразования входного напряжения переменного тока в напряжение питания постоянного тока на линиях напряжения постоянного тока;
питающий трансформатор (21), в частности многофазный трансформатор «треугольник-звезда», для вырабатывания вспомогательного напряжения питания;
несколько вспомогательных силовых преобразователей (20) для обеспечения фазных напряжений для питающего трансформатора,
отличающаяся тем, что содержит:
коммутационный блок (11, 13), выполненный с возможностью, в первом режиме работы, подачи имеющегося напряжения переменного тока на сетевые силовые преобразователи (8) и, во втором режиме работы, подачи имеющегося напряжения питания постоянного тока на линии (5, 6, 7) напряжения постоянного тока;
переключатель (22) для подключения, во втором режиме работы, по меньшей мере одного из сетевых силовых преобразователей (8) к питающему трансформатору (21), с тем чтобы подавать на питающий трансформатор (21) фазное напряжение, вырабатываемое по меньшей мере в одном сетевом силовом преобразователе (8) из напряжения питания постоянного тока.

2. Система по п.1, в которой переключатель (22) выполнен с возможностью подключения, в первом режиме работы, одной из линий (5, 6, 7) напряжения постоянного тока, в частности линии напряжения промежуточной цепи, к питающему трансформатору (21).

3. Система по п.2, содержащая дополнительно блок управления (18), обеспечивающий включение вспомогательного силового преобразователя (20), в первом режиме работы, с тем чтобы вырабатывать фазные напряжения для подачи на питающий трансформатор (21), причем указанные фазные напряжения модулированы по сравнению с потенциалом линии (5, 6, 7) напряжения постоянного тока, подключенной через переключатель (22), таким образом, чтобы на питающем трансформаторе (21) были междуфазные напряжения, которые имеют одинаковый фазовый угол по отношению друг к другу.

4. Система по любому из пп.1-3, в которой переключатель (22) выполнен с возможностью подключения к питающему трансформатору (21), во втором режиме работы, нескольких сетевых силовых преобразователей (8), число которых соответствует числу фаз питающего трансформатора (21), с тем чтобы подавать на питающий трансформатор (21) фазное напряжение, вырабатываемое по меньшей мере в одном сетевом силовом преобразователе (8) из напряжения питания постоянного тока.

5. Система по п.4, содержащая дополнительный блок управления (17), выполненный с возможностью включения сетевых силовых преобразователей (8) таким образом, чтобы в первом режиме работы сетевые силовые преобразователи вырабатывали напряжение питания постоянного тока из имеющегося напряжения переменного тока, а во втором режиме работы вырабатывали фазные напряжения из напряжения питания постоянного тока для подачи на питающий трансформатор (21).

6. Система по п.1, дополнительно содержащая один или несколько силовых преобразователя (3) двигателя, питаемых напряжением питания постоянного тока от линий напряжения постоянного тока.

7. Система по п.1, в которой сетевые силовые преобразователи (8) и вспомогательные силовые преобразователи (20) выполнены одинаковой конструкции.

8. Система по п.1, в которой сетевые силовые преобразователи (8) и вспомогательные силовые преобразователи (20) выполнены в виде инверторных схем.

9. Применение системы преобразования электропитания по любому из пп.1-8 в тяговой системе рельсового транспортного средства.

10. Способ работы системы (1) преобразования электропитания для транспортного средства, в частности рельсового транспортного средства, используемый во многих системах энергоснабжения, характеризующийся тем, что система (1) преобразования электропитания содержит:
по меньшей мере две линии (5, 6, 7) напряжения постоянного тока для обеспечения потенциалов напряжения постоянного тока;
несколько сетевых силовых преобразователей (8) для преобразования входного напряжения переменного тока в напряжение питания постоянного тока на линиях напряжения постоянного тока;
питающий трансформатор (21), в частности многофазный трансформатор «треугольник-звезда», для вырабатывания вспомогательного напряжения питания;
несколько вспомогательных силовых преобразователей (20) для обеспечения фазных напряжений для питающего трансформатора,
при этом способ содержит этапы, на которых:
подают входное напряжение переменного тока на сетевые силовые преобразователи (8), в первом режиме работы;
подают входное напряжение питания постоянного тока на линии (5, 6, 7) напряжения постоянного тока, во втором режиме работы;
подключают по меньшей мере один из сетевых силовых преобразователей (8) к питающему трансформатору (21), во втором режиме работы, для подачи на питающий трансформатор (21) фазного напряжения, выработанного по меньшей мере в одном сетевом силовом преобразователе (8) из напряжения питания постоянного тока.



 

Похожие патенты:

Изобретение относится к системе электропитания и способу для снабжения нагрузки электроэнергией либо от первого, либо от второго сетевого источника переменного тока, которые подают разные первое и второе напряжения переменного тока.

Изобретение относится к области электротехники, в частности к преобразователям переменного тока в переменный с изменением числа фаз, и может быть использовано для питания устройств информационно-измерительных систем, в том числе студийной аудиоаппаратуры, а также локальных компьютерных сетей.

Изобретение относится к области преобразовательной техники и может быть использовано в преобразователях электроэнергии в качестве формирующего каскада для получения постоянного и квазисинусоидального напряжения.

Изобретение относится к преобразовательной технике и может быть использовано в источниках вторичного питания, в том числе в преобразователях постоянного напряжения в постоянное.

Изобретение относится к области преобразовательной техники и может быть использовано для построения высоковольтных тиристорных вентилей из последовательно соединенных ячеек .

Изобретение относится к горнодобывающему транспортному средству и способу подведения к нему электроэнергии. Техническим результатом является подсоединение вспомогательных источников энергии.

Изобретение относится к рельсовому транспорту и представляет схему (10) управления электродвигателем для рельсового транспортного средства. .

Изобретение относится к области электротехники и может быть использовано в приводах электровозов с асинхронными электродвигателями при питании от сетей переменного или постоянного тока, что свойственно для протяженных скоростных магистралей, имеющих участки сети переменного и постоянного тока.

Изобретение относится к области железнодорожного транспорта и направлено на усовершенствование железнодорожного транспортного средства на электрической тяге. .

Изобретение относится к железнодорожному транспорту и может быть использовано на многосистемном электроподвижном составе - электровозах и электропоездах с асинхронным тяговым приводом.

Изобретение относится к электрическому оборудованию рельсовых транспортных систем, в которых транспортные средства получают приводную энергию из сетей постоянного или переменного тока с различным сетевым напряжением.

Изобретение относится к устройству и способу питания постоянного напряжения U1DC для системы создания тяги С с применением преобразователей (1, 2), использующих в свою очередь различные переменные или постоянные напряжения UAC, UDC, имеющиеся в линии подачи питания (9).
Наверх