Установка для подготовки шахтного метана к утилизации

Изобретение относится к угольной промышленности и может быть использовано при подготовке шахтного метана к утилизации различными потребителями. Техническим результатом является повышение эффективности работы установки подготовки шахтного метана к утилизации, путем обеспечения возможности предварительного разделения утилизируемых каптируемых метановоздушных смесей, и повышение безопасности работы установки. Предложена установка для подготовки шахтного метана к утилизации, содержащая влагоотделитель, фильтр мокрой очистки газа, устройства контроля содержания метана в газовой смеси и давления, смеситель, устройства защиты от аварийных режимов, трубопроводы подачи газовой смеси и каптированного газа и системы регулирования концентрации метана с газоанализатором и регулятором концентрации газа, первичную демпфирующую емкость, установленную в линии подачи каптированного газа перед смесителем, и вторичную демпфирующую емкость, установленную после смесителя в линии подачи потребителю газовой смеси, входной трубопровод с воздухозаборником, газоанализатор, соединенный с регулятором концентрации газа, одоратор, соединенный со смесителем и регулятором концентрации газа посредством регулирующей задвижки, регулятор-стабилизатор давления и дополнительные регулирующие задвижки и отсечной клапан, установленные на входном трубопроводе между воздухозаборником и смесителем. Кроме того, установка снабжена кассетой с разделительными мембранами, установленной между нагнетательным и напорным трубопроводами, и имеет вентиляторное приспособление, соединенное с газопроводом для забора метановоздушной смеси из шахты, при этом влагоотделитель, фильтр мокрой очистки газа установлены перед кассетой с разделительными мембранами. 1 ил.

 

Изобретение относится к угольной промышленности и может быть использовано при подготовке шахтного метана к утилизации различными потребителями.

Известна дегазационная установка, включающая вакуум-насос, аппаратуру для сушки газа, устройства контроля за содержанием метана в газовой смеси и давлением со смесителем, устройства защиты от аварийных режимов, трубопроводы подачи потребителю газовой смеси и каптированного газа и системы регулирования концентрации метана с газоанализатором (Айруни А.Т. и др. "Использование каптированного метана на угольных шахтах за рубежом", М.: ЦНИИЭИуголь, 1970, с. 15-30).

Эта установка может обеспечить заданный состав газовой смеси, подаваемой потребителю, но при условии, что каптированный газ имеет постоянный состав, поскольку стабилизация в смеси основана на поддержании заданного соотношения расхода каптированного и природного газа (воздуха). При изменении состава каптированного газа возникают изменения состава и на выходе стабилизирующей станции, так как изменения состава каптированной смеси могут происходить при неизменном ее расходе. Эта установка рассчитана на то, что каптированная смесь предварительно стабилизирована по составу, например, путем смещения метановоздушной смеси, поступающей от нескольких шахт.

Известна также дегазационная установка, содержащая вакуум-насосы, аппаратуру осушки газа, устройства контроля за содержанием метана в газовой смеси и давлением со смесителем, устройства защиты от аварийных режимов, трубопроводы подачи газовой смеси и каптированного газа и системы регулирования концентрации метана с газоанализатором, две демпфирующие емкости, одна из которых установлена в линии подачи каптированного газа перед смесителем, другая после смесителя в линии подачи потребителю газовой смеси, и газоанализатор системы регулирования концентрации метана. (SU №767363, кл. E21F 7/00, опублик. 1980 г.).

Описанная установка не обеспечивает снижение и стабилизацию концентрации метана в каптированной метановоздушной смеси, поступающей из шахты.

Наиболее близкой по технической сути и достигаемому техническому результату является установка для подготовки шахтного метана к утилизации, содержащая устройства контроля содержания метана в газовой смеси и давления, смеситель, устройства защиты от аварийных режимов, трубопроводы подачи газовой смеси и каптированного газа и системы регулирования концентрации метана с газоанализатором и регулятором концентрации газа, первичную демпфирующую емкость, установленную в линии подачи каптированного газа перед смесителем, и вторичную демпфирующую емкость, установленную после смесителя в линии подачи потребителю газовой смеси, входной трубопровод с воздухозаборником, газоанализатор, соединенный с регулятором концентрации газа, одоратор, соединенный со смесителем и регулятором концентрации газа посредством регулирующей задвижки, регулятор-стабилизатор давления и дополнительные регулирующие задвижки и отсечной клапан, установленные на входном трубопроводе между воздухозаборником и смесителем (Патент RU №229331, кл. E21F 7/00, опублик. 20.05.2007 г.).

Недостатком описанной выше установки является то, что она неприменима в случаях, когда содержание метана в каптированной метановоздушной смеси менее 1%. В этом случае повышение и стабилизация концентрации метана с ее помощью невозможны.

На многих существующих шахтах, где ведутся дегазационные работы, с исходящей вентиляционной струей сбрасываются в больших количествах в окружающую атмосферу метановоздушные смеси с содержанием метана менее 1%, загрязняя ее.

Для решения этой проблемы существует несколько традиционных технологий подготовки к утилизации попутного нефтяного газа (ПНГ), в которых используются сепарационные, сорбционные, газодинамические, низкотемпературные методы, гликолевая осушка, аминовая отмывка и т.п. Однако ни один из этих методов не позволяет решить проблему комплексной подготовки ПНГ для дальнейшей утилизации. Даже одновременная осушка по воде и углеводородам в одном процессе, как правило, невозможна. Поэтому одной из основных технологических проблем утилизации ПНГ является разработка методов и оборудования для подготовки ПНГ, позволяющих в одном процессе достичь требуемых параметров. Кроме того, как отмечалось выше, с учетом изменяющегося во времени состава и объема переработки ПНГ, целесообразна конфигурация оборудования, позволяющая без особых дополнительных затрат менять мощность по объему перерабатываемого газа.

Одним из сравнительно новых методов разделения газовых смесей является мембранная технология, получившая в последнее время существенное развитие. Мембранная технология разделения газов широко применяется в процессах получения азота, выделения водорода из водородсодержащих газовых смесей, выделения гелия и CO2 из природного газа, но не использовалась для решения задач утилизации ПНГ. Это было обусловлено рядом причин, к основным из которых относятся присутствие в ПНГ соединений, разрушающих или пластифицирующих классические мембраны, а также характерными селективными свойствами традиционных мембран, обуславливающими концентрирование тяжелых углеводородов в остаточном потоке, что может приводить к их конденсации на мембране, и получение целевого подготовленного продукта в проникшем потоке, т.е. при низком давлении, что требовало его компримирования для дальнейшего использования. Поэтому классические мембраны использовались лишь для концентрирования CO2 с целью его повторного использования для закачки в пласт для повышения его нефтеотдачи.

Задачей данного изобретения является создание устройства позволяющего обеспечить возможность предварительного разделения утилизируемых каптируемых метановоздушных смесей.

Технический результат, ожидаемый от использования настоящего изобретения, заключается в повышении эффективности работы установки подготовки шахтного метана к утилизации, путем обеспечения возможности предварительного разделения утилизируемых каптируемых метановоздушных смесей, и повышении безопасности работы установки.

Указанный технический результат достигается тем, что установка для подготовки шахтного метана к утилизации, содержащая влагоотделитель, фильтр мокрой очистки газа, устройства контроля содержания метана в газовой смеси и давления, смеситель, устройства защиты от аварийных режимов, трубопроводы подачи газовой смеси и каптированного газа и системы регулирования концентрации метана с газоанализатором и регулятором концентрации газа, первичную демпфирующую емкость, установленную в линии подачи каптированного газа перед смесителем, и вторичную демпфирующую емкость, установленную после смесителя в линии подачи потребителю газовой смеси, входной трубопровод с воздухозаборником, газоанализатор, соединенный с регулятором концентрации газа, одоратор, соединенный со смесителем и регулятором концентрации газа посредством регулирующей задвижки, регулятор-стабилизатор давления и дополнительные регулирующие задвижки и отсечной клапан, установленные на входном трубопроводе между воздухозаборником и смесителем, согласно изобретению снабжена кассетой с разделительными мембранами, установленной между нагнетательным и напорным трубопроводами, и имеет вентиляторное приспособление, соединенное с газопроводом для забора метановоздушной смеси из шахты, при этом влагоотделитель, фильтр мокрой очистки газа установлены перед кассетой с разделительными мембранами.

Изобретение поясняется чертежом, где на фиг.1 представлена функциональная схема предлагаемой установки.

Установка содержит вентиляторное приспособление 1, подсоединяемое с одной стороны к всасывающему газопроводу 2, а с другой - к нагнетательному газопроводу 3, влагоотделитель 4 и кассету 5 с разделительными мембранами, расположенную в нагнетательном газопроводе 3 после вентиляторной установки 1, регулятор давления 6, установленный в газопроводе 7, связывающем нагнетательный газопровод 3 со "свечой" 8, регулирующую задвижку 9 на "свече" 8, управляемую задвижку 10 на трубопроводе 11, связывающем кассету 5 с разделительными мембранами со "свечой" 8, управляемую задвижку 12 в нагнетательном газопроводе 3, трубопровод 13 для подачи стабилизированной смеси потребителю, клапан-отсекатель 14 в трубопроводе 13, потребитель шахтного метана 15, блок управления 16 системой защиты, газоанализатор 17 системы защиты и сигнализатор 18 давления, присоединяемые к трубопроводу 13 и передающие информацию в блок управления 16 системой защиты, стабилизирующую станцию, состоящую из ряда элементов: входного трубопровода 19 метановоздушной смеси, соединенного с нагнетательным газопроводом 3 за управляемой задвижкой 12, клапана-отсекателя 20 стабилизирующей станции, первичной демпфирующей емкости 21, которая через регулируемую задвижку 22 соединена со смесителем 23, регулятором 24 концентрации газа и первичным газоанализатором 25 регулятора 24 концентрации газа; выходной трубопровод 27 соединенный с вторичной демпфирующей емкостью 28; воздухозаборник 29, который посредством входного воздухопровода 30 соединен со смесителем 23. Между вентиляторным приспособлением 1 и влагоотделителем 4 установлен фильтр 31 мокрой очистки газа, одоратор 32 соединенный через регулируемую задвижку 33 со смесителем 23; вторичный газоанализатор 34, соединенный с регулятором 24 концентрации газа. На входном воздухопроводе 30 между воздухозаборником 29 и смесителем 23 установлены отсечной клапан 36, регулятор-стабилизатор 37 давления, регулирующая задвижка 38.

Блок управления системой защиты 16, клапан-отсекатель 14, клапан-отсекатель 20 стабилизирующей станции, одоратор 32, отсечной клапан 36, газоанализатор 17 системы защиты, сигнализатор давления 18, регулирующая задвижка 9 и регулируемая задвижка 12 являются устройствами защиты от аварийных режимов.

Регулятор 6 давления и регулятор-стабилизатор 37 давления - устройства контроля за содержанием метана в газовой смеси и давлением.

Регулятор 24 концентрации газа, первичный газоанализатор 25, вторичный газоанализатор 34 являются устройствами регулирования концентрации метана.

Установка работает следующим образом. Вентиляторное приспособление 1 по газопроводу 2 отсасывает исходящую вентиляционную струю, содержащую метановоздушную смесь, из шахты и подает ее в нагнетательный газопровод 3, где в фильтре 31 мокрой фильтрации и влагоотделителе 4 происходит соответственно отделение угольной и породной пыли, а также сконденсировавшейся влаги. Далее в кассете с разделительными мембранами 5 происходит соответственно отделение воздуха и метана. Воздух из кассеты с мембранами 5 через регулируемый клапан 10 при закрытом клапане 9 по трубопроводу 11 сбрасывается в атмосферу. Очищенный и осушенный метан через открытую управляемую задвижку 12 направляется на стабилизирующую (газоподготовительную) станцию, в которой по трубопроводу 19 через открытый клапан-отсекатель 20 стабилизирующей станции, первичную демпфирующую емкость 21 и регулируемую задвижку 22 каптированный метан поступает в смеситель 23, где происходит смешение его с воздухом, поступающим из атмосферы через воздухозаборник 29, открытый отсечной клапан 36, регулятор давления 37, открытую управляемую задвижку 38 и входной воздухопровод 30. В смеситель 23 из одоратора 32 через регулирующую задвижку 33 поступает одорант для придания метановоздушной смеси специфического запаха.

После смесителя метановоздушная смесь по трубопроводу 27 через вторичную демпфирующую емкость 28 поступает в трубопровод 13 и далее через клапан-отсекатель 14 направляется потребителю шахтного метана 15 (заправка автомобилей, сжигание в котельной).

Давление в нагнетательном трубопроводе 3 поддерживается в заданных пределах с помощью регулятора давления 6 путем изменения расхода каптированного газа по трубопроводу 7 в «свечу» 8 регулирующей задвижкой 9.

Давление во входном трубопроводе 30, смесителе 23, выходном трубопроводе 27 поддерживается в заданных пределах с помощью регулятора-стабилизатора давления 37.

Концентрация метана в метановоздушной смеси в трубопроводах 27 и 13 поддерживается в заданных пределах с помощью первичного и вторичного газоанализаторов 25 и 34, регулятора 24 концентрации газа и регулирующей задвижки 38, которые соответствующим образом (пропорционально отклонению фактической концентрации метана в метановоздушной смеси от заданной потребителем) изменяют подачу воздуха в каптированный метан в смесителе 23.

При понижении концентрации метана менее заданной или отключении давления газоанализатор 17 системы защиты и сигнализатор давления 18 передают об этом информацию в блок 16 управления системой защиты. В результате закрываются отсечные клапаны 20, 36 и 14, задвижки 9 и 12, прекращается работа стабилизирующей газоподготовительной станции.

Первичная демпфирующая емкость 21 в линии подачи каптированного газа в смеситель газа 23 замедляет процесс изменения содержания метана в каптированном газе перед смесителем. Поэтому на выходе смесителя процесс изменения содержания метана также замедляется.

Это позволяет первичному и вторичному газоанализаторам 25 и 34 и регулятору 24 концентрации газа осуществлять своевременное управление регулирующими задвижками 22 и 38 и обеспечивать постоянным заданное содержание метана на выходе смесителя 23.

Вторичная демпфирующая емкость 28 сглаживает колебания содержания метана в метановоздушной смеси, выходящей из смесителя 23, в трубопроводе 13, возникающие в процессе регулирования, что исключает понижение концентрации метана менее заданной в метановоздушной смеси, подаваемой потребителю, и срабатывание блока 16 управления системы защиты, который получает сигнал от газоанализатора 17 системы защиты, несмотря на кратковременное понижение содержания метана ниже заданного или повышение более чем на 5% выше заданного в газовой смеси после смесителя 23 перед вторичной демпфирующей емкостью 28.

Повысить безопасность работы установки позволяет наличие одоратора 32, управляемого регулятором 24 концентрации газа посредством регулирующей задвижки 33.

Установка для подготовки шахтного метана к утилизации, содержащая влагоотделитель, фильтр мокрой очистки газа, устройства контроля содержания метана в газовой смеси и давления, смеситель, устройства защиты от аварийных режимов, трубопроводы подачи газовой смеси и каптированного газа и системы регулирования концентрации метана с газоанализатором и регулятором концентрации газа, первичную демпфирующую емкость, установленную в линии подачи каптированного газа перед смесителем, и вторичную демпфирующую емкость, установленную после смесителя в линии подачи потребителю газовой смеси, входной трубопровод с воздухозаборником, газоанализатор, соединенный с регулятором концентрации газа, одоратор, соединенный со смесителем и регулятором концентрации газа посредством регулирующей задвижки, регулятор-стабилизатор давления и дополнительные регулирующие задвижки и отсечной клапан, установленные на входном трубопроводе между воздухозаборником и смесителем, отличающаяся тем, что установка снабжена кассетой с разделительными мембранами, установленной между нагнетательным и напорным трубопроводами, и имеет вентиляторное приспособление, соединенное с газопроводом для забора метановоздушной смеси из шахты, при этом влагоотделитель и фильтр мокрой очистки газа установлены перед кассетой с разделительными мембранами.



 

Похожие патенты:

Изобретение относится к горной промышленности и может быть использовано при разработке полезного ископаемого. Способ улавливания метана при отработке угольных пластов с помощью механизированного комплекса включает отработку угольного пласта с использованием секций механизированной крепи с коробчатыми верхними перекрытиями забойного конвейера и комбайна.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Техническим результатом является повышение точности определения газоотдачи разрабатываемого пласта.
Изобретение относится к горному делу и может быть использовано для извлечения шахтного метана в процессе и после ликвидации метанообильной шахты. Техническим результатом является увеличение срока работы дегазационных скважин и повышение объемов извлекаемого метана, пригодного для утилизации.

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом является повышение эффективности дегазации угольного пласта.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Техническим результатом является повышение точности определения протяженности зоны опорного давления от очистного забоя.

Изобретение относится к горному делу, преимущественно к угольной промышленности, и может быть использовано для прогноза газообильности очистного забоя по источникам метана в призабойном пространстве при работе углеразрушающего механизма (комбайн, струга и пр.).

Изобретение относится к горной промышленности, а именно к подземной угледобыче. Техническим результатом является повышение безопасности работы в очистном забое в пластах, опасных по газовому фактору.

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом изобретения является развитие равномерной сети трещин и разрушение массива угольного пласта по длине дегазационных скважин за малое время и при использовании минимального количества оборудования.

Изобретение относится к горному делу и может быть использовано при подземной разработке газоносных угольных пластов в условиях проявления опасных геодинамических явлений.
Изобретение относится к области горного дела, преимущественно к угольной промышленности, и может быть использовано для безопасной проходки горной выработки по выбросоопасному пласту по газодинамическому и газовому факторам.

Изобретение относится к горной промышленности и может быть применено для извлечения метана из угольного пласта. Способ включает вскрытие угольного пласта скважиной с поверхности, обсадку ее трубами, тампонаж затрубного пространства, перфорацию обсадной колонны, гидрорасчленение пласта, выдержку рабочей жидкости в пласте и оттеснение ее из фильтрующих трещин в дальнюю зону пласта, извлечение метана в режиме самоистечения до истощения скважины. При этом с целью доизвлечения метана в пласт закачивают озон, обладающий большей эффективностью замещения по объему десорбируемого метана, чем азот, воздух, окись углерода и углекислый газ, в объеме, определяемом по специальной формуле. Техническим результатом изобретения является более полное извлечение метана из угольных пластов. 1 ил.

Изобретение относится к горной промышленности и может быть использовано для разработки мощных пологих пластов угля. Способ разработки мощных пологих угольных пластов включает подготовку выемочного столба, монтаж механизированного комплекса, подрезку нижнего слоя пласта очистным комбайном, разрушение подкровельной толщи тонкими гидравлическими струями, выпуск горной массы на подзавальный конвейер. В подкровельной толще направленным бурением закладывают параллельно дегазационные скважины диаметром 90-110 мм на длину выемочного столба на расстоянии 15-30 м друг от друга по ширине выемочного столба и 1-1,5 м от кровли, которые подключают к дегазационной сети, связанной с вакуум-насосом. Разрушение подкровельной толщи тонкими гидравлическими струями и выгрузку горных пород производят на расстоянии, равном двойной ширине вынимаемой полосы очистным комбайном от хвоста секции крепи. Изобретение позволяет повысить уровень безопасности ведения горных работ путем дегазации выемочного столба и улучшения условий проветривания очистного забоя. 3 ил.
Изобретение относится к горному делу, в частности к угольной промышленности, и может быть использовано для рекомендаций по повышению содержания метана в каптируемых газовоздушных смесях, пригодных для утилизации. Техническим результатом является снижение трудоемкости процесса определения притечек рудничного воздуха в дегазационную скважину за счет сокращения числа операций и времени на их выполнение. Предложен способ определения притечек рудничного воздуха в дегазационную скважину, включающий герметизацию ее устья обсадной трубой, подсоединение ее к дегазационному трубопроводу и измерение в действующей скважине давления каптируемой смеси, ее расхода и концентрации метана. При этом дополнительно измеряют давление рудничного воздуха в выработке на уровне устья скважины. После измерения газовых параметров действующей скважины ее отключают от вакуума, затем измеряют давление смеси в отключенной скважине в момент достижения его величины, равной давлению рудничного воздуха в выработке. При этом концентрацию метана в отключенной скважине измеряют на уровне конца обсадной трубы, а притечки рудничного воздуха в скважину определяют произведением расхода каптируемой смеси действующей скважины на разность измеренных концентраций метана.

Изобретение относится к подземной разработке месторождений полезных ископаемых, склонных к внезапным выбросам угля и газа, и в частности к скважинной разработке угольных месторождений. Техническим результатом является повышение безопасности ведения горных работ при разработке свиты газоносных угольных пластов. Предложен способ гидравлической добычи угля из газонасыщенных пластов, заключающийся во вскрытии месторождения скважинами, разрушении и переводе полезного ископаемого в гидросмесь, перемешивании, осаждении пустой породы на дно образованной полости, откачивании водоугольной суспензии на поверхность и транспортировки ее по трубам к потребителю. При этом осуществляют предварительную дегазацию и разгрузку вышележащих и нижележащих выбросоопасных угольных пластов и вмещающего массива горных пород производят путем скважинной добычи угля из пласта, опасного по выбросам угля породы и газа, принятого в качестве защитного. Причем добычные скважины располагают таким образом, чтобы границы защитных зон разрабатываемого пласта располагались равномерно по защищаемым пластам. 2 ил.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Предложен способ дегазации угленосной толщи, включающий оконтуривание участка угольного пласта подготовительными выработками и его отработку очистным забоем, определение метанообильности участка из сближенных пластов угля в зонах разгрузки, проведение скважин на сближенные пласты, измерение интенсивности метановыделения из скважин и установление удаленности от линии очистного забоя зон начального и максимального метановыделения из сближенных пластов и параметры заложения скважин. При этом расстояния активной разгрузки углевмещающих толщ кровли и почвы отрабатываемого пласта и метанообильность участка устанавливают в зависимости от заданной скорости подвигания очистного забоя. По данным измерений интенсивности метановыделения из скважин и удаленности зон максимального метановыделения из сближенных пластов угля определяют газодинамический показатель интенсивности метановыделения из сближенных пластов в скважины соответствующих угленосных толщ. Причем параметры заложения скважин и расстояния между ними определяют по интенсивности метановыделения из сближенных пластов угля на участке, величинам газодинамического показателя и междупластья до наиболее метанообильного сближенного пласта в подрабатываемой и/или надрабатываемой угленосной толще и обеспечивают заданный расход каптируемого метана регулированием числа работающих скважин и разрежения на их устьях. Внедрение способа позволит установить параметры заложения скважин и режима их работы с учетом влияния скорости подвигания очистного забоя в течение времени отработки выемочного участка.
Предложенное изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом изобретения является обеспечение создания равномерной сети трещин для повышения эффективности газоотдачи пласта. Предложен способ гидравлической обработки угольного пласта, включающий периодически повторяющиеся подачу жидкости через скважину в пласт с максимально быстрым увеличением давления на устье скважины, гидроимпульсное воздействие жидкости на пласт с поддержанием давления в течение времени, необходимого для формирования заданных размеров и конфигурации трещин пласта, и сброс устьевого давления жидкости с максимально быстрым снижением до атмосферного с последующим истечением жидкости из скважины. При этом дополнительно пробуривают радиальные каналы и создают гидроударное импульсное воздействие в этих каналах, а затем изменяют движение потока жидкости. Причем гидроимпульсные воздействия производят одновременно во всех радиально пробуренных каналах или последовательно в каждом радиальном канале с последующим гидроразрывом пласта.

Изобретение относится к горной промышленности, а именно к подземной угледобыче, и предназначено для предварительной дегазации зоны повышенного горного давления со стороны погашенной лавы при отработке свиты пластов с прочной и слабопроницаемой кровлей/почвой и выработанного пространства. Техническим результатом является увеличение производительности лавы за счет эффективной подземной дегазации и разгрузки свиты отрабатываемых пластов и повышение безопасности горных работ. Предложен способ предварительной дегазации свиты угольных пластов и выработанного пространства, в котором из передовой подземной выработки бурят скважины, подают через них обсадную перфорированную трубу, через которую осуществляют гидрорасщепление. При этом предварительно производят надработку/подработку угольного пласта для разгрузки и создания порово-трещинного объема массива прочных и слабопроницаемых пород. Наклонные скважины с горизонтальным окончанием бурят во вмещающие угольный пласт породы и далее в выработанное пространство с обеспечением буровых дегазирующих заходок на пласт шпурами меньшего диаметра. Через перфорированную трубу при отступающем в направлении от лавы к устью скважин порядке образуют продольные трещины и разгружающие массив от горизонтальной тектонической составляющей горного давления поперечные трещины, подают флюид с поверхностно-активным веществом для расщепления пород почвы и кровли и устанавливают пропантовую заглушку, тем самым предотвращают преждевременное метаноудаление, впоследствии заглушку размывают водой. При этом сначала через нагнетательные скважины оттесняют метан к добычным скважинам, по завершении цикла метан оттесняют через добычные скважины к нагнетательным. Для получения объективной информации о разгрузке массива и безопасности проводят контрольно-мониторинговые мероприятия. 3 ил.

Изобретение относится к горному делу и может быть применено для дегазации угольных пластов. Способ включает сооружение взрывной скважины в угольном слое и выполнение операции резки слоя угля струей воды под давлением во взрывной скважине с интервалом, так, что ведущая канавка слоя образуется в угольном массиве вокруг взрывного пробуренного отверстия; подачу взрывной стальной трубы с закрытой пробкой верхней частью во взрывную скважину, образование множества воздушных выпусков на передней части взрывной стальной трубы и герметизация участка внутри проема отверстия скважины на 8-10 м, так, чтобы образовать цементную пробку; и соединение взрывной стальной трубы со станцией высокого давления воздуха через трубопровод на обнаженном конце стальной взрывной трубы и открывание клапана, устроенного на трубопроводе для инжектирования газа под высоким давлением. Газ под высоким давлением выбрасывается струей взрывной стальной трубой из воздушных выпусков. На основе образования трещин и разрывов, образованных в разрывах и прорезанных канавках первоначального угольного массива, газ под высоким давлением мгновенно воздействует взрывным эффектом, так что трещины и разрывы могут непрерывно расширяться, и может быть образовано множество новых разрывов. Технический результат заключается в повышении эффективности дегазации пласта. 1 з.п. ф-лы, 1 ил.
Изобретение относится к горному делу. Предложен способ прогноза метанового баланса очистной выработки, включающий определение метаноносности угольного пласта, измерение интенсивности метановыделения в призабойное пространство лавы из отрабатываемого пласта и выработанного пространства. При этом полосе захода комбайна дополнительно устанавливают метаноносность угольного массива, интенсивность выделения метана измеряют после посадки основной кровли последовательно до работы комбайна по разрушению угля и при его разрушении, при этом метановый баланс очистной выработки устанавливают по интенсивности метановыделения из выработанного пространства до разрушения угля комбайном и из отрабатываемого пласта во время его разрушения комбайном. Внедрение способа позволит установить метановый баланс очистной выработки при работе комбайна по разрушению угля, когда интенсивность метановыделения наиболее высокая и является отправной величиной по выбору способов и параметров предварительной дегазации отрабатываемого угольного пласта и производительности очистного комбайна по метановому фактору.

Изобретение относится к области энергосбережения в технологии безопасности в угольных шахтах. Техническим результатом является обеспечение высокой эффективности энергосбережения и сокращения выбросов газовых смесей в атмосферу. Предложено саморегенеративное комплексное устройство для синергетического окисления низкоконцентрированного газа и вентиляционного газа в угольной шахте. Комплексное устройство содержит металлическую оболочку (5) и окислительный слой (13) из керамики в виде сот, который расположен внутри металлической оболочки (5) и разделен на регенеративную секцию (40) и секцию (41) окисления посредством теплообменной камеры (14). Первая полость между регенеративной секцией (40) и внутренней стенкой металлической оболочки (5) разделена на первую впускную камеру (6) и выпускную камеру (8) посредством впускной разделительной перегородки (7), вторая полость между секцией (41) окисления и внутренней стенкой металлической оболочки (5) разделена на вторую впускную камеру (22) и смесительную камеру (20) разделительной перегородкой (21) для усреднения газа, и множество газораспылительных форсунок (28), расположенных на разделительной перегородке (21) для усреднения газа. Внутренний теплообменник (35) расположен внутри камеры (14) теплообмена, а впуск (16) теплообменника и выпуск (15) теплообменника внутреннего теплообменника (35) соединены соответственно с барабаном (18) котла. Первая впускная камера (6) соединена с впуском (1) вентиляционного газа через регулирующий клапан (38) пропорционального действия, вторая впускная камера (22) соединена с впуском (31) для извлечения низкоконцентрированного газа через смеситель (33) пропорционального действия, и регулирующий клапан (38) пропорционального действия соединен со смесителем (33) пропорционального действия посредством соединительного трубопровода (36). Два конца трубы (9) предварительного нагрева впускаемого газа на окислительном слое (13) из керамики в виде сот соответственно сообщаются с первой впускной камерой (6) и смесительной камерой (20). 4 з.п. ф-лы, 4 ил.
Наверх