Индуктивный измерительный преобразователь с цифровым выходом

Изобретение относится к области измерительной техники и может быть использовано для измерения линейных и угловых перемещений. Основная область применения: датчики положения в системах магнитного подвеса ротора. Технический результат: повышение помехозащищенности преобразователя и получение на выходе цифрового сигнала. Сущность: преобразователь содержит катушку индуктивности, надетую на незамкнутый магнитопровод с изменяемым зазором, генератор прямоугольного напряжения, резистор, компаратор и источник опорного напряжения. Последовательно катушке включены генератор прямоугольного напряжения и резистор, один из выводов которого подключен к заземлению компаратора, а другой - к катушке и одному из входов компаратора. К другому входу компаратора подключен источник опорного напряжения. Полупериод напряжения генератора прямоугольного напряжения меньше трех электромагнитных постоянных времени катушки индуктивности при максимальной величине зазора сердечника. 1 ил.

 

Индуктивный измерительный преобразователь

Изобретение относится к области измерительной техники и может быть использовано для измерения линейных и угловых перемещений. Основная область применения - датчики положения в системах магнитного подвеса ротора.

Известен измерительный преобразователь индуктивного типа [Журавлев Ю.Н. Активные магнитные подшипники: теория, расчет, применение. - СПб.: Политехника, 2003, стр. 192, рис. 10.4], содержащий катушку индуктивности, надетую на незамкнутый магнитопровод с изменяемым зазором. К недостаткам данного устройства относятся низкая помехозащищенность и сложность конструкции.

Известен индуктивный измерительный преобразователь [патент RU 2452917, «Индуктивный измерительный преобразователь», Нестерук И.Н., приоритет от 23.09.2010], содержащий катушку индуктивности, надетую на незамкнутый магнитопровод с изменяемым зазором, и компаратор. К недостаткам данного устройства относится низкая помехозащищенность и сложность конструкции.

Известен индуктивный измерительный преобразователь с цифровым выходом [патент US 4626621, «Circuit for generating a position in digital form»], содержащий генератор прямоугольного напряжения, соединенный с цепью, состоящей из катушки с изменяющейся индуктивностью, резистора и компаратора, один из выводов резистора подключен к компаратору, а другой - к катушке и одному из выводов компаратора. Недостатком данного устройства является необходимость повышения габаритов устройства для получения линейной характеристики.

Известен вихретоковый измерительный преобразователь [патент RU 2487314 С1 «Вихретоковый преобразователь перемещений»], содержащий катушку индуктивности и короткозамкнутую цепь в ответной части датчика. Недостатком данного устройства является необходимость в усилении выходного сигнала.

Наиболее близким к изобретению является индуктивный преобразователь с малым воздушным зазором [Туричин А.М. Электрические измерения неэлектрических величин, 2 изд., М. - Л., 1954, стр. 56, фиг. 9-1, а], содержащий катушку индуктивности, надетую на незамкнутый магнитопровод с изменяемым зазором. Сигнал на выходе данного устройства обладает низкой помехозащищенностью и неудобен для использования в цифровых системах.

Целью изобретения является повышение помехозащищенности преобразователя и получение выходного сигнала, удобного для использования в цифровых системах.

Поставленная цель достигается тем, что в ответной части имеется короткозамкнутая цепь, кроме этого имеются компаратор и источник опорного напряжения, последовательно катушке включены генератор прямоугольного напряжения и резистор, один из выводов которого подключен к заземлению компаратора, а другой - к катушке и одному из входов компаратора, к другому входу компаратора подключен источник опорного напряжения.

На чертеже показана функциональная схема индуктивного измерительного преобразователя с цифровым выходом.

Устройство выполнено следующим образом.

Индуктивный измерительный преобразователь с широтно-импульсным выходным сигналом содержит катушку индуктивности 1, надетую на незамкнутый магнитопровод с изменяемым зазором 2, компаратор 3, источник опорного напряжения 4. Последовательно катушке 1 включены генератор прямоугольного напряжения 5 и резистор 6, один из выводов которого подключен к заземлению компаратора 3, а другой - к катушке 1 и одному из входов компаратора 3, к другому входу компаратора 3 подключен источник опорного напряжения 4.

Устройство работает следующим образом.

При питании цепи катушки 1 и резистора 6 прямоугольным напряжением с полупериодом, меньшим электромагнитной постоянной времени катушки 1, падение напряжения на резисторе 6 будет иметь треугольную форму. При изменении зазора сердечника 2 индуктивность катушки 1 изменится, а следовательно, изменится и амплитуда напряжения на резисторе 6. На входы компаратора 3 подается постоянное опорное напряжение и треугольное напряжение с резистора 6. При этом на его выходе появляются импульсы, длительность которых зависит от величины зазора магнитопровода 2.

В предложенном устройстве полезный сигнал, подаваемый на компаратор, пропорционален току в цепи с существенной индуктивностью, что повышает помехозащищенность. Выходной сигнал преобразователя удобен для использования в устройствах, где обработка сигнала ведется при помощи микроконтроллера. Простота конструкции устройства снижает его себестоимость по сравнению с аналогами.

Индуктивный измерительный преобразователь, содержащий катушку индуктивности, надетую на незамкнутый магнитопровод с изменяемым зазором, генератор прямоугольного напряжения, резистор, компаратор и источник опорного напряжения, последовательно катушке включены генератор прямоугольного напряжения и резистор, один из выводов которого подключен к заземлению компаратора, а другой - к катушке и одному из входов компаратора, к другому входу компаратора подключен источник опорного напряжения, отличающийся тем, что полупериод напряжения генератора прямоугольного напряжения меньше трех электромагнитных постоянных времени катушки индуктивности при максимальной величине зазора сердечника.



 

Похожие патенты:

Группа изобретений относится к измерительной технике. Сущность: определяют значения активной и индуктивной компонент напряжения на обмотке датчика в широком диапазоне частот.

Изобретение относится к измерительной технике, представляет собой систему измерения положения и предназначено для определения экстремального положения (xmin, xmax) управляющих стержней ядерной энергетической установки.

Предложенный способ относится к изготовлению инструмента измерительной техники для исследований профилей топографических особенностей гладкой поверхности - ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии.

Изобретение относится к устройству (102), сконфигурированному для измерения геометрии мениска (132) текучей среды и реализуемому им способу измерения геометрии мениска.

Изобретение относится к области информационно-измерительной техники и автоматики и может быть использовано в датчиках, обеспечивающих измерение различных физических величин.

Изобретение предназначено для использования в производстве полупроводниковых приборов, в частности для экспонирования рисунков на полупроводниковые пластины и иные мишени.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов.

Изобретение относится к измерительным устройствам и может быть использовано в интегральных линейных и угловых акселерометрах и гироскопах в качестве датчика перемещений.
Изобретение относится к контрольно-измерительной технике и может быть использовано для проведения ресурсных и метрологических испытаний внутритрубных инспекционных приборов.

Изобретение относится к измерительной технике и может быть использовано для измерения многокоординатных смещений торцов лопаток в турбомашинах. Устройство для измерения многокоординатных смещений торцов лопаток, содержащее источник постоянного напряжения, ключ, рабочий и компенсационный одновитковые вихретоковые датчики, два резистора и первый усилитель.

Использование: для контроля линейных перемещений. Сущность изобретения заключается в том, что потенциометрический датчик линейных перемещений содержит подвижную каретку с двумя токосъемниками, которая перемещается по двум направляющим под воздействием уплотненного по наружной поверхности штока, соединенного с контролируемым объектом, и корпуса с двумя резистивными элементами, при этом в нем подвижная каретка с двумя токосъемниками связана механически со штоком посредством безлюфтового развязывающего узла, повышающего надежность и позволяющего более точно преобразовать величину линейного перемещения контролируемого объекта в изменение значения сопротивления потенциометрического датчика линейного перемещения с нормализованным усилием страгивания на большем рабочем ходе и с обеспечением защиты от влаги и посторонних частиц. Технический результат: повышение надежности и точности преобразования величины линейного перемещения контролируемого объекта в изменение значения сопротивления потенциометрического датчика линейного перемещения. 2 ил.

Использование: для изготовления датчиков деформации, силы, давления, перемещения, вибрации. Сущность изобретения заключается в том, что тензорезистор включает диэлектрическую подложку с нанесенной тензочувствительной пленкой из Sm1-xEuxS, где 0,22≤x≤0,5. Технический результат: обеспечение возможности повышения чувствительности измерений тензорезистора. 1 ил., 1 табл.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей оснований на поверхности первого основания расположен первый контактный элемент, выполненный в виде зигзагообразного печатного проводника из материала с высоким удельным сопротивлением, и второй контактный элемент, выполненный в виде токопроводящей упругой пластины, один конец которой жестко закреплен на изоляционной поверхности первого основания со стороны первого конца печатного проводника. Другой конец токопроводящей упругой пластины закреплен на поверхности второго основания над вторым концом печатного проводника. Упругие элементы могут быть выполнены в виде пластин, первые концы которых закреплены на первом диэлектрическом основании со стороны второго конца печатного проводника, а их вторые концы закреплены на втором диэлектрическом основании со стороны первого конца печатного проводника. Внешняя боковая поверхность диэлектрических оснований может быть выполнена в форме полуцилиндра или полусферы. Технический результат: повышение точности измерения перемещений и упрощении конструкции датчика. 2 з.п. ф-лы, 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано, в частности, в системе управления электрогидравлических и электромеханических приводов летательных аппаратов. Сущность: датчик содержит катушку, состоящую из двух измерительных обмоток и обмотки возбуждения, намотанных на каркасе из немагнитного материала, сердечник, выполненный из магнитомягкого материала, который соединен механически с контролируемым объектом посредством немагнитного штока. Каждая из измерительных обмоток выполнена ступенчато по всей длине каркаса и имеет два ряда витков провода, намотанных равномерно по всей длине. Обмотка возбуждения намотана поверх измерительных обмоток. Измерительные обмотки выполнены по дифференциальной схеме. Технический результат: уменьшение габаритов датчика, возможность точной регулировки крутизны выходной характеристики, исключение погрешности выходной характеристики, вызываемой колебаниями напряжения питания датчика. 3 ил.

Использование: для контроля за трещинами. Сущность изобретения заключается в том, что на расстоянии 10-20 мм от сечения элемента, в котором располагается трещина, наклеивают тензорезисторы справа и слева от трещины на обеих боковых стенках элемента таким образом, чтобы 2-3 тензорезистора располагались по длине трещины перпендикулярно трещине, и 2-3 тензорезистора располагались выше видимой вершины трещины. Затем измеряют электрические сопротивления тензорезисторов, после чего нагружают или разгружают элемент экспериментальной нагрузкой и вновь измеряют электрические сопротивления тензорезисторов, а относительные деформации вычисляют по определенному математическому выражению. Полученные значения относительных деформаций показывают на эпюре деформаций εi по высоте поперечного сечения элемента с обеих сторон от трещины для каждой боковой стенки элемента. Через вершины ординат деформаций перпендикулярно к боковым стенкам элемента проводят прямые до их пересечения со стенками и измеряют расстояние от этих точек пересечения до стенки элемента, с которой начинается трещина. По измеренным на эпюрах εi расстояниям с учетом масштабов вычисляют значения длин трещины l`тр и l``тр на поверхностях боковых стенок элемента и среднюю длину трещины. По результатам 3-5 измерений длины трещины lтр в начальный момент времени и через некоторое время t определяют скорость роста трещины под нагрузкой. Технический результат: повышение точности определения длины трещины в строительных конструкциях. 1 з.п. ф-лы, 3 ил.

Изобретение относится к общей области осаждения керамических покрытий, создающих термические барьеры, на детали горячей части газовых турбин, таких, например, как турбореактивные двигатели. Способ оценки для оценки толщины керамического покрытия, создающего термический барьер, которое должно осаждаться с помощью физического осаждения из паровой фазы по меньшей мере из одной мишени (2) на деталь горячей части газовой турбины (3A), установленную на опорном приспособлении, при этом способ включает: стадию (E10) цифрового моделирования геометрической формы детали горячей части и ее перемещений по отношению к мишени; стадию (E20) представления моделируемой детали горячей части как поверхностной сетки и стадию (E50) оценки по меньшей мере для одного элемента сетки детали горячей части, экспонируемой для излучения от мишени во время осаждения покрытия, толщины покрытия, которое должно осаждаться на указанном элементе сетки в данный момент времени, с использованием модели излучения, моделирующей излучение от мишени, и с учетом положения указанного элемента сетки в этот момент времени по отношению к мишени. Технический результат – упрощение способа оценки толщины покрытия в большем количестве точек. 5 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля линейных перемещений и вибраций различных механических узлов и оборудования. Датчик линейных перемещений содержит основную измерительную обмотку для регистрации линейных перемещений контролируемого объекта, выполненную диаметром провода 0,1 мм, и дополнительно для измерения вибраций в корпус датчика включен дополнительный измерительный узел, расположенный на противоположном конце каркаса выдвижного штока, содержащий второй ферромагнитный сердечник на тяге выдвижного штока, измерительную обмотку диаметром провода 0,06 мм на фторопластовой втулке, по бокам которой закреплены ограничительные шайбы, через винтовые соединения соединяющие между собой металлический утяжелитель, имеющий небольшой зазор с двумя боковыми пружинами сжатия малой жесткости, опирающимися на опорные шайбы, закрепленные на каркасе выдвижного штока. Технический результат – повышение точности измерений. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля положения движущихся металлических частей роторных машин в энергетике, турбонасосных агрегатов в нефтегазовой промышленности и других областях. Измеритель линейных перемещений содержит дифференциальный вихретоковый преобразователь, параллельно обмотке возбуждения которого подключен конденсатор, образующий с обмоткой возбуждения параллельный резонансный LC–контур, а также индикатор и генератор. Измерительные обмотки дифференциального вихретокового преобразователя подключены через первый и второй выпрямители соответственно к инвертирующему и неинвертирующему входам дифференциального усилителя. Дополнительно введены источник тока, амплитудный детектор, масштабный усилитель, второй индикатор, блок сравнения и вычисления. Технический результат: повышение точности измерения перемещения и расширение функциональных возможностей за счет одновременного измерения продольного и поперечного перемещений контролируемого объекта. 2 ил.

Изобретение может быть использовано для определения взаимного положения между двумя объектами, в частности для определения взаимного положения между клапаном и седлом клапана в двигателе внутреннего сгорания. Способ определения взаимного положения между первым корпусом и катушкой осуществляется при помощи узла датчика положения. Узел датчика положения содержит первый корпус, катушку (11), блок управления и цепь (12) датчика. Первый корпус является взаимно перемещаемым в осевом направлении относительно катушки (11). Цепь (12) датчика содержит компаратор (15), соединенный с первым ответвлением, содержащим катушку (11), выключатель (16) питания и эталонное сопротивление (18), соединенные последовательно друг с другом. Компаратор (15) выполнен с возможностью получения и сравнения мгновенного измерительного напряжения через эталонное сопротивление (18) и мгновенного опорного напряжения, генерирования изменения состояния цифрового выходного сигнала на основе взаимного соотношения между измерительным напряжением и опорным напряжением. Способ заключается в том, что посылают восходящую ветвь импульса цифрового входного сигнала от блока управления к выключателю (16) питания для создания изменения состояния выключателя (16) питания от разомкнутого к замкнутому. В блоке управления обнаруживают первое изменение состояния выходного сигнала от компаратора (15). Определяют взаимное положение между первым корпусом (10) и катушкой (11) на основе временной задержки между восходящей ветвью импульса входного сигнала и первым изменением состояния выходного сигнала. Способ может заключаться и в том, что в блоке управления могут обнаруживать второе изменение состояния выходного сигнала. Могут определять взаимное положение между первым корпусом (10) и катушкой (11) на основе задержки между первым изменением состояния выходного сигнала и вторым изменением состояния выходного сигнала. Раскрыт узел датчика положения. Технический результат заключается в повышении точности определения взаимного положения между двумя объектами и в снижении потребления энергии. 2 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения малых деформаций. Сущность изобретения заключается в том, что в опорной части подставок тензометра размещены магниты, обращенные друг к другу одноименными полюсами. Упругая вставка выполнена в виде нескольких соединенных между собой П-образных элементов, образованных вертикальными несквозными вырезами, направленными встречно, при этом рабочий зазор между подставками выполнен состоящим из нескольких вертикальных несквозных вырезов между П-образными элементами, а суммарная ширина этих вырезов составляет не менее 1/3 измерительной базы тензорезисторов, которые наклеены на верхние поверхности П-образных элементов, а фиксирующий элемент выполнен в виде плоской перемычки, установленной на торцевых поверхностях подставок и закрепленной на них посредством винтов. Технический результат – упрощение и ускорение его монтажа и демонтажа, исключение потери устойчивости тензорезисторов при деформациях сжатия. 2 з.п. ф-лы, 1 ил.
Наверх